本站小编为你精心准备了多元统计分析在区域经济评价的运用参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
(一)主成分分析主成分分析的方法论就是数学降维方法的运用,其宗旨在通过新变量代替旧变量,同时新变量之间是独立的,同时使用者还可以自己决定是否进行分布统计,因此,主成分分析就是一种以多数相关的变量取代少数不相关变量的分析模式。主成分分析的基本特征就在于其可以避免设定参数与实际误差的影响到最后的统计分析结果,并且在统计的过程中该分析方法选取了较多的变量,提高了变量基数大小的准确性,同时在分析的过程中变量较少,而且较少的变量之间互相不影响,这样的一个过程可以使得统计分析结果与实际情况更加符合。
(二)因子分析因子分析方法是在主成分分析基础上发展出的分析方法,其主要研究的对象就是矩阵内部的联系程度,即以带有原始指标数据的矩阵为基础,研究该矩阵的内部结构,进而寻找对该结构具有支配作用的独立新的因子,从而定位那些能够影响变量的特殊因子。因子分析的目的不在于寻找主因子,而是要知道这些因子所代表的含义是什么,可是主成分分析方法寻找到的主因子的解初始载荷矩阵并不满足简单结构原则,各因子的典型代表变量不很突出,因而容易使因子的意义含糊不清,不便于以因子进行经济解释。为此可对因子进行旋转,以便得到满意效果。
(三)聚类分析聚类分析的基本定义是通过统计变量的分布情况,并在分析过程中将具有同类性质的变量予以归纳总结,从而实现减少系统变量的目的的一种统计学方法。实际上,聚类分析法就是一个寻找一种统计量,即可以客观反映变量之间密切联系程度的统计量,在此基础上对这些变量进行分类,目前常用的聚类统计量有距离系数和相似系数两类。但是聚类分析方法主要有三种:系统聚类法、调优法、图论法。
二、多元数据统计分析方法的意义
多元数据统计分析方法是随着计算机的迅速发展而兴起的数理统计学的分支,借助计算机对数据超强的处理能力而研发的统计分析软件已经使得统计分析变得更加简单,并且可以处理更大容量的数据,可以说大数据时代已然来临,而多元数据统计分析方法也被应用到经济发展的各个领域。多元数据统计分析主要是对数理统计方法的原理应用,进而对多变量问题进行研究的理论和方法,其可以将复杂的基尼指标变得简单化,更加清晰地反映经济指标的背后含义,这也是多元统计分析的最重要的作用,多元统计分析方法可以在不有损既有信息的前提下,进行变化和构造模型,使得复杂数据简单化。
(一)武汉城市圈区域经济发展指标的选取与分析区域经济发展的状况是需要从整体上予以评估和考量的,而这种经济评价可以客观反映区域经济发的综合经济实力,展现与区域内的整体经济发展水平,综合经济实力就是区域内的具有的全部经济实力和发展潜力,以及经济地位和影响力。[4]本文所选取的分析对象是武汉市的区域城市圈的经济发展指标,其中的数据来源主要是湖北统计年鉴和湖北省统计局于2014年所公布的数据,通过这些数据我们可以大致了解武汉城市圈区域经济的基本综合经济实力。所以,我们主要选取了其中的15项经济指标,并标记为X1-X15,同时利用了SAS统计分析软件进行了分析,最后的统计分析结果如下表。
(二)聚类分析及其结果评价聚类分析主要是将需要分类的对象按照特定的规则和方法进行分类,我们主要是对这些数据的特征进行观察,然后确定这些分类的。在聚类之后,同一组内的对象应当具有相似性,而不同组的对象是不相同的。我们根据表3.1的原始数据,我们可以对武汉城市圈区域内的九个城市进行聚类,结果如图1和表2。
(三)结果评价根据以上的聚类结果的分析,我们基本上把武汉城市圈区域内的九个城市分为三类,通过表图1和表2可以看出,不同类别区域的指标分值的差异,由此也体现了其城市综合经济实力的差距。首先,区域内的经济实力最强的当属湖北省会城市武汉,因为武汉是该区域内的经济中心,基于其地理位置的优势,交通和基础设施完备,这些指标都是经济发展的重要影响因素,而且武汉作为该区域经济的中心,其领导地位是毋庸置疑的,武汉也需要充分利用自身的优势带动周边经济体的发展。其次,该区域内的综合经济实力第二类就是黄冈、咸宁和孝感了,该三个城市的相同点都在于地理位置的便利性,而且经济发展模式比较健康,在利用外资方面成绩显著,在武汉城市圈内整体实力较为强大,因此该类城市需要发挥自身的优势,协同武汉共同实现区域经济整体实力的提升。
第三类就是表2中的结果,该类城市的经济综合实力一般,其中的代表性城市有黄石和鄂州,这些城市区域的经济发展比较快,可是相对于第一类和第二类的经济实力还是有所差异性,特别是黄石地区的经济基础设施相对完备,但是在发展速度上还略显落后,整体经济发展水平还有待提高。
作者:魏亮亮 单位:山西经济管理干部学院 财务会计系