美章网 资料文库 统计手段对经济范畴的影响范文

统计手段对经济范畴的影响范文

本站小编为你精心准备了统计手段对经济范畴的影响参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

统计手段对经济范畴的影响

社会发展的统计描述方面

为便于对社会发展的现状和趋势以及社会发展与经济发展的协调关系进行全面正确的描述、评价、对比和预测,自20世纪60年代社会指标运动以来,国际组织以及各国纷纷研究与运用社会指标,建立适合各自国情、满足不同目的的社会发展指标体系。社会发展指标体系是依据一定的发展目标而建立的,反映和说明社会发展综合状态的、具有内存联系的一组社会经济指标。它不同于描述社会某一现象、行为的间介质社会指标,它通常是依据某种理论假设,将一组具有内在联系的、零散的社会指标编制在一起,描述、反映社会或某一方面的状况。70年代以后,国际组织和各国开发出系统测量社会条件和社会发展的指标体系,指标主要涉及就业、住房、健康、教育等领域,主要侧重于生活水平、基本需要、分配与平等、贫困等社会问题,如世界银行的《世界发展指标》和美国海外开发委员会的物质生活质量指数等。80年代联合国环境开发署提出了社会可持续发展观,社会指标体系逐渐扩大到环境领域,如可持续经济福利指数和真实进步指数等。90年代以来联合国开发计划署开发了人类发展综合指数,联合国、经合组织、世界银行建立起了21世纪社会发展核心指标体系,以此来揭示社会经济发展和人类发展之间的关系。

数理统计方法的方面

(一)指数方法

指数的编制有着悠久的历史,目前,统计指数尚未形成统一的理论基础。指数构造方法发展层次分为:简单指数、加权指数、改造型加权指数和积分加权指数。按现代经济学的观点,不同的经济变量之间事实上是存在一种函数关系或统计相关关系的,而指数是用来简化和概括大量微观的经济信息的,因此,关于指数的计算都必须在这种经济关系框架下进行。Diewert对函数方法作了系统的研究,揭示了一些著名指数的经济理论性质,为研究不用指数的理论性质,提出了精确指数与最佳指数的思想。基于经济变量之间的关系是一种相关关系的观点,通常意义上的指数只不过是根据某一样本数据计算出的统计量,是总体指数的一个估计而已。在此意义上,指数这一估计应该是一个随机变量,应具有相应的标准误差,这就是指数的随机方法的实质所在。指数的随机方法主要就是回归分析的方法,与普通的回归分析不同的是,指数的随机方法所使用的参数估计是加权最小二乘法,回归模型是比较简单的线性模型或单因素、双因素的方差分析模型。

(二)回归分析方法

回归分析是统计分析中应用最广泛、使用最频繁的方法。它起源于高斯的最小二乘法。早期的回归分析方法有中国统计学家许宝禄的方差分量模型、著名统计学家A.Wald建立起来的统计决策理论等。多重共线性是影响参数估计不稳定的重要因素,因此围绕它不断有新的估计方法的涌现。先后有Stein估计、主成分估计、岭估计以及偏最小二乘估计方法等。其中,偏最小二乘法是不满意于有偏估计所提出的参数估计新思路,在1983年由WordS.及AlbanoC.等提出。近二十年来,偏最小二乘回归在理论、方法和应用各个方面都得到广泛的发展。偏最小二乘回归的研究焦点主要集中在如何建立多因变量与多变量的线性模型上。值得注意的是偏最小二乘在满意度模型中作为估计顾客满意度指标的一种有效方法,随着美国顾客满意度指数和欧洲顾客满意度指数在全世界范围内的推广,必将日益引起人们的重视,对最小二乘的研究也会越来越深入。

