本站小编为你精心准备了碱液回收的节能降耗论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1发酵生产环节CO2回收与平衡优化研究
1.1原有CO2回收系统分析和可改进点
图2为目前华润雪花啤酒(辽宁)有限公司现用的CO2回收流程。发现问题:(1)CO2回收问题。回收量和回收能力不匹配。由于生产旺季产气量大,厂内的储气罐数量有限,因此在旺季时候回用不及时只能放掉一部分CO2,而淡季时候由于产气量满足不了厂内罐装等工序的需求,不得不需要外购CO2气体。(2)CO2冷量资源浪费。华润雪花啤酒(辽宁)有限公司的CO2储罐出来的CO2直接使用蒸汽加热使其汽化供使用点使用,这样CO2本身冷量白白浪费掉了。(3)杂气浪费。CO2在回收过程中产生一定量的杂气,这一部分杂气直接外排,造成浪费。
1.2CO2回收平衡优化技术
1.2.1CO2回收方面改进方法华润雪花啤酒(辽宁)有限公司在厂区内新建2座储量为50m3的CO2储罐,将旺季产的CO2中剩余部分储存起来,待生产淡季产气不足时,汽化供厂内需要。
1.2.2杂气的回收利用CO2回收过程中,在冷凝器和提纯塔的两个环节均会产生杂气(即纯度不达标的CO2气体)。杂气回收利用方案如下:首先,对厂内的管道进行了改造,在冷凝器,提纯塔至气动阀门等仪表之间上布置管道,将杂气和使用点连接起来;在杂气使用前需要对其减压,杂气压力从17.5kgf/cm2降至7-8kgf/cm2,供厂区仪表设备用风。这样做不仅省去了空压机制备压缩空气的环节,并由于杂气不含水汽,不会引起管道凝水结露等现象。杂气回用使得杂气得到了极好的利用,基本可以利用到回收杂气的60-70%,并由此减少了空压机的使用,最终降低了能耗。
1.2.3液态CO2冷量回收技术全厂共有7个CO2储罐,全容积在50m3左右。在CO2储罐内,CO2以液态形式存在,需汽化后方可使用。汽化过程是一个吸热过程,之前是通过蒸汽加热的方式达到汽化。啤酒厂经过节能改造现将CO2储罐内的液态CO2储送至酒精储罐(即冷媒罐,用于给酒降温),酒精储罐底部设盘管用于热交换,液态CO2从盘管内流过,利用酒精储罐的温度将其升温3℃左右;同时达到了给酒精储罐降温的目的(酒精储罐内冷媒温度从4℃降至1℃)。如此一来,降低了酒精储罐降温时制冷机的使用频次,达到了节能降耗的效果。然后用CO2液体给循环水降温,循环水用来给设备降温,这样,降低了自来水的使用率和制冷设备的使用。CO2气体冷量回用工艺流程图见图3。
目前,华润雪花啤酒(辽宁)有限公司碱的使用量很大,产生的废碱液就直接处理排放,而排放的废碱液浓度约有1%,如果能提纯回收利用,将节约大量碱液和水。罗杰和杨诲彤在文献[3]中介绍了包装车间洗瓶机碱液回收改造的成果,经过改造生产工艺不但得到有效保障,而且提高了生产效率,更是获得可观的经济效益和环境效益。
2.1碱液来源和水质废碱液主要是来自于洗瓶机产生的,啤酒成品包装车间的洗瓶机用来对回收酒瓶进行清洗除标,采用浓度为2%的氢氧化钠碱液作为主体清冼剂。洗瓶机连续运行5天后,回收酒瓶上的商标纸纤维、泥沙、残酒等物质会混入到碱液中,使碱液的浓度降低,洗涤效果明显下降,产生大量的废碱液。冼瓶机废碱液的水质见表1。
