美章网 资料文库 本天线伺服系统的卫星通信论文范文

本天线伺服系统的卫星通信论文范文

本站小编为你精心准备了本天线伺服系统的卫星通信论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

本天线伺服系统的卫星通信论文

1伺服控制单元设计

天线伺服系统采用高性能DSP+FPGA架构作为系统控制核心,因DSP具备指令周期短、运算精度高等特点,因此选用高性能DSP芯片TMS320F28335完成天线控制与位置解算功能,从而满足控制系统的时效性和精确性;又因FPGA具备逻辑单元丰富、集成度高以及工作稳定可靠等特点,因此选用XC2S300E⁃6PQG208I型FPGA实现DSP外设接口的扩展,即在单片XC2S300E⁃6PQG208I上完成操控输入及显示、数据采集、滤波及控制算法处理,并输出PWM信号进行电机调速控制,从而满足天线伺服系统中多电机、多编码器、多通信接口以及系统操控界面接口的需要。伺服控制单元框图如图3所示。由图3可以看出,系统要实现的控制功能比较复杂,主要体现在:天线姿态、天线地理位置的解算,主天线方位、俯仰角度的闭环运动控制,馈源极化角度的闭环运动控制,卫星位置的存储,系统限位开关的采集与安全保护单元的联锁设计,显示接口与界面的设计,操控面板的设计等。由图3还可以看出,系统所有外设接口均通过FPGA进行扩展,并采用了光隔,确保控制单元运行的稳定性和可靠性。

2电机的选型及计算

2.1主天线电机选型及计算

2.1.1天线转台加/减速时所需要的力矩式中:W为天线直径;L为天线宽度方向到回转轴的距离;I为天线相对于转轴的转动惯量;m为天线的总质量;θ为天线倾角。

2.1.2转台在风载荷下产生的颠覆力矩(按照天线迎风面最大算)风载荷(20m/s)作用于雷达的最大作用力:式中:ρ为空气质量密度(取1.2kg/m);υ为平均风速(20m/s);Cx为风力矩系数(取1.2);A为天线风阻反射面积(πR2θ)。考虑到交流伺服电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定等特点,选择韩国麦克彼恩交流伺服电机作为主天线方位和俯仰驱动电机,电机参数如表1所示。

2.2极化电机选型及计算极化电机主要用来驱动馈源极化轴。本天线系统采用波纹喇叭作为馈源,重量轻,约5kg左右,且极化轴对速度要求严格;而步进电机转动角度精确,转角和转速不受电压波动和负载变化影响,能实现快速启动、停止、反转和改变转速,因此选型为步进伺服电机,其参数如表2所示。

3卫星通信伺服控制算法

为了实现天线高精度指向卫星,本天线伺服系统采用了粗精对准相结合的方式进行对星,即先利用预设的卫星位置计算出天线理论指向角,实现天线的粗对准;再通过监测信标接收机输出的AGC电平信号强度,实现天线的精对准。

3.1天线粗对准控制算法天线粗对准控制算法即天线理论指向角的计算,这包括天线俯仰角E、天线方位角A和馈源极化角P的计算。设天线所处地理位置的经度为φ1,纬度为θ,静止卫星所在经度为φ2,经度差φ=|φ|1-φ2,可计算出天线方位角A、天线俯仰角E和馈源极化角P。计算公式为。在天线粗对准过程中,将目标卫星的轨道信息(卫星的在轨经度)输入伺服控制单元,利用GPS接收机测得天线所在地的经纬度信息。伺服控制单元进行姿态解算后得到天线对准目标卫星所需要的方位角、俯仰角和极化角,然后驱动各电机运动以实现对卫星的搜索。在对星的过程中同时要利用姿态传感器不断检测天线波束的实际指向信息,得出天线实际角度和理论角度的差值,伺服控制单元根据这些差值驱动天线的方位、俯仰和极化方向的电机不断转动,通过不断地比较,驱动天线最终指向卫星。在天线转动的同时还要不断采集信标接收机输出的AGC电平值的大小,该值也作为一个反馈信号反馈至伺服控制单元,判断该值与预设电平门限值的大小。当采样的电平值大于该门限值后,结束粗对准状态,进入精对准状态;否则,则需继续转动天线进行对准。

3.2天线精对准控制算法天线完成了粗对准后,天线进入能收到信号的范围,但是收到的信号强度较弱,距离信号最强指向还有一定的角度差。为了使信号接收效果达到最佳,需进行天线精对准。在这一阶段,需在粗对准后的位置附近结合信标接收机的输出电平AGC的大小变化做微动精确跟踪,最终找到信号最强(AGC电平值最大)的位置作为对准卫星的目标位置。天线精对准控制算法图如图4所示。

4好结语

笔者详述了采用DSP+FPGA架构为控制核心的车载卫星通信天线伺服系统利用双轴倾角传感器和GPS测得的数据为参数来对星的控制算法,并利用信标接收机接收到的AGC电平值大小作为是否准确对星的关键,这对降低卫星通信系统成本、提高卫星通信天线对星的快速性和准确性具有一定的工程参考价值。

作者:章百宝陈涛单位:中国兵器工业第五八研究所军品部