美章网 资料文库 多元统计在医学统计中应用范文

多元统计在医学统计中应用范文

本站小编为你精心准备了多元统计在医学统计中应用参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

多元统计在医学统计中应用

多元统计分析是数理统计学中近20多年来迅速发展的一个分支,它探讨高维数据的内在规律,如研究多元变量间的相互关系、数据结构和数据简化等。在现在医院统计分析中运用多元统计分析方法来分析医院的运营情况,药品利用情况等有着广泛和实际的意义。为了更好地运用多元统计分析方法进行论证,现将在医院统计分析中运用最多的几种多元统计分析方法进行描述与对比,便于更好的应用,为医院管理服务。

1.几种多元统计分析方法的概念

主要成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。

因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。

聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。

三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益。

2.聚类分析、主成分分析和主因子分析基本思想的异同

2.1共同点

主成分分析法和因子分析法都是用少数的几个变量(因子)来综合反映原始变量(因子)的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85%以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。并且新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,...,x3,经过坐标变换,将原有的p个相关变量xi作线性变换,每个主成分都是由原有p个变量线性组合得到。在诸多主成分Zi中,Z1在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度。

2.2聚类分析、主成分分析和主因子分析的不同之处

主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量),使它们尽可能多地保留原始变量的信息,且彼此不相关。它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0,或样本向量彼此相互垂直的随机变量),在这种变换中,保持变量的总方差(方差之和)不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分。

因子分析是寻找潜在的起支配作用的因子模型的方法。因子分析是根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同的组的变量相关性较低,每组变量代表一个基本结构,这个基本结构称为公共因子。对于所研究的问题就可试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。通过因子分析得来的新变量是对每个原始变量进行内部剖析。因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两部分。具体地说,就是要找出某个问题中可直接测量的具有一定相关性的诸指标,如何受少数几个在专业中有意义、又不可直接测量到、且相对独立的因子支配的规律,从而可用各指标的测定来间接确定各因子的状态。因子分析只能解释部分变异,主成分分析能解释所有变异。

3.聚类分析、主成分分析和主因子分析数据标准化的比较

主成分分析中为了消除量纲和数量级,通常需要将原始数据进行标准化,将其转化为均值为0方差为1的无量纲数据。而因子分析在这方面要求不是太高,因为在因子分析中可以通过主因子法、加权最小二乘法、不加权最小二乘法、重心法等很多解法来求因子变量,并且因子变量是每一个变量的内部影响变量,它的求解与原始变量是否同量纲关系并不太大,当然在采用主成分法求因子变量时,仍需标准化。不过在实际应用的过程中,为了尽量避免量纲或数量级的影响,建议在使用因子分析前还是要进行数据标准化。在构造因子变量时采用的是主成分分析方法,主要将指标值先进行标准化处理得到协方差矩阵,即相关矩阵和对应的特征值与特征向量,然后构造综合评价函数进行评价。

聚类分析中如果参与聚类的变量的量纲不同会导致错误的聚类结果。因此在聚类过程进行之前必须对变量值进行标准化,即消除量纲的影响。不同方法进行标准化,会导致不同的聚类结果要注意变量的分布。如果是正态分布应该采用z分数法。

4.应用中的优缺点比较

4.1主成分分析

4.1.1优点

首先它利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息。其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价。再次它在应用上侧重于信息贡献影响力综合评价。

4.1.2缺点

当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。命名清晰性低。

4.2因子分析

4.2.1优点

第一它不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化简数据;第二,它通过旋转使得因子变量更具有可解释性,命名清晰性高。

4.2.2缺点

在计算因子得分时,采用的是最小二乘法,此法有时可能会失效。

4.3聚类分析

4.3.1优点

聚类分析模型的优点就是直观,结论形式简明。

4.3.2缺点

在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

结论

聚类分析、主成分分析和主因子分析三种分析方法既有区别也有联系,在医院统计分析中广泛应用,但无论用哪中多元统计分析方法都要确着的数据和可行性。所以在应用多元分析时应注意:

(1)必须思路清晰,知道自己要干什么。

(2)在作多元分析前,必须先作描述性分析。只有在充分了解资料性质的基础上,才有可能正确选择方法,得出有价值的结论。

(3)当所得结果不符逻辑,或有悖于专业知识时,既不要轻易接受,亦不要轻易放弃,必须弄清楚为什么。