2.2碱液回收工艺-静置沉淀-砂滤目前碱液回收工艺主要是混凝沉淀和静置沉淀,然后过滤。混凝沉淀工艺能够有效的去除废碱液中的悬浮性颗粒杂质,对废碱液的预处理具有明显的效果。但是混凝沉淀过程存在药剂用量大的弊端,混凝剂的投加增加了净化的成本。为避免这一缺点,采用静置沉淀方式来取代混凝沉淀对废碱液进行预处理。与混凝沉淀相比,自由沉淀过程是以牺牲时间为代价换取净化成本上的降低。由于废碱液属于间歇性排放,所以在时间上可以得到一定的延长。通过集中收集单次排放的废碱液后,连续对废碱液进行净化回收,在用时上比混凝沉淀要长,但是并不影响处理过程。且静置沉淀-砂滤的工艺过程简单,处理成本低,适合延时处理;虽然处理用时长,但其处理效果能满足华润雪花啤酒(辽宁)有限公司实际需要。故确定本啤酒厂的碱液回收方案流程见图4。经过试验,通过建立碱液回收工艺,碱液的使用周期由5天增加为8.5天,节约了碱和自来水的使用量。
3生产辅助环节节能技术研究
3.1存在的问题目前华润雪花啤酒(辽宁)有限公司运行的制冷系统主要存在以下问题:首先,各大小制冷剂在运行时没有进行依据生产所需量尽行优化组合调配使用,造成部分制冷剂能量运行浪费。其次,制冷剂在制冷过程中会伴随着水和空气的进入,这样不仅降低了系统的蒸发能力,又增加了运行成本。
3.2节能技术方案的确定根据现场存在的问题,在设备运行上,我们通过合理安排开关机时间来解决,针对不同的蒸发温度系统,按照机械负荷的要求选配压缩机,以满足进货旺月的要求。实际运行时,通过调节运行时间,调整制冷系统供冷量。为了降低压缩机能耗,首先需要做到根据负荷调整压缩机运行台数和运行时间,保证压缩机提供的冷量接近实际好冷量;其次,尽量增加夜间压缩机运行时间,减少白天压缩机运行时间。不仅因为用电低峰电费低,而且因为夜间冷凝温度较低,制冷系统效率高。针对含有的不凝性气体和水问题,采取了简单易行的现在使用范围广的氨纯化系统。
3.3氨纯化方案氨在低压储罐内以气相和液相两种状态存在,现有3个低压储罐,每个储罐的容量为50m3,其中1个储罐控制压力在2.1kgf/cm2,1个储罐压力为2.1kgf/cm2,另有1个储罐作为备用。低压储罐的氨进入制冷机制冷后,进入蒸发冷却器。蒸发冷却器共有10台,在此氨转为液氨,进入高压储罐内储藏。高压储罐内压力为10kgf/cm2,共有2个储罐,每个容量25m3。高压储罐内的液氨送入使用点进行制冷,使用点集中在糖化、发酵和过滤阶段。经使用点后的氨回到低压储罐内。制冷系统为全封闭密闭运行,几乎无氨的损耗。但由于机器含油,需定期排放;另在维护和检修过程中有少量的氨损耗。
4结束语
(1)糖化生产环节节能技术优化研究成果:将原有煮沸时间64min缩短为54min。(2)发酵环节CO2回收与平衡优化研究:厂内产生的CO2全部回收,并达到了产生量和使用量的动态平衡,厂内达到了自给自足。(3)包装生产环节碱液回收利用技术研究:新建碱液回收装置,回收工艺为废碱液-沉淀-砂滤,使碱液使用周期由5天增加到8.5天。(4)生产辅助系统主要是从氨纯化方面节能。新建氨纯化后,可节约电能。(5)针对啤酒厂各个环节的能耗进行研究,形成了一个可复制的节能技术集成,可作为成套技术进行推广。
作者:孙立坤王国懿吕超石小力张勇马旭单位:大连宇都环境工程技术有限公司华润雪花啤酒(辽宁)有限公司