美章网 资料文库 船载卫星通信系统探究范文

船载卫星通信系统探究范文

本站小编为你精心准备了船载卫星通信系统探究参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

船载卫星通信系统探究

1传统PID算法在船载卫星通信系统中的应用

数字式PID算法有两种类型,分别为增量型PID算法和位置型PID算法。在本系统中采用的是位置型PID算法。入口参数为角度误差量,即系统运行时理论角度值与码盘反馈的角度差值送给e(k)。传统PID算法虽然原理比较简单,控制较为灵活,但在实际的应用中还是存在一些问题的。如在系统启动时,短时间内有很大的偏差,会引起积分饱和,造成较大的超调;而微分环节的引入会使系统对于干扰变得特别敏感,造成系统的不稳定。下面针对这些问题提出几种改进方法。

2PID算法中积分项的改进

在PID函数实际应用过程中,为了克服积分饱和现象,通常可以采用积分分离、积分限幅和不完全积分的克服方法。积分分离的实现方法是在偏差值不大时对积分项累加,而在偏差值较大时不对该值累加,这样可以防止偏差大时过大的PID输出控制量,避免了积分饱和现象[6]。积分限幅的基本方法是当积分项累计到某个较大的值时,不再继续对积分值进行累加,保持该积分值不变,下一次的积分值取上一次的积分值,直至出现符号相反的入口值时才继续对积分项进行累加[7]。由此可见,采用不完全积分方法后,积分环节的输出量在第一个周期会迅速的增大,但此后其增长速度不断减慢,最后会趋向一个有限值,然而完全积分是趋向无穷大的。因此完全积分容易出现积分饱和现象,从而导致其特性变差[8]。

3PID算法中微分项的改进

微分项的引入会导致系统对干扰扰动特别敏感。原因在于当e(k)为阶跃函数时,微分项的输出仅在一开始起作用,对于时间控制比较长的情况,它的超前控制作用会变得很小[9]。在此提出的改进方法就是采用不完全微分的方法。由此可见,采用不完全微分方法之后,微分环节的输出量在第一个采样周期内的脉冲高度会降低,然后按(0)dkau的规律逐渐衰减。因此不完全微分能有效克服传统PID算法对扰动敏感的不足,从而具有较为理想的控制特性[10]。综上所述,具有不完全微分、不完全积分的PID控制器如图4所示。

4结论

将不完全积分、不完全微分的PID算法应用到实际的船载卫星通信系统中,当电机正转和反转时分别测量出具体数据。以实测出的数据做为输入量,将控制量u(k)和误差e(k)用Origin软件进行绘图,得到下面的图形[11]。从图5和图6可以看出,运用PID算法控制的电机在经过一开始短暂的闭环控制后,控制量保持平稳,误差几乎为0,达到了我们的要求[12]。

5结束语

本文探讨了PID算法在船载卫星通信系统中的应用,并提出了积分限幅、积分分离、不完全积分和不完全微分的改进方法,避免了系统启动时因不稳定而引起的积分饱和问题,具有较大的抗干扰性,从而使电机更加稳定的运转。[13]通过编制计算机程序,将实测数据作为程序输入量,并用Origin软件进行绘图,最后进行相关的分析、讨论。结果表明该算法运行稳定,效果明显[14]。

作者:万冰 单位:南京邮电大学 通信与信息工程学院