本站小编为你精心准备了太阳能系统设计论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1系统构成
1.1太阳能供电系统
光伏供电系统的工作受限于天气和日照时间。为保证对滴灌系统的供电,需要对太阳能进行转换并存储在蓄电池中,以保证滴灌系统在阴天或光照不足的情况下正常工作。
1.2控制系统
控制系统采用带有8路A/D转换的单片机STC12C5A60S2,应用C51编程,将土壤湿度传感器采集到的微弱电压信号,经过调理电路提供给单片机,实现土壤湿度的显示,并为执行机构提供动作信息,实现自动滴灌。
2系统硬件构成
系统硬件由太阳能存储模块、数据采集处理模块、串口通信模块、执行模块和太阳能追光模块5部分构成。其中,STC12C5A60S2单片机、土壤湿度检测电路、复位电路、继电器控制电路是整个测控系统的核心。整个系统为太阳能薄膜电池进行光伏转换及蓄电池存储供电。根据不同农作物的蓄水规律,预先在数据采集系统中设定土壤湿度的上下限值,与实时采集到的土壤湿度信号进行比较,然后输出信号使继电器控制电路控制电磁阀门的开关决定是否对作物灌溉。整个系统又为太阳能电池薄膜和蓄电池供电。
2.1太阳能追光模块
该模块主要利用单片机驱动控制直流电机和机械机构,调整电池板与太阳的角度,使太阳能电池薄膜最大限度地吸收太阳能转换电能。本系统以光电隔离和继电器作直流电机的驱动电路,通过软件控制电机的启停动作及间隔时间,利用此追光控制模块,可比普通固定的太阳能发电效率更高。太阳能追光模块和太阳能追踪光电转化分析图分别如图3、图4所示。
2.2太阳能供电模块
整个系统的供电均来自光伏转换,采用转换效率较高的柔性太阳能电池薄膜。该电池采用了UV固化聚合物,质量小、柔韧性好,保证了很高的耐用性。单片薄膜可输出2V电压,370~400MA,通过串并联组合可输出20V,400MA左右的电流。执行机构不工作时,经过充电控制器将太阳能转化后存储在蓄电池中;执行机构工作时,蓄电池为相关机构提供电能。同时,太阳能追光系统通过控制电路适时调整电池板的角度,以最大限度地接受和利用太阳能。
2.3数据采集处理模块
数据采集处理模块是整个控制系统的核心,采用性价比高、耗能低的STC12C5A60S2单片机。该处理器内部集成有8路10位A/D转换单元(250K/s,即25万次/s)。土壤电阻的大小随土壤含水量的不同而不同,根据这一原理,自制阻抗式土壤湿度传感器。其通过探针检测土壤电阻,将土壤电阻的大小转变为电压信号输出,此信号是模拟信号,先由单片机内的A/D转换器变成数字信号后再进行处理,包括主控模块、显示模块及执行模块。2.3.1主控模块单片机有32个I/O口,P0口是单片机和1602的数据接口,P1.0~P1.3口是湿度传感器与单片机内部A/D的接口,P2口部分引脚作继电器及液位检测接口,P3口作液晶显示的控制及按键接口。2.3.2显示模块显示模块采用1602液晶显示片。单片机的P0口和P3口的部分引脚构成了1602的数据和控制引脚,显示模块电路如图8所示。
2.4水位控制和电磁阀驱动电路
储水装置的水位需要控制,具体控制电路如图9(a)所示。电磁阀实现灌溉控制,需要把单片机输出的5V电压转换为驱动电磁阀闭合的12V电压,电磁阀控制驱动电路如图9(b)所示。
2.5串口通信模块
该系统的上位机通过485口实现远程监控。本系统由于上位机距离控制系统较近,采用RS232通信方式。单片机与PC机通过串口通信模块,将采集的数据上传,同时PC机的控制指令通过串口送到单片机。串行接口电路如图10所示。
3系统软件
系统实施灌溉的指令决定于土壤湿度,根据不同作物的需水规律,设定滴灌系统工作的上下限指标。结合考虑土壤水分下渗,一般田间持水率80%的土壤湿度作为上限。本系统用于一个小的种植区,设定土壤湿度85%和10%为上下限值。当前系统状态可由显示器显示出来,设定灌溉时间和时长来驱动电磁阀根据上下限值进行自动灌溉。此外,利用软件设计控制太阳能追光的时间、角度及自动检测高位水箱里水位。
4结论
本系统将太阳能技术和自动滴灌技术结合应用,不仅适应于家庭花园,更适应于远离供电线路的大田使用。系统的实际模型如图13所示。本系统在长春市绿园区农业基地玉米试验田应用,与大水漫灌相比,节水40%~60%,增产20%以上;玉米株数由原来13000~14000株/hm2增加到17000~18000株/hm2,平均每公顷新增产值9000元以上。随着太阳能电池的成本下降,全自动太阳能滴灌系统将会有很广阔的前景和应用空间。
作者:蔡长青张学敏单位:长春工程学院