本站小编为你精心准备了材料设计论文:工程材料构造改善设计剖析参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
作者:周宏霞刘斌单位:西北工业大学365研究所西安爱生技术集团公司飞机室
根据上述结构形式、材料以及初步估算的结构尺寸,建立分析模型。依据机翼结构的对称性及载荷对称性可得边界:机翼与机身连接处的节点有节点位移δx=0、δy=0、δz=0。整个模型共500个节点,1643个单元,4套外载荷,10个气动分区,205个气动小块。分析模型见图2。
满应力优化设计
满应力设计是通过划分结构设计区和选择关键元的方法实现的。设计区中包括若干个有限元件,从诸元中选出有代表性的元件作为关键元,只对关键元进行强度比再设计。计算时可将结构分为设计区和非设计区。每个设计区受一个变量控制,通过再设计得出各设计区中诸关键元新的尺寸A(k)ij后,再从中选出最大的作为该区的统一变量D(k+1)ij(i∈某区,j∈该区的关键元),然后考虑最大、最小变量约束,再进行下一轮迭代,这就是通常所说的结构元件尺寸(A)与设计变量(D)之间的耦合关系。对非设计区,将不指定关键元,在设计中该区元件尺寸不作改变。
满应力设计的初始设计值取工程估算法估算的初步值,设76个设计区、646个关键元、164个设计变量。表1给出了满应力设计结果。结果表明,经7次迭代收敛,结构质量明显下降,结构减质量24.478kg(14.3%)。经过满应力设计后,各设计区尺寸得到调整,主要体现在缘条面积下降(有的还退回最小限),蒙皮局部厚度增加,总体分布合理。
数学规划法优化设计剪裁
在满应力设计的基础上,用数学规划法进行多约束优化设计,获取满足各种设计要求的最终设计,具体来说是将优化设计归结为求解下述数学规划问题:寻找一组设计变量其中:(fX)为依赖于设计变量向量X的目标函数;gj(X)为性状约束函数;xLi和xUi分别为设计变量xi的下限与上限;m表示设计变量数;n表示约束数。进行数学规划法设计首先要确定约束限,需要把满应力设计结果值返回分析模型,根据再分析结果确定约束限。这里考虑把主翼盒设计成强缘条薄蒙皮的结构形式,初始141.23kg的结构质量也可以接受,因此将满应力设计结果值返回时,局部调整设计变量的下限,使缘条面积不再下降。结构进行再分析,计算结果为:U245653mm,f16.8Hz,η0.81,vF252.3m/s,W141.23kg。
从满应力设计结果,结合结构质量要求、强度要求、以及颤振包线,最终规定出数学规划法设计的约束限为:1)位移约束1个,翼尖后缘点的Y向位移值U245≤628mm;2)振动约束1个,f1≥6.9Hz;3)静弹约束1个,内、外副翼俯仰效率η≥0.815(Ma=0.8,13km);4)颤振约束1个,vF≥300m/s(海平面)。
数学规划法设计设有50个设计区、122个设计变量(设计区为主翼盒段的上下蒙皮、纵向梁缘条和梁腹板)。表2给出了在位移、振动、颤振约束下的最小结构质量设计结果。可见,经4次迭代后,全部满足约束条件,结构质量仅增加10kg左右,而位移降低72.3mm,颤振速度提高了47.66m/s(占18.9%),充分表明优化设计后结构效率明显提高。多约束优化变量收敛后,从优化尺寸分析看,内外翼转折部蒙皮的±45°和0°铺层厚度都明显增加,这种尺寸分布可以提高结构的弯曲和扭转刚度,对综合满足多种约束条件有利。为进一步说明±45°、0°和90°铺层比例对结构弯曲和扭转频率的影响,详细分析了在相同铺层厚度的情况下,机翼振动、颤振特性随蒙皮不同铺层比变化情况,见表3。
表3中f1、f2、f3、vF分别对应结构的一弯、二弯、一扭频率和颤振发散速度,可以看出,在相同铺层厚度的情况下提高±45°铺层比例,可有效提高结构的扭转频率,从而提高结构的颤振速度。
结论
机翼初步设计阶段,在确定的结构形式、材料以及初步估算结构尺寸的基础上,采用复合材料结构优化设计系统对机翼结构进行优化设计剪裁,能快速实现满足结构静强度约束条件的结构件总体尺寸调整和保证结构质量最小前提下满足各种设计要求的最终设计尺寸确定,实现对大展弦比复合材料机翼结构的静、动、气弹综合优化设计。
经过载荷、结构、静强度、气动弹性与伺服气动弹性设计、分析、综合与优化的反复迭代、多轮逼近与逐步细化,最终形成了满足设计要求的合理、可行的无人机大展弦比复合材料机翼结构方案。无人机制造完成后,经飞行和试验验证,复合材料结构优化设计剪裁是快速有效的设计途径,不仅缩短研制周期,而且提高了结构效率。