半参数模型已引起了人们的极大关注,在经济学等方面都有广泛的应用。它融合了参数回归方法和无参数方法,克服了参数回归形式呆板,难以拟合复杂曲线的缺点和非参数外延预测较差的弱点,从而使对于半参数模型参数的估计具有重要的理论和实际意义。目前半参数回归模型常见的估计方法(补偿最小二乘估计、核光滑估计、拟似然估计)并得到了一些满意的结果。如:吴云、孙海燕研究了半参数估计的自然样条函数法;孙孝前和尤进红提出了迭代加权偏样条最小二乘估计方法,并给出了估计量的大样本性质;Fan和Gijbels提出利用局部多项式方法来拟合非参数部分的未知函数。

(三)时间序列分析方法

时间序列是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列,时间序列预测方法是通过时间序列的历史数据揭示现象随时间变化的规律,将这种规律延伸到未来,从而对该现象的未做出预测,传统的时间序列分析在经济中的应用,主要是确定性的时间序列分析方法,包括指数平滑法、滑动平均法、时间序列的分解等等。随着社会的发展,许多不确定性因素在经济生活中的影响越来越大,必须引起人们的重视。1970年,Box和Jenkins提出了以随机理论为基础的时间序列分析方法,使时间序列分析理论上升到了一个新的高度预测的精确度大大提高,其基本模型有:自回归(AR)模型、滑动平均(MA)模型以及自回归滑动平均(ARIMA)模型。在经济分析中,常常需要对经济变量之间的因果关系作出判断,对经济变量间的因果关系的检验是不可避免的。Granger因果分析法正是为了解决这一问题而发展起来的。2003年的诺贝尔经济学奖由Engle和Granger获得,其原因就在于他们通过改进经济增长、价格和利率等时间序列分析而提出了预测和风险评估的新框架。

多元统计方法

多元统计的真正起源是1928年Wishar《t多元正态总体样本协方差的精确分布》。Hotelling、Fisher和Roy等是多元统计分析的先驱。随着统计软件包的出现,多元分析技术得到了迅速的发展。以下几种分析就是多元统计分析中比较重要的形式。聚类分析是将个体或对象分类,使得同一类中的对象之间的相似性比其他类的对象的相似性更强。目的在于使同类间对象的同质性最大化和类与类间的对象的异质性最大化。聚类分析不仅可以用来对样品进行分类,也可以用来对变量进行分类。判别分析用来解决被解释变量是是非度量的情形,多元回归则是适用于预测和解释度量变量。

判别分析的主要目的是识别一个个体所属类别的情况下有着广泛的应用。在这些情况下,将对象进行分组,并且可以通过人们选择的解释变量来预测或者解释每个对象的所属类别。主成分分析是利用降维的思想,在损失很少信息的前提下把多个指标转化为几个综合指标的多元统计方法。通常把转化生成的综合指标称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能。这样在研究复杂问题时就可以只考虑少数几个主成分而不至于损失太多信息,从而更容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时使问题得到简化,提高分析效率。

主成分的经济意义由各线性组合中权数较大的几个指标的综合意义来确定。通常为了分析各样品在主成分所反映的经济意义方面的情况,在将标准化后的原始数据代入主成分表达式计算出各样品的主成分得分,继而就可在二维空间中描出各样品的分布情况。结构方程模型(SEM)是近20年应用统计学领域中发展最为迅速的一个分支。它是一种实证分析模型,通过寻找变量间内在的结构关系,验证某种结构关系或模型的假设是否合理,模型是否正确,并且如果模型存在问题,可以指出如何加以修改。结构方程模型的另一大特点是可以对隐变量进行分析。

多元回归分析、因子分析和路径分析等方法都可以看成结构方程模型的一种特例。现实生活中,有许多变量诸如健康、优秀、乐观、智力、满意、公正等概念虽然是客观存在的,但由于人的认识水平或者事物本身的抽象性、复杂性等原因又无法直接测量的,结构方程可以通过一些可观测变量对这些隐变量的特征及其相互之间的关系进行描述。

作者:刘志峰詹银珍何莉单位:军队财务系副教授军事经济学院军队财务系副教授军事经济学院军队财务系助教