本站小编为你精心准备了汽车覆盖件交互式模具设计论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1系统设计
系统构架采用CATIA平台的CAA技术开发的系统,包括4个功能模块,为了保证系统的功能明确、可扩展性强,采用3层系统结构,如图2所示,依次为物理层、数据层和技术层。物理层:应用CAA提供的各种API接口程序,实现在CAITA平台上系统的开发。数据层:用户提供包括新产品工艺数模、模具模板,模板匹配参数文件以及模具结构设计检查表在内的必需数据,为新产品模具的快速设计做好数据准备。技术层:系统以参数化模板为核心,采用向导式模具自动化设计工具,提供了以模具参数自动更新为核心的包括新产品数模导入、模具参数化设计、标准件定位和模具检查在内的4个功能模块,完整地实现了在已有模板基础上快速进行模具“再设计”的流程。其中,在新产品数模导入模块,应用数模自动替换技术完成工艺数模的替换更新工作,为后续的参数化设计打好基础;参数化设计模块通过参数自动更新技术,利用用户提供的参数文件和交互界面,对各类参数进行快速批量更新;在标准件定位模块,应用动态测量技术,实现标准件的快速定位;在模具检查模块,根据用户提供的模具检查表,在CATIA环境中对模具逐项进行检查,并自动输出审核结果。
2关键技术
2.1新产品数模自动替换
数模自动替换功能基于CATIA的“”(Pub-lication)命令,此命令主要用于参数化装配建模(ParametricAssemblyModeling)[5],使用命令可以智能地实现组件之间的替换。元素的几何特征可以根据用户需求进行修改变化,但只要名称不改变,其外部引用就会根据元素的变化而重新构建“”与“外部参考”之间的关联关系。命令实现几何元素之间的关联,由的名称和原几何元素所在零件在装配环境下的实例名称共同决定。因此即使将整个Part文档替换,只要保持新Part在装配环境下的实例名称和元素的名称均与原Part一致,那么几何元素之间依然有效关联,并会根据当前几何特征的变化智能地构建出全新的几何特征。基于命令的关联原理,程序实现数模自动替换的过程如图3所示。用户将提供的新产品数模的模具设计必需元素(如板料轮廓线、分模线、曲面等),按照已导入模板的要求进行,保证元素名称的一致。程序自动获取数模在装配体中的实例名称,赋给替换后的新产品零件。各个外部参考节点根据新的元素几何特征进行相关特征的关联重构,完成模具产品型面的自动替换。对于已更新的型面模型,可以实现各个子节点的重复替换。
2.2参数快速批量更新
2.2.1构建动态交互界面交互界面的动态构建基于用户提供的与模板相匹配的参数文件。参数文件的格式如表1所示,依次为参数所属类别、参数类别表示图片、参数名称及参数所在部件。参数类型和每一类型包含参数的个数由用户自己确定,这种方法不受模具类型的限制,也为初级设计人员提供良好的引导。一套完整的参数化模板拥有庞大的参数信息,用户将模板中的参数进行分类整理,写成与模板匹配的参数文件,程序根据文件驱动生成动态交互界面。即当用户选择不同特征类别时,程序自动在交互界面中显示表示该类别的图片和所包含的所有参数,并根据参数所在部件获取其在特征树上的数值,达到根据类别的不同,智能地动态构造交互界面的目的,方便用户一次性修改某类别的所有参数。例如,用户提供如表1的参数文件,在构建的交互界面中分别选择“特征类别一”和“特征类别二”时,动态参数区分别如图4a和4b。以拉延模为例,可以模具主控参数作为特征类别一,所属2个参数为模具总体高度、总体长度;以导板参数作为特征类别二,所属3个参数为导板长度、宽度、厚度。修改时以类为单位,每次批量修改此几何特征类所属参数的数值,方便快速有效更新。
