本站小编为你精心准备了基于科学的产业发展模式研究参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
《科学学与科学技术管理杂志》2015年第九期
有一类具有共同演化特征的产业在19世纪末逐渐形成,并在二战后导致了全球经济和社会的巨大变化,而进入21世纪,这类产业逐渐成为国家经济的新引擎。这类产业的发展与科学进步有很强的关联性,将其称之为“基于科学的产业”。基于科学的产业可能推动整个经济范式的改变,这充分体现在19世纪现代电气工业与化工业及20世纪半导体对整个经济范式的改造。而21世纪生物化学、生物医药、新能源、新材料等产业的影响初见端倪,逐渐成为国际产业竞争的焦点,也成为各国政府所密切关注的产业。改革开放三十多年来,我国在水利工程、机床制造、家电业等基于技术的产业领域取得了很大成就,但主要是基于产品和工艺技术、工程技术的改良。而在基于科学的产业领域,尽管我国在政策、投资、研发、新技术产业化等方面都进行了诸多努力,但发达国家相对于我国始终保持着较为稳定、强劲的竞争优势。我国在上述产业领域的赶超存在诸多困难,在于没有厘清基于科学的产业其独特的现象和发展规律。本文通过访谈剑桥大学工程系石墨烯中心以及北京大学医学院心血管科的研究人员获得一手资料,结合二手数据分析心电图和石墨烯两个产业的发展历程,分析并提出了基于科学的产业“积淀—突破—爆炸式增长”的发展模式以及该模式中的三类关系,即科学与技术的Z字形互动关系、核心产品与衍生产品的关系以及形成主导设计后本产业与其他产业的融合。
1文献回顾与分析框架
1.1基于科学的产业概念的界定基于科学的产业有其一系列独特的发展规律。如科学在该类产业发展中始终起着关键作用,是每一次产业根本性进步的发端;经历长期的基础科学研究的积淀,往往出现科学上的根本性突破,引发爆炸性的科研浪潮,形成平台,支撑科学、技术、产业的快速发展;当产业的核心技术形成及核心产品结构定性后,技术往往与其他产业技术融合或向多个产业扩散。上述基于科学的产业中的技术进步现象用现有的六代创新模型都难以解释。由于这六代模型形成时的商业环境和产业环境与现代有很大差异,导致其并没有洞察这种新发展范式的特点。通过对六代创新模型的总结发现,后三代创新模型侧重于关注创新的组织模式,前三代模型更多地关注创新的原始动力。然而由于20世纪50年代到80年代的经济环境,学者们并没有关注科学作为一种重要的创新原始动力对创新的独特影响(如表1所示)。自20世纪70年代起,学者们开始专注这类基于科学的产业。Gibbons和Johnston首次提出了“基于科学的产业”这个概念,认为有一类产业,相对于其他产业,其技术创新明显更加依赖于科学进步。Nelson和Winter在其《经济演化理论》一书中对不同产业的技术创新进行了实证研究,提出了两类技术体制,即“基于科学的技术体制”和“积累性的技术体制”。他们认为在前者产业中,技术创新的原始动力是产业发展的外生变量,如大学基础科研的突破;而后者产业中,技术创新更多地依靠产业内部的技术积累。其他学者们也发现了这类产业的特性,并对其进行了研究。在总结上述学者研究的基础上,本文将产业分为两类:基于科学的产业:产业发展强烈地依赖于科学研究,产业的核心技术进步普遍地、一贯地、强烈地依赖于科学新发现。典型产业如生物化学、制药业、有机化学、化妆品业等。基于技术的产业:产业发展对科学研究依赖性弱,该产业的技术进步主要表现为技术自身的演化,也就是由已有技术的突破、改进、组合、调整、变形而形成的新技术。典型产业如水利工程、道路桥梁建设、家具业、印刷业等。前人对上述两类产业的特点进行了描述,在此基础上分别将基于科学和基于技术的产业特点总结如下。基于科学的产业特点:(1)创新显著地来源于科学研究成果。(2)创新源往往来自企业外部,多为公共研究部门。大学和研究所参与创新的程度很高,产学研是最典型的创新模式。产品和工艺等创新的本质是将科学新发现商业化。(3)企业与公共研究部门保持密切联系来获得外部知识成为创新成功的关键要素。