美章网 资料文库 PET聚酯瓶实验设计论文范文

PET聚酯瓶实验设计论文范文

本站小编为你精心准备了PET聚酯瓶实验设计论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

PET聚酯瓶实验设计论文

1仪器与试剂

仪器:NICOLETiS10型红外光谱仪、BHX-9101-1SA型鼓风干燥箱、DW-3-60型电动搅拌器、PL203/01型电子天平、KEMS-2S型磁力加热搅拌器;浪潮英信NF5220计算服务器,GAUSSIAN09、GaussView(3.09)软件。试剂:pet聚酯碎片(3~5mm×5~8mm,由回收农夫山泉饮料瓶制得);乙二醇、碳酸氢钠、对苯二甲酸、氧化锌、浓盐酸、浓硫酸、85%水合肼等试剂均为分析纯;蒸馏水。

2TPA的测定与表征

我们通过一系列的实验,比较了用不同方法和不同条件降解PET得到TPA(或其衍生物)的收率。收率计算公式如下。采用美国Nicolet公司生产的NICOLETiS10型傅里叶变换红外光谱仪对产物(对苯二甲酸)进行结构表征。对苯二甲酸为白色固体,研磨成粉末后,采用KBr压片法进行检测。同时,还利用了量子化学计算方法,以GAUSSIAN09计算程序[10]采用密度泛函理论对对苯二甲酸的红外光谱进行了理论模拟计算。

3PET降解方法

3.1乙二醇醇碱联合解聚法在装有冷凝管、搅拌器、温度计的三颈圆底烧瓶中投入5g聚酯废料、25mL乙二醇、0.5g氧化锌、5gNaHCO3进行反应,油浴加热逐步升温至190℃,反应30min后,降温至160℃停止搅拌,减压回收乙二醇;蒸馏毕,向三颈瓶中加入50mL沸水,搅拌使残留物溶解,趁热过滤;将滤液转移到400mL烧杯中,水稀释至200mL,加热煮沸,趁热用1:1盐酸酸化至pH5~6;冷至室温后,冰水冷却,抽滤,滤饼用蒸馏水洗涤至滤出液pH=6,在60℃下干燥滤饼,得白色粉末,称重,并计算对苯二甲酸收率。

3.2肼解法在装有冷凝管、磁力搅拌子的圆底烧瓶中投入1g聚酯废料、10mL85%水合肼,搅拌,油浴加热至100℃,反应6h后,减压回收水合肼;残余物加入10mL水,静置,滤得PET的降解产物对苯二甲酰肼,在60℃下干燥,称重,并计算对苯二甲酰肼的收率。此法参考氨解法,使用亲核性更强的水合肼溶液替代胺类,能提高降解效率。

3.3酸性降解在装有冷凝管、磁力搅拌子的圆底烧瓶中投入1g聚酯废料、5mL浓硫酸,搅拌,85℃下反应5min;反应毕,冷却至室温,残留物倒入冰水中,用30%的NaOH水溶液调pH至12,滤去不溶物,滤液用浓盐酸调pH至6,有白色不溶物析出,放置过夜,过滤得产物对苯二甲酸,在60℃下干燥,称重,并计算对苯二甲酸收率。

4结果与讨论

4.1不同化学降解方法的比较通过酸性水解法、肼解法和醇碱联合法,考察了降解PET聚酯瓶的情况,结果列入表1。比较几种方法在经济效益和工业化等方面的优劣,无论是肼解法,还是酸性水解法都存在很大的局限性,如腐蚀设备、污染环境等。醇碱联合解聚法能在温和的条件下,快速实现PET聚酯瓶的分解,故我们选择醇碱联合解聚法为重点研究方向,探索其最佳反应条件。

4.2醇碱解聚法的工艺优化基于以上3种降解方法的对比,结合醇碱联合解聚法的研究进展,采用正交实验来探索最佳工艺条件,重点考察了3种影响反应的因素,A:碳酸氢钠用量:m(NaHCO3)/m(PET);B:反应时间(min);C:反应温度(℃)。由文献已知影响因素的大约范围,设计出因素水平表(表2)。参照上述乙二醇醇碱联合解聚法的方法进行试验,结果见表3。根据上述方法分析,RC>RB>RA,即各因素对TPA收率的影响程度顺序为:反应温度>反应时间>物料比;较佳因素水平为A3B2C2,即PET降解的较佳工艺为:m(NaHCO3)/m(PET)=1.1,反应时间30min,反应温度190℃。从表3可以看出,反应时间和反应温度是影响乙二醇醇碱联合解聚法的关键因素,温度过高或反应时间过长会导致反应副产物增多,收率下降。上述最佳反应条件与文献报道的乙二醇解聚法的最优反应条件(190~196℃,0.1MPa,催化剂(氧化锌或醋酸锌)用量为PET质量的0.5%,m(EG)/m(PET)=2,反应3h)[6-7]接近,但反应时间比乙二醇解聚法短得多,且反应产物也不同。

4.3产物IR表征与结果分析我们对由PET瓶回收的TPA进行了IR表征(图1C),并将该图谱与购买的分析纯TPA样品的IR图(图1D)进行对比,发现两者的图谱基本吻合,验证了所回收的白色固体确实为TPA。为了进一步指认IR特征振动峰,我们进行了相应的密度泛函理论的计算。所选计算水平为M062X/6-31G(d,p),优化的TPA单体与二聚体的几何结构如图1A,图1B所示。3059cm-1附近为苯环上C—H伸缩振动峰;3000~2500cm-1可能为TPA分子间形成氢键后O—H的伸缩振动峰;1571cm-1和1508cm-1处为取代苯基的一组相关振动峰;1661cm-1处为羧基(CO)的伸缩振动峰;883cm-1处为苯环的对位取代吸收峰。此外,通过对比对苯二甲酸的单体(图1A)和二聚体(图1B)的计算结果,发现当考虑TPA分子之间形成分子间氢键时,二聚体计算模拟的红外光谱图与实验的红外光谱图能较好吻合,说明在固态时对苯二甲酸分子之间存在较强的分子间氢键。

5结论与展望

本文对比研究了酸性水解法、肼解法和醇碱联合法降解PET聚酯瓶的收率、环境友好性、经济性等。通过正交实验,预测醇碱联合解聚法的最佳反应条件为m(NaHCO3)/m(PET)=1.1,反应时间30min,反应温度190℃;分析结果表明,在醇碱联合解聚法中,反应温度和反应时间是PET降解的关键因素。在实际生产中,可以通过控制反应时间或温度来减少NaHCO3的用量,降低生产成本。同时利用量子化学计算方法,结合红外光谱分析,对产物进行了表征确认。关于醇碱联合降解法的反应机理方面已有初步讨论[8],与传统的乙二醇降解法相比,醇碱联合解聚法可能是由于加入的NaHCO3在高温下分解产生亲核性更强的OH–,显著缩短了降解时间。然而,一些细致的微观机制尚不清楚,有待于开展进一步的理论和实验探索。本实验利用日常生活常见的PET聚酯材料瓶,研究了PET的化学降解方法。整个实验过程既涉及有机化学、分析化学等实验学科的某些知识,可以使学生将所学知识应用到生产实践中,并培养学生的绿色化学意识;同时又结合理论计算指认实验光谱,做到理论与实验相结合。可望将其开发成为一个综合化学实验,提高学生综合运用所学知识解决实际问题的能力。

作者:黎天浩张子钊王宇轩吴佳昊王国强许英慧单位:南京师范大学附中南京大学化学化工学院