本站小编为你精心准备了圆锥曲线参数方程在数学解题中的应用参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
摘要:
圆锥曲线方程是高中数学中重要的基础知识点,其在高考数学中占有重要比重。本文通过对高中数学中常见的数学类型题目,分析圆锥曲线参数方程在高中数学中的应用,为学生学习成绩的提升打下坚实基础。
关键词:
圆锥曲线参数方程;高中数学解题
圆锥曲线定义中,通过椭圆定义、双曲线定义、圆锥曲线上的点与两个焦点之间的关系进行解题。在解题的过程中,需要对上述三者有个清晰的认识,树立等价转换思想,加强数形结合的建设,由点到面,促进教学层次的深化,从而提升学生在圆锥曲线参数方程上的理解,进而为有效解决数学难题提供重要支撑。
一、创新性思维:利用圆锥曲线方程解决高中数学题中常见的最值问题
传统的数学学习方式是通过广泛地做题,不断进行数学题型的训练,从而获得学习成绩的提升。目前,针对学生学习特点与学习进度,通过设计典型习题,注重培养创新思维,从而举一反三,快速提升学生对于数理认识,加强对数学的感知能力,使数学成绩得到提升。后者更加注重人性化,以学生为中心,避免数学题练习的低质量与低学习效率。椭圆一个内接四边形ABCD,其各边与坐标轴平行,求此四边形的最大面积与最大周长。由题目可以进行推断,将思路不要仅仅限于局部,启用创新性思维,不断与其他知识展开联想,打开解题的突破点。
二、探索性思维:采用定义与正余弦定理求焦点三角形
高中数学中,存在一定数量难点,对于学生的学习能力提出了新的要求,要求学生在实际的解题过程中,能够充分发挥探索性思维,通过总结与小组合作,提升数学解题能力。在圆锥曲线参数方程的应用解题中,单一性题目较少,复合型、复杂性题目较多,难度系数也随之增加。如何充分发挥探索性思维,需要学习不拘于形式,通过对基础知识的深度理解,正确把握解题的精髓。
三、自主学习能力提升:采用圆锥曲线参数方程解决范围问题
高中学习阶段,强调自主学习与合作学习相结合,通过自主学习发现自身存在的问题,并采取有效措施加以解决,从而促进自身学习水平的提升[4]。在高中数学解题中,通过对科学思维的合理运用,能够对数学习题轻松解答。学生在自主学习过程中,面对疑难问题时不应立即求助,依据自身对基础知识的掌握程度,发挥自出探究精神,对疑难问题提出挑战,从而提升自身数学解题的能力与水平。
四、圆锥曲线参数方程应用过程中应注意的问题
圆锥曲线参数方程在应用中强调对各种知识的综合运用,通过合理运算思维与结构,实现对数学问题的求解。在此过程中,要求学生掌握基础知识的基础上,更加注重对知识的灵活运用。因此,学生在学习圆锥曲线参数方程相关基础知识时,应注重多写、多问、多记,打下扎实的基本功,从而能够在解题中,摸透数学题目的内涵,快速解题。五、结语:高中数学在高中教育体系中占据着极为重要的位置,需要教师在教学活动中,在加强对基础知识的教学时,注重学生对基础知识的运用。通过典型题目的专题讲解,促进学生成绩的提升。
参考文献:
[1]毛芹.圆锥曲线参数方程在高中数学解题中的应用[J].理科考试研究:高中版,2014(21).
[2]陈尧明.直线参数方程教学设计[J].教学月刊:中学版,2011(23).
[3]李淑燕.用圆锥曲线的参数方程解题例谈[J].数理化学习:高三,2011(7).
[4]陈传熙.“圆锥曲线的参数方程”的教学困惑与对策分析[J].数学通报,2010(49).
[5]梁伟彬.浅析直线与圆锥曲线问题的几种解法[J].中学数学,2012(5).
杂志:雷鹏 单位:甘肃省民乐县第一中学