本站小编为你精心准备了管道腐蚀检测装置创新设计论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1发明问题解决理论(TRIZ)
在设计中应用创新方法将有助于设计者高效、创新地解决问题。课题组提出一种创新策略[5],将创新设计分成面向问题、面向目的、面向产品和面向载体4类,并根据不同的类型,采用不同的创新策略实现创新。这些创新类型中面向问题的创新是最常见的,其策略是解决最小化问题,解决系统中的冲突,对系统进行改进创新。由于发明问题解决理论TRIZ是以已有系统为主要研究对象,比较适合这类型的创新设计。TRIZ最初由G.S.Altshuller于1956年提出[6],经过几十年的发展已经形成完整的发明问题解决理论体系,其问题分析及解决体系结构如图1所示。TRIZ体系包含分析问题及解决问题两部分,针对不同的问题采用相应的工具来分析解决。
2.1在役管道腐蚀检测原理
我国在役管道大都铺设在野外且都埋在地下,其底部最容易发生腐蚀,对于在役运输管道发生的腐蚀采用射线检测技术,其检测原理如图2所示。射线机发射检测光线,穿透管道待检测部分,然后被探测平板接收,通过对接收射线的情况进行分析处理,便可以判断管道是否存在腐蚀以及腐蚀的位置、程度。
2.2检测装置问题分析
由于在役管道所处的环境比较复杂,对检测装置提出了非常苛刻的要求:不宜在管道内进行检测,也不允许检测装置从管道两端套进,只能从中间夹紧管道。当前的管道腐蚀检测装置主要存在的问题为:①结构复杂,装夹不便;②人工干预程度大,自动化程度低,检测效率低;③只能检测某一管径管道,适应性差。检测装置的创新设计必须解决上述问题,对于上述问题我们分析归纳为以下两个问题:Q1:提高检测效率,要求检测装置能沿着管道轴向进行移动检测,并对管道进行可靠地夹持。Q2:检测装置能实现系列管道(Φ159mm~Φ500mm)的检测,并保证检测装置不复杂、结构紧凑。对于Q1,要求检测装置沿着管道轴向移动检测以提高检测效率,但另一方面会导致夹持装置的夹紧力不够、可靠性降低,这就形成一对技术冲突。对应TRIZ标准工程参数,这对冲突中的改善参数为时间损失,恶化参数为可靠性。对于Q2,要求检测装置实现不同管径的管道检测,但同时会增加装置的复杂性,这也形成一对技术冲突。对应TRIZ标准工程参数,这对冲突中的改善参数为适应性及多用性,恶化参数为复杂性。
2.3检测装置问题解决
(1)针对Q1,查询TRIZ冲突矩阵得到发明原理10,30和4[7],经分析这3个原理无法解决该问题。我们采用物质—场模型来分析此问题,两种物质分别为S1(管道)和S2(检测装置),场为机械场,检测装置及场提供的功能是不完整的,其物质—场模型描述如图3所示。检测装置要求对管道有足够的夹持力,实现管道的可靠夹持,但检测装置与管道很难发生相对运动,实现管道轴向移动检测。由此可见,检测装置提供的场是一个可控性较差的场。查询标准解,得到第二类标准解No.16,即增加一个易控制的场,因此在检测装置和管道之间增加一个可控的外力,即在检测装置前后分别采用4个滚轮实现管道的夹持,在前后轮之间的管道上增加一个可控的驱动机构(如图4所示),在夹紧定位的同时提供外力以促使检测装置与管道之间发生相对运动。当管道检测装置实施检测时,不与管道发生相对运动,对管道进行定位夹紧;当检测完一个位置时,驱动机构提供外力促使检测装置与管道之间发生相对运动,检测装置运动到管道的下一个检测位置。(2)针对Q2,查询TRIZ冲突矩阵得到4个发明原理15,29,37和28。经过分析,发现发明原理15(动态化)有助于该冲突的解决。应用发明原理15,将滚轮与检测装置的联接部分改为可调机构,采用如图5所示的可调滑块机构,滑块沿着圆弧板径向安装,均匀并且对称安装在上、下圆弧板端面,通过调节滑块实现所要求的系列管道检测。
2.4在役管道腐蚀检测装置创新方案
综合上述2个问题的解决方法,得到如图6所示的在役管道腐蚀射线检测装置创新方案。检测装置采用两段半圆弧铰接而成的剖分式结构和螺旋夹紧机构实现快速夹紧和拆卸;采用8轮夹持机构以及驱动机构实现检测装置对管道的定位夹持,并能沿着管道轴向移动,实现自动检测;调节与轮子联接的滑块机构以实现不同管径的夹持检测。
3结论
运用TRIZ方法对在役管道腐蚀射线检测装置存在的问题进行了分析,设计了一种新型的在役管道腐蚀射线检测装置,采用可调滑块结构实现不同管径的夹持检测,适应性良好;检测装置沿着管道移动并自动控制检测,提高了检测质量和检测效率。该检测装置结构简单紧凑,能较好地满足管道腐蚀检测的要求。
作者:尚万赵武曾杰李小龙单位:四川大学制造科学与工程学院