本站小编为你精心准备了电力工程论文:火电厂工程设计中的缺陷与改善参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
作者:韩淑秀魏巍单位:内蒙古电力勘测设计院
设计中存在的问题
根据《强条》,事故放油阀门首先应该布置在安全的位置。在以往的工程设计中,事故放油阀门均按照DL/T5204—2005《火力发电厂油气管道设计规程》将2个钢制阀门布置在距主油箱5m之外,然后将第1个阀门的操作手轮加传动装置传动至运转层上。“有2条通道可以到达”的要求在零米很难实现,因为零米设备布置较多,厂房内空间较小,留出的通道一般是曲折的,而且总有1条通道需要经过主油箱,在主油箱发生事故时不能保证这条通道可以安全通行。
主油箱一般靠近A列布置,主油箱与A列之间只有5m的距离(有的甚至达不到5m)。靠近A列设置了阀门后要留出2条通道,则只能是阀门两侧顺着A列的通道;而总有1台机的主油箱是靠边的,所以这侧的通道只能通过主油箱,但事故放油管道一般从沟道内通向室外事故油池,这样2个阀门之间的检漏点不便于运行巡视。
实例说明
图1为常规300MW级工程事故放油阀门的布置方式。如图所示,事故放油阀门与主油箱留出了足够的距离,但“2条通道可以到达”的要求没有满足:左侧为检修场地,开有大门,可以算作1条通道;而右侧是空冷汽机的大排汽管道和采暖抽汽大管道的管沟等,布置复杂,很难留出合适的通道。此工程为1台机组,若是2台机组,则必有1台机组靠主油箱,靠近主油箱这一端为厂房的端部(固定端或扩建端),实现“2条通道可以到达”则更难:左侧通道必须通过主油箱,右侧则需要通过排汽大管道及采暖管沟等。另外,图中2个阀门之间的检漏点不易操作,检查巡视不方便;在事故放油阀门上方,本是1条从厂房内通往精处理取样架及进入精处理靠A轴这一侧的通道,但在事故放油阀门上加装的传动装置正好在此通道上,严重阻碍通行。
建议
针对上述问题,结合现场实际,提出以下建议。
(1)主油箱应紧靠A列布置,在主油箱另一侧留通道,事故放油管道从地上穿出主厂房,然后在A列外设置阀门小间以布置事故放油阀门及检漏点,事故放油管再从地下通向事故油池。
(2)主油箱及事故放油管道维持原设计不变,将事故放油的2道阀门全部布置在室外,同样在A列外设置阀门小间。这样布置可以缓解空间紧张的问题,而且将阀门设置在室外的安全性远远大于室内,同时也满足了《强条》的规定。
汽水及油管道布置
1条文内容及解释
DL5000—2000《火力发电厂设计技术规程》部分《强条》规定:“单元控制室、电子设备间及其电缆夹层内,应设消防报警和信号设施,严禁汽水及油管道穿越。”
按照规定,在布置管道时应避开单元控制室、电子设备间及其电缆夹层,而对于其他电气热控的房间及设备虽没有明确规定,但在设计中也应尽量避开管道。如果布置电气热控的房间及设备旁边的汽水管道的阀门法兰处发生泄漏,将会损坏电气设备。
2常规的汽水及油管道布置
在以往工程设计中,空冷设备间侧循环水及有无压放水管道进出主厂房时,总要穿越空冷电子设备间,在穿越时有采用整体加套管的方式,也有采用降低标高彻底直埋在空冷电子设备间下的方式。加套管的方式对预留套管及墙壁的防水要求高,容易漏水;直埋的方式不利于日后检修。因此按照《强条》规定,在布置汽水及油管道时应该彻底避开空冷设备间,从其他方向进出主厂房。
常规设计中,电气低压配电间是封闭的,管道及阀门一般不会布置在房间中(即使布置在房间中也很容易发现,能够尽早修改),一般都是顺着房间的墙边布置,即使阀门法兰泄漏也不会直接对配电间中的配电柜造成损坏,及时消除泄漏不会产生次生危险。还有一些工程设计中,电气低压配电间采用敞开式设置,周围用栏杆围起来,管道阀门就不能布置在其周围,否则阀门法兰或管道等泄漏将对配电间造成威胁。
3实例分析
3.1布置方式存在的问题
以科右中电厂为例,如图2所示,配电间在固定端为敞开式设置,按照常规设计在1轴处,在1轴的A列与1/A列之间为室外管道进入主厂房的空间,除盐水管道进入主厂房后设置了1道阀门,氢气管道从此处进来后也设置了阀门。在安装期间,除盐水管道阀门法兰泄漏,导致周围配电柜进水,幸好配电柜未带电,没有造成重大事故;后统一将配电间周围的阀门移至远离配电间的地方,同时对配电间周围的管道焊缝均做了射线探伤,彻底消除了隐患。
3.2建议