(4)产业的技术创新机会丰富,科学上的进步创造了一系列的潜在产品。(5)R&D投入强度很高。(6)在这类产业—科学关联中,往往是产业与其所基于的科学两个领域发展都不成熟。例如生物医药业,该产业处于成长期,所基于的科学领域——生命科学、生物医学也处于快速发展时期,不断有新的研究发现[11]。基于技术的产业特点:(1)创新是技术本身的发展或工程活动的结果。(2)企业创新能力主要来源于组织内部积累性的学习过程。(3)创新成功的关键要素在于本企业的技术投入、技术积累以及对各种技术知识和能力要素的整合。(4)技术创新机会的增长相对稳定。(5)R&D投入强度相对较低。(6)在这类产业—科学关联中,往往是产业处于成长期或成熟期,而相关的科学领域发展比较成熟。如公路、铁路桥梁工程、船舶制造、机床制造等工程领域,对应的机械原理、工程学等相对成熟、稳定,在较长的时间内没有突破性的新发展。
1.2基于科学的产业发展模式的分析框架经典的产业发展模式分析一般重点关注技术和市场(或产品、产业)两个维度的演化问题。技术维度的分析主要涉及Dosi的技术范式和技术轨道理论,Christensen、Kim等人提出了技术成长曲线理论以及Galvin、Probert总结的技术路线图工具。市场、产品、产业层面主要涉及Vernon的产品生命周期理论、Abernathy和Utterback的A-U模型以及Gort和klepper的产业生命周期理论。由于本文的研究对象——基于科学的产业其发展强烈地依赖于科学研究,产业的核心技术进步普遍地、一贯地、强烈地依赖于科学新发现,本文将科学作为一个维度来分析该类产业发展与科研的关系。同时,通过初步的数据分析,发现基于科学的产业存在普遍的产业融合现象,为了研究产业融合问题,本文将相关产业设为一个与科学、技术、产业平行的维度进行分析。
1.2.1分析的维度科学:重点关注重大的科研事件,剖析科研事件之间的联系,如核心科学突破与外围科学进步之间的关系结构以及对技术发展的影响。技术:关注技术突破的典型事件,技术突破之间的关系,技术突破对科学的影响,以及技术突破对产业发展的影响,如技术兴起对产业兴起的影响,主导设计对产业发展的影响等。产业:关注早期市场需求的形成、早期产品的形成、何时开始产业化并出现专利、核心产品与衍生产品等典型产业发展事件。其他产业:关注相关产业技术对所研究的产业的影响,分析产业融合问题。
1.2.2关注的指标时间及顺序:需要关注关键事件的发生时间及顺序,例如技术、产业兴起的时间节点,科研积淀、核心科学突破、主导设计确立、产业融合发生的时间区间,以及发生的先后次序。通过时间顺序初步推断事件间的因果关系。维度间的关系:关注4个维度的相互关系。在基于科学的产业这个分析背景下,在整个产业发展的系统中,重点关注科学与技术之间是什么关系,技术如何影响产业,产业间的融合又产生什么影响等。
2基于科学的产业发展案例
2.1研究方法与数据来源考虑到“基于科学的产业”这个研究课题尚未形成成熟的理论体系,本文选取心电图产业和石墨烯产业进行探索性案例研究,通过归纳法进行理论构建。选取心电图和石墨烯两个产业的原因在于这两个产业是典型的基于科学的产业,心电图的发明和石墨烯的成功制备分别获得了1924年诺贝尔医学奖和2010年诺贝尔物理学奖,两个产业的发展都持续地高度依赖于科学研究。本文通过对心电图和石墨烯两个案例的研究,探讨基于科学的产业的发展模式。案例资料数据来源:(1)科学论文:主要涉及心电图、石墨烯技术路径方面的文献。(2)图书:关于心电图、石墨发展史的图书。(3)访谈:分别对北大医学院心血管内科、剑桥大学工程系石墨烯中心的研究人员进行了访谈,收集了一手数据。心电图领域的访谈主要涉及心电图科研成果、技术、产品的关系以及在临床上的应用等。剑桥大学工程系石墨烯中心在全球石墨烯研究处于领先地位,笔者对该中心的几名研究人员进行了访谈,主要涉及石墨烯基础科研发展之间的关系以及石墨烯的应用前景。
