美章网 资料文库 转换器汽车设计论文范文

转换器汽车设计论文范文

本站小编为你精心准备了转换器汽车设计论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

转换器汽车设计论文

一、汽车系统中的瞬变

尽管汽车的标称电池总线电压为12V,但是视交流发电机充电时间的不同而不同,该电压可能在9~16V范围内变化。此外,铅酸电池电压在出现各种临时情况时,会有很大变化。冷车发动和停启情况可能将电池电压拉低至3.5V,而抛载可能使电池总线电压升高到36V。因此,电源IC必须能够准确地调节输出,以平稳应对各种输入电压变化。冷车发动/停启和抛载时,使用单节铅酸电池的多种临时电压摆幅如图2所示。请注意,恰当的电源IC(此处是LT8616)可准确调节3.3V输出,平稳应对这两种临时情况。

二、高效率工作

在汽车应用中,电源管理IC以高效率工作很重要,这主要有两个原因。首先,电源转换效率越高,以热量形式浪费的能量就越少。因为热量是任何电子系统实现长期可靠性的天敌,所以必须有效管理热量,这一般需要散热器以提供冷却,从而增大了总体解决方案的复杂性、尺寸和成本。第二,在混合动力或电动汽车中,电能的任何浪费都会直接减少可行驶里程。直到不久前,高压单片电源管理IC和高效率同步整流设计还是相互独立的,因为各自所需IC工艺不可能同时支持这两种功能。以前,效率最高的解决方案是高压控制器,这类控制器用外部MOSFET实现同步整流。然而,与单片解决方案相比,对于低于15W的应用而言,这类配置相对复杂、笨重。幸运的是,现在市场上已经有新型电源管理IC,能够通过内部同步整流同时提供高压(高达42V)和高效率。

三、始终保持接通系统需要超低电源电流

很多电子子系统需要以“备用”或“保持有效”模式工作,在这种状态时以稳定电压吸取最低限度的静态电流。在大多数导航、行车安全、车辆安全以及发动机管理电子电源系统中,可以看到这类电路。此外,这些子系统都可能使用几个微处理器和微控制器。最豪华的汽车上有超过150个这类DSP,其中约20%需要始终保持接通工作。在这类系统中,电源转换IC必须以两种不同的模式工作。首先,当汽车行驶时,给这些DSP供电的电源转换电路一般会以电池和充电系统馈送的满标度电流工作。然而,当汽车点火装置关闭时,这类系统中的微处理器必须保持有效,从而需要其电源IC提供恒定电压,同时从电池吸取最低限度的电流。既然可能有超过30个这类始终保持接通的处理器同时运行,那么即使点火装置关闭,对电池的功率需求也是非常大的。因此,可能总共需要数百毫安(mA)电源电流给这些始终保持接通的处理器供电,这有可能在几天时间内彻底耗尽电池电量。所以,这些电源IC的静态电流必须极大地降低,以在不增大电子系统尺寸或复杂性的前提下,延长电池寿命。直到不久前,就DC/DC转换器而言,高输入电压和低静态电流要求还是相互排斥的。为了更好地管理这些要求,10年前几家汽车制造商设定了低静态电流目标,即每个始终保持接通的DC/DC转换器<100μA,但是今天的首选是低于10μA。幸运的是,新一代电源IC已经推出,可在备用模式提供低于5μA的静态电流。