建议敞开式的配电间周围不要设置法兰阀门、法兰对夹式的流量测量装置或用法兰连接管道;同时应在图纸上标明周围的管道焊缝以便做射线探伤,确保日后运行的安全性。
制粉系统防爆和灭火设施设置
1条文内容
选自DL5000—2000《火力发电厂设计技术规程》部分的《强条》规定:“制粉系统(全部烧无烟煤除外)必须有防爆和灭火设施。对煤粉仓、磨煤机及制粉系统,应设有通惰化介质和灭火介质的设施。
2设计中存在的问题
在以往的工程设计中,磨煤机、给煤机只有蒸汽灭火设施,并没有设计通惰化介质设施,只有煤斗既有通惰化介质设施也有蒸汽灭火设施。目前多数给煤机厂家在设备上没有设计消防蒸汽的接口,因此在设计中也就取消了蒸汽灭火设施。这些设置方式都不满足《强条》的规定。
3实例说明
在科右中电厂工程设计中,只给磨煤机设置蒸汽灭火设施,蒸汽从除氧器引出;煤斗设计了通惰化介质的设施;由于给煤机厂家没有设置消防灭火接口,所以没有设计消防灭火设施。之后为给煤机加装消防灭火设施;蒸汽从暖通用减温减压器后引出,然后与磨煤机消防蒸汽母管连接,磨煤机与给煤机的消防蒸汽成为双路汽源。正常运行时用除氧器内的汽作为灭火汽源,停机状态下用暖通减温减压器后的汽作为灭火汽源。更改后的系统见图3。
这样更改的原因是:此工程为单机运行,长期停机的可能性较大,在停机状态下,除氧器中是没有蒸汽的,为防止给煤机中存煤在停机状态下自燃(燃用煤种为褐煤),单从除氧器接出的消防蒸汽汽源是不可靠的;而停机时的蒸汽来源只有启动锅炉房来汽,蒸汽进入辅汽联箱后向各个用汽点分配。为提高消防蒸汽的可靠性,从暖通减温减压器后引出1路汽源作为停机状态下的消防蒸汽汽源。这样更改后,制粉系统的主要设备均有了灭火设施,任一设备事故都能及时消除,确保运行的安全性,但这样不满足《强条》中“应设有通惰化介质和灭火介质的设施”的要求。
4建议
针对此问题,在以后的设计中应该严格按照《强条》的规定,结合工程实际情况,作出合理的设置;同时将事故情况进行认真分析,有针对性地选择消防蒸汽汽源。
抗燃油集装装置基础设计
选自DL5000—2000《火力发电厂设计技术规程》部分的《强条》规定:“当汽轮机调速系统和旁路系统的控制油采用抗燃油时,应有必要的安全防护设施。室内空气中有害物的浓度值不应超过现行的国家有关卫生标准的规定。”
1设计中存在的问题
在以往工程设计中,抗燃油集装装置基础均设计为直接做1个基础台面,或做1个槽钢架子,将设备放在上面,并没有按照条文中所要求的设置“必要的安全防护设施”。
2建议
抗燃油属于有毒介质,为防止其泄漏造成事故扩散,同时为了检修时易清理泵内残留的油,基础应该类似于润滑油区的围堰,在抗燃油集装装置底部的基础台面四周也做1圈。围堰的底部留出排油口,放置1个小油桶接收事故及检修时泄漏的抗燃油,防止事故及检修时抗燃油泄漏而造成次生危害;在基础平台的表面要求贴防腐瓷砖,以便在基础沾油后易于清除,尽可能地减少其挥发量。
排汽口设置
1条文内容
DL/T5054—1996《火力发电厂汽水管道设计技术规定》部分《强条》规定:“排汽管道出口喷出的扩散汽流,不应危及工作人员和邻近设施。排汽口离屋面(或露面、平台)的高度,应不小于2500mm。”
2排汽口设置形式选择
实际设计中,“排汽口离屋面(或露面、平台)的高度,应不小于2500mm”的要求一般都能满足,但是部分设计不满足“排汽管道出口喷出的扩散汽流,不应危及工作人员和邻近设施”的要求,主要是由于采用的排汽口形式不同,喷出的扩散汽流差别较大。室外排汽口的设置大致可分为6种形式(见图4)。在以往的设计中,从侧墙引出的排汽口大部分采用图4中a的形式,排出的汽流有斜向下扩散的趋势,但高度很难计算,因为汽流高度与排汽时的压力及排汽时长等均有关系,而这些数据不确定,即使排汽口标高大于2500mm后,也不能确定是否会危及工作人员和邻近设施;采用方式e也存在同样的问题。若采用这2种方式,为保证喷出的扩散汽流不危及工作人员和邻近设施,只能在2500mm的基础上进一步抬高排汽口的标高,这样势必增加排汽阻力并浪费材料,而且标高也受厂房结构的限制。除此2种方式外,其余4种方式喷出的汽流均为向上扩散,在满足2500mm的情况下一般也能达到扩散汽流不危及工作人员和邻近设施的要求。这4种方式可以根据工程实际情况来选择。同1个工程应选择1种排汽口方式,以达到整齐美观的效果。在选择时要注意,c、d、f3种方式均有可能导致雨水进入排气口,需要做防雨罩。防雨罩的设置也比较麻烦,不如直接使用方式b好一些。