2.2.2参数批量修改CATIA中参数化过程的实现基于知识工程顾问模块提供的公式(Formulas)、规则(Rules)等方法,即用一组参数约束该几何图形的结构尺寸和零部件的特征。参数与设计对象的尺寸和特征有对应关系,当赋予不同的参数值时,可通过函数关系公式和尺寸驱动达到新的目标几何形状和特征[6]。具体设计时,用户根据新产品的数模型面特点,通过交互界面,对参数值按类别进行一次性批量修改,利用参数驱动重构原理实现模板相关几何特征的更新。借助CAA中CATIProduct,CATIParmPub-lisher,CATICkeParm等几个主要接口提供的函数,程序将用户在对话框中输入的目标参数值自动更新到模板特征树上相应的参数节点下,参数值及引用到该参数值的外部参数值同步更新,通过相应的函数关系公式完成几何特征重构(见图5)。用户根据需要,完成参数文件中所列出参数的更新,最终完成新产品模具的设计。
2.3动态测量
测量距离时,用户通过交互界面选择几组目标测量面,程序自动获取这几组面所在零件的位置矩阵。一般平面上的标准件,其局部坐标系与全局坐标系一致。对于斜面上的标准件,为了使移动功能更符合实际需要,使其可以沿斜面方向移动,程序将其局部坐标系从位置矩阵给出的坐标系原点O1,平移至标准件表面点W处(用户选择W),移动时的方向以该局部坐标系为准(图6)。移动时,程序根据用户选择的移动方向和设定的移动距离构造移动矩阵,与标准件当前的位置矩阵作CATMathTransformation函数的乘积运算,并以运算结果定位标准件的新位置。例如,将某标准件从其当前位置沿向量(a,b,c)移动iDis个单位,则:移动后位置矩阵=当前位置矩阵×移动矩阵,如式(1):移动过程中,程序时时获取标准件当前位置矩阵,并分别测量几组面当前最小距离显示在屏幕上,以便用户参考。在用户选择测量面之前,可根据经验在交互界面设定每组面之间的最小距离值。移动过程中,程序动态测量几组面的最小距离,如果测量的最小距离小于用户设定的最小距离,则程序自动判断后,以红色显示该距离以示提醒,方便用户对标准件的位置及时做出调整。图7为某型号平衡垫块在移动时的距离显示和相应的部分对话框界面。
3应用实例
利用本系统对某汽车的某覆盖件零件数模(图8a)进行模具设计。首先在新产品数模导入模块,选择合适的模具模板(图8b),保证该产品与模板中型面零件的元素名称保持一致的前提下,导入该产品数模零件,完成新产品型面替换工作。在参数化设计模块,导入用户提供的与模板参数相匹配的参数文件(如图9a),用户根据新产品面的特点,在交互界面中选择类别列表中不同的类别,按类别合理修改界面下方参数区动态显示出的参数值,完成模具参数化设计工作。如图9b和9c分别是修改模耳吊座和导板参数时动态显示的交互界面。在调整好的模具主体上对标准件进行重新定位,注意屏幕上红色显示的距离数值(如图7),移动过程中避免与其他零件的干涉。最后在模具结构设计检查模块,导入用户提供的模具结构设计检查表,在CATIA环境中对模具进行逐项审查,并保存审查记录,程序自动输出审核结果。经过以上4个模块流程,在模具模板上快速完成相似结构数模的模具设计,有效减少设计人员的工作量和设计时间。
4结语
重点研究了使用参数化模板快速进行模具“再设计”的方法。采用CATIA提供的参数化建模功能和CAA技术,开发了完整的全流程模具设计工具,集成了新产品数模导入、参数化设计、标准件定位、模具检查4个功能模块,可以有效地解决实际工程中大规模参数数据的读取和更新问题,避免设计人员手工操作过程中可能存在的误操作、漏操作现象,减少重复性工作。同时在标准件定位方面,提出了在移动过程中动态显示测量距离的方法,可以有效地避免标准件与其他零件之间的干涉问题,为标准件的快速准确定位提出了一种新的方法。本系统的使用不受模具类型的限制,在实际工程中更具灵活性和实用性。
作者:张智霞章志兵柳玉起武朋飞单位:华中科技大学材料成形与模具技术国家重点实验室上海大众规划部模具中心