四、尺寸更小的电源转换电路

有几种方法减小电源转换电路的尺寸。一般而言,这种电路中最大的组件不是电源IC,而是外部电感器和电容器。通过将这类IC的开关频率从400kHz提高到2MHz,就可以极大地减小这些外部组件的尺寸。但是为了有效达到这一目的,电源IC必须能够在这类较高频率上提供非常高的效率,以前这是不可行的。不过,采用新的工艺和设计方法,已经开发出能够以2MHz频率切换同时提供超过92%效率的同步电源IC。高效率工作最大限度降低了功耗,因而无须散热器。高效率工作还有一个额外的好处,即保持开关噪声位于AM频段以外,这一点在任何噪声敏感电子产品中都是很重要的。另一种显著减小电源转换电路尺寸的方法是,当需要两个单独的电压轨时,采用双通道转换器而不是两个单独的器件。因为一个双通道转换器IC的尺寸仅略大于相同的单通道转换器,因此其解决方案占板面积可以仅为两个单独转换器合起来所占面积的一半。此外,双通道转换器可最大限度减小不想要的通道间串扰,而两个相邻单个转换器的串扰可能造成问题,除非它们同步至一个共同的时钟。如果包括外部时钟和同步功能,会增大电路的尺寸、复杂性和成本。五、新型解决方案LT8616是一个多输出、高压同步降压型稳压器系列的首款器件。其3.4~42V输入电压范围使该器件非常适合汽车应用,因为这类应用既会遇到冷车发动或停启情况导致的低压瞬态,又会遇到抛载情况导致的高压瞬态。其双通道通道具备1.5A和2.5A连续输出电流能力,同时提供0.8V至略低于VIN的输出,因此非常适合用来提供多种直接由车辆电池总线而来的汽车电压轨。该器件是一款占板面积非常紧凑和简单的双输出解决方案,无须任何外部二极管。其原理图如图3所示。LT8616的同步整流设计包括用于每个通道的内部顶部和底部MOSFET,每个通道都提供高达95%的效率。图4显示,当用标称12V输入给5V负载供电时,该器件可提供超过95%的效率,当同时给3.3V负载供电时,效率为94%,甚至在开关频率相对较高的700kHz时。这种高效率工作最大限度减小了功率浪费,同时甚至在空间最受限的应用中,也无须散热器。在电动汽车和混合动力汽车中,这种特点的直接作用就是,延长了电池一次充电的可行驶里程。此外,LT8616的突发模式(BurstMode)工作将两个通道的无负载静态电流降至仅为5μA,从而使该器件非常适用于始终保持接通应用,因为这类应用即使在无负载时也必须保持恒定电压调节,以最大限度延长电池寿命。这一点尤其重要,因为始终保持接通的系统越来越多。另外,纹波非常低的突发模式工作拓扑将输出噪声最大限度减小至低于10mVPK-PK,从而使该器件适合用于噪声敏感应用。如果应用需要外部同步,那么可以用脉冲跳跃频率模式取代突发模式。LT8616非常低的压差电压特性也很有益,尤其对必须在停/启或冷车发动时调节输出的应用而言。图4显示,一旦输入超过2.9V,即使当输入电压降至低于设定的输出电压时,在本图情况下为5V,输出也始终为2A且比输入电压低500mA。这一点很重要,因为很多电子控制模块(ECM)需要一个或多个微处理器/微控制器。尽管这些微处理器/微控制器设计为用标称5V电压工作,但是电源低至3V时,它们仍然继续工作。而在冷车发动情况下,输入可能降至3.4V,所以微处理器仍然可以继续工作,从而使电子控制单元(ECU)在冷车发动情况下一直无缝运行。另外,LT8616的最短接通时间仅为非常短的30ns,这允许以2MHz恒定频率从24V输入提供1.5V输出,从而使设计师能够优化效率,同时避开关键的噪声敏感频段,例如,AM收音机频段。即使在输入电压高于16V时,LT8616也将提供低至1V、良好稳定的输出电压。由于以较高开关频率工作可减小外部组件尺寸,所以LT8616的2MHz开关频率允许实现占板面积非常紧凑的解决方案。此外,也已经有了最大限度减轻潜在EMI/EMC问题的特殊设计方法。LT8616采用了双通道设计。每个通道都有内部集成的上管和下管高效率电源开关以及必要的升压二极管。它们的振荡器、控制和逻辑电路都是共享的,并集成到单个芯片中。两个通道以180°反相工作,以最大限度减小输入和输出纹波。特殊设计方法和一种新的高速工艺在很宽的输入电压范围内实现了高效率,LT8616的电流模式拓扑实现了快速瞬态响应和卓越的环路稳定性。其他特点包括内部补偿、电源良好标记、坚固的短路保护输出软启动/跟踪和过热保护。28引线3mm×6mmQFN或28引线耐热增强型TSSOP封装与高开关频率相结合,允许使用尺寸很小的外部电感器和电容器,从而提供了占板面积非常紧凑和高热效率的解决方案。

五、结论

汽车中复杂电子系统的快速增加导致对电源管理IC出现了更高的要求。通过使用双输出电源IC,汽车设计可以显著减少电源转换电路所需空间。再加上2MHz开关频率,还可以显著减小外部组件(即电感器和输出电容器)的尺寸,从而可提供占板面积非常紧凑的双轨解决方案。这类紧凑型设计非常坚固,能够承受停启、冷车发动和抛载情况导致的瞬态变化,同时准确调节两路输出。此外,超低静态电流使两个通道非常适合始终保持接通系统。随着越来越多的电子系统添加到日益缩小的空间中,最大限度减小解决方案占板面积同时最大限度提高效率也变得至关重要了。幸运的是,满足这些要求的新一代电源IC已经上市,从而为未来汽车中增加更多电子产品创造了条件。

作者:JeffGruetter单位:凌力尔特公司