3建议
一些小排汽管道宜采用方式b,因为小的排汽管道排汽反力小,支架容易设置,同时也满足《强条》的规定;对于一些大的排汽管道类似定排扩容后的排汽管道,则宜采用方式d,因为这类排汽管道不怕雨水不易从排汽口进入设备,同时管道管径比较大,排汽反力大,可以较好地平衡管道排汽时的水平反力,垂直的反力利用支架来承受,整个管系的稳定性较好。
燃油管道补偿能力设计
1条文内容
DL/T5047—1995《电力建设施工及验收技术规范》(锅炉机组篇)的《强条》规定:“燃油系统管道安装结束后应进行清水冲洗或蒸汽吹洗,吹洗前止回阀芯、调整阀芯和孔板等应取出;靶式流量计应整体取下,以短管代替;吹洗次数应不少于2次,直至吹扫出介质洁净为合格;吹扫结束后应清除死角积渣。”
《火力发电厂油气管道设计规程》规定:“伴热管道应留有足够的热补偿,应按设计温度计算布置π形补偿器的距离”“,在燃油管道的热补偿计算中,管材的热态许用应力和弹性模量应选用在燃油管道扫线介质温度下的数值”。
2条文解释
从上面条款中可以看出,燃油管道在安装结束后要进行吹洗。以往的常规设计中,燃油管道的吹洗均为蒸汽吹洗,蒸汽管道均设计了π形补偿弯。
对于燃油管道补偿,管线若为管沟内的布置方式,因在设计沟道时就考虑了蒸汽管道的π形补偿弯,最终的沟道就是带π形弯的走向,所以燃油管道布置时也只能顺着沟道走π形弯,同时也实现了燃油管道的热补偿,不容易漏掉补偿弯。然而,随着电厂管理日趋人性化,为方便日后巡视维护,很多电厂在设计中要求而不设置管沟。
3实例分析
科右中电厂采用综合管架的布置方式,综合管架一般为直线式,顺着管架有将近200m的直管段。管道补偿则可在管架内或超出管架通过上下管架的方式设置补偿弯,不需要补偿的可以顺着管架一直走下去,而不受沟道走向的约束;但对于一些有高温工况而长期在低温状态下运行的管道,容易漏掉补偿弯。
管道安装结束后按照规范要求进行蒸汽吹洗,整条管道一起吹洗,而不是分段吹洗;吹洗时从锅炉房一端进汽,一直吹到燃油泵房排汽。由于燃油管道直管段太长,导致靠燃油泵房一侧位移量过大,将接入燃油管道的吹扫点撕裂,管道支架也均滑出了滑动支架的底座。为确保日后运行的安全性,最终取消中间设置的吹扫点,只留两端的吹扫点,在管道中部设置放油点。
4燃油管道补偿能力的建议
针对以上的问题,燃油管道布置,尤其是综合管架上的燃油管道布置应考虑足够的补偿能力,计算补偿时的温度,应按照规程要求采用吹扫蒸汽的温度,以免在吹扫时补偿不够位移太大而造成焊缝撕裂;尤其应该考虑的是管道安装结束后吹洗时的补偿能力,因为安装结束后的吹洗都是从开始的一端一直吹洗到结束的一端,这样就相当于整个管系处于高温状态下,若没有设计足够的补偿能力,则容易产生裂纹,甚至造成焊缝撕裂的事故,给日后的运行留下隐患。
管道对接焊口距离设计
1条文内容
DL/T869—2004《火力发电厂焊接技术规程》部分的《强文》规定“:管道对接焊口,其中心线距离管道弯曲起点不小于管道外径,且不小于100mm(定型管件除外),距支、吊架边缘不小于50mm。同管道2个对接焊口间距离一般不得小于150mm,当管道公称直径大于500mm时,同管道2个对接焊口间距离不得小于500mm。”
2条文解释
在管道设计时,应该严格按照规定留出足够的间距。对阀门密集或空间小的地方,通过调整布置,使管道对接焊口满足条文要求,否则将造成施工不合格,焊接后再更改布置较困难。
3设计中存在的问题及建议
在以往工程设计中,出现焊缝间距不符合规定的主要有凝结水管道的阀门站、各低加进出口及旁路阀门(集中布置时)、循环冷却水管道阀门(集中布置时)、高低加危急疏水管道靠疏水扩容器侧的阀门站、轴封供汽管道的阀门站。在这些管道设计时,阀门前后的直管段一定要满足要求,因为管道穿越楼板或墙板的孔洞已经开好,如果现场因为焊缝间距不够而平移管道,势必会造成预留的孔洞偏离。
另外,当管径大于500mm时,弯头的弯曲半径大,很容易出现拐弯时空间不够的现象,布置时一定要从整体考虑,提前将这些大直径管道布置好,避免其受约束而出现焊缝不满足规定的情况。
结束语
《强条》是工程建设过程中必须严格执行的规定。本文通过对以往工程设计中暴露出的一些与《强条》不符的问题进行分析,以供同行参考,望在以后的工程设计中能够充分重视《强条》要求,确保工程质量和杜绝安全事故的发生。