本站小编为你精心准备了无线传感器网络拓扑控制探讨参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1引言
无线传感器网络(WSN)是集信息采集、传输以及处理于一体的智能信息管理系统,应用前景广阔,是目前比较活跃的一个领域。WSN是一种由大量微传感器节点组成的自组织网络,其向学者们提供了大量的研究课题,拓扑控制是最基本问题之一。拓扑控制就是要研究如何形成一个良好的网络拓扑结构,为数据融合、路由协议以及目标定位等其他技术提供支撑。WSN节点通常大规模部署并且具有随机性、自组织性,网络组织方式通常多种多样,节点能量非常有限,因此,在设计无线传感器网络时,要提高路由协议和MAC协议的效率,延长网络生存周期,一定要有一个良好的网络拓扑结构。目前主流的拓扑控制算法可分为:节点功率控制型和层次型拓扑控制型。功率控制就是通过变化节点的发射功率来调整节点无线信号的覆盖区域大小,在此基础上调节网络的拓扑结构,最终目的是提高整个网络的连通性。层次型拓扑控制主要采用的是分簇机制,将整个网络划分成若干区域形成多个簇,选出骨干节点构成骨干网进行数据转发,而普通节点可择机关闭不必要的模块,以避免不必要的能量消耗。
2典型的拓扑控制算法
2.1节点功率拓扑控制算法LMA和LMN算法是基于节点度的算法,通过不断的改变节点的发射功率来使得其度数处在一个合适的范围,根据已经采集到的局部信息来调整邻居节点之间的连通性,最终使整个网络具有连通性。两种算法的相同点是分步骤、周期性地调整节点的发射功率,不同点是它们有着不同的节点度数计算方法。这两种算法利用较少的局部信息就可确定节点功率的调节方式,而且对时钟同步、传感器节点要求均不高,但是在节点邻居节点判断上存在不足,所形成的网状拓扑结构不仅增大了网络复杂度,而且使网络开销增大了。
DRNG和DLMST算法是基于邻近图的拓扑控制算法,所有节点调整发射功率至最大化形成一个拓扑结构图,再根据设定的邻居判别规则得出该图的邻近图,每个节点根据邻居中最远节点的距离来设定发射功率。这两种算法均以节点发射功率不一致为背景,基于邻近图RNG、最小生成树LMST理论,用距离最远的邻居节点所需的发射功率为标准,有效解决了发射功率不一致的问题,并通过增加删除操作来保证网络拓扑的双向连通。但是这两个算法需要精确的定位信息。
2.2层次型拓扑控制算法LEACH是最早的也是较典型的基于均匀分簇的拓扑控制算法,簇首通过分布式选举随机生成,剩余节点作为簇内成员节点。在网络运行中,簇首节点融合簇内所有节点的信息,以单跳方式发送至Sink节点。簇首节点和簇结构均周期性更新。相对于传统网络,LEACH使用簇结构,能有效提高节点能量利用率和网络寿命。但簇首节点和Sink节点之间的单跳通信可能因长距离数据传输而能耗过大;频繁的簇重增加了额外的通信开销;簇首节点的选择未考虑节点地理位置、剩余能量等因素。
GAF是一种基于地理位置的分簇拓扑控制算法,首先将网络划分为固定数目的虚拟分区,节点将自身地理位置信息与虚拟网格中某个点关联映射起来并计算自身所属的分区,每个区域内选出一个节点在某一时间段内处于活动状态来监测所在区域内的信息并报告数据给Sink节点。GAF使得形成的簇结构更均匀,但是在选择簇首时没考虑节点的剩余能量,划分单元格时,若节点间的一跳通信距离较小单元格会比较密集,而一跳通信距离较大分簇又比较稀疏,这样的分簇反而会降低网络的效率。EEUC是一种分布式的、非均匀分簇算法,首先以概率T(由算法预先设定)在网络中选出一些节点作为候选簇首节点。簇首由候选簇首节点竞争产生,其他节点在簇首选举过程中处于休眠状态,其中竞争半径由候选簇首到Sink节点的距离决定。EEUC将整个网络分成规模各异的簇,簇的规模与离Sink节点的距离成反比,这样有效降低了簇首通信代价,避免了“热区”问题,延长了网络周期。但EEUC单纯的考虑距离而没有考虑节点的剩余能量以及密度因素,而且没有考虑簇首节点在簇内的位置,可能造成网络能耗不均衡过早死亡的现象。
3结语
本文介绍了WSN拓扑控制的分类和几种经典的拓扑控制算法,分析了算法的优缺点。目前的大多数研究模型都比较理想化,没有全面考虑实际应用中存在的问题,还有很多问题亟需进一步研究。未来拓扑控制研究的发展趋势应为:结合多种机制且更接近实际情况,网络的各种性能应被综合考虑进来,拓扑控制的自适应性和鲁棒性应有所提高。
作者:李安莹 房鑫平 孙福阳 单位:沈阳理工大学