2.2心电图产业案例概况本文梳理了心电图领域科学、技术、产业以及相关产业4个层面在发展历史上的重大事件,厘清了各个事件之间的逻辑关系,总结为表2,并根据表2总结了心电图产业发展路径(见图1)。心电图产业的发展可以分为早期基础科研、心电图兴起和近现代心电图产业发展三个时期。第一时期(17世纪—18世纪):电的利用,电对生物体组织的影响的观察以及生物电的发现。17世纪初,物理学家Gilbert、Browne等发现了静电的存在,在此之后,各种静电计不断被发明出来。在静电计的帮助下,18世纪中叶到19世纪中叶的一个世纪里,Bancroft、Walsh、Sowdon、Galvani、Kite、Nobili等学者陆续发现并验证了生物电的存在,并通过解剖实验发现了生物电与肌肉、神经和部分器官(特别是心脏)机能之间的联系。第二时期(1800—1895):为了检测出心电,验电设备不断改进,机器灵敏度不断提高。在19世纪一个世纪里,Oerste、Schweigger、Nobi-li、Thompson、Arsonval、Deprez等学者不断推动着验电设备的进步。1858年Thompson发明了镜式电流计。1872年Lippmann发明了毛细管电位计。由于验电设备越来越灵敏,新的心电现象得以观察,很多猜想得到了验证。1850年,Hoffa证明了电流会导致心颤。1856年Koelliker和Muller利用电流表证明了每一次心跳都伴随着电流变化。1875年Caton制成了第一份有明确记载的心电图记录。1885年Einthoven首次从体表记录到心电波形。1887年Waller通过毛细管静电计记录下历史上第一个人类的心电图,证明了人类心脏跳动伴随着有规律的电流变化并提出“心电图(electrocardiogram)”一词。1890年Burch通过数学方法,将毛细管静电计记录的数据转化为图形。第三时期(1895至今):第一个精确心电图问世,心电图逐渐产业化为一种医疗工具。1895年Einthoven利用改良后的静电计和1890年Burch改良的数据—图像算法,检测到人类心电5种波形:P、Q、R、S和T,成为现代心电治疗的基础。1903年,Einthoven开始与剑桥科学仪器公司商讨弧线电流计的商业化生产。1906年,通过心电图仪(以弦线电流计为基础)测度的正常和异常心电图,Ein-thoven首次系统地论述了许多心电医学现象如:左、右心房、心室肥厚时,U波,QRS波,室性早搏,室性二联律,心房扑动和完全性心脏传导阻滞等。自此,有了心电图仪和通过5种波形表达的标准正常心电图,形成了现代心脏医疗和设备创新的基本逻辑:医学家们逐步形成某类心脏疾病的心电图确诊标准—测度心电图—与正常心电图对比发现某类波形的异常—心电干预仪器—临床治疗。遵循这种基本逻辑,20世纪初至今,左、右心房、心室肥厚时,U波、QRS波、室性早搏、室性二联律、房颤、心绞痛、梗死、心动过速等越来越多的心脏疾病被发现并形成确诊的心电图标准。同时,心电图仪在一个多世纪的时间里也越来越先进,并与其他电路技术、无线技术结合,如1978年晶体管应用于心电图仪。另外,起搏器、除颤器等心电干预设备得以问世并不断改良,越来越轻薄,并可植入人体。1924年,Einthoven因发现心电图机制获诺贝尔生理学或医学奖。
2.3石墨烯产业案例概况与心电图产业的分析类似,本文梳理了石墨烯领域科学、技术、产业以及相关产业4个层面在发展历史上的重大事件,厘清了各个事件之间的逻辑关系,总结为表3,并根据表3总结了石墨烯产业发展路径(见图2)。与心电图产业不同,石墨烯产业兴起于2004年,发展时间短但产业化速度快,科学、技术、产业3个层次间的时滞不如心电图产业那样明显。另外,由于材料产业本身的特点,石墨烯产业与其他相关产业的关联十分密切。石墨烯产业的发展可以分为早期基础科研、实验室石墨烯制备、石墨烯产业化发展3个时期。第一时期(1859—2004):石墨结构和性质的早期研究,及石墨薄片的分离方法探索。1859年,英国化学家Brodie发现了氧化石墨具有层状结构。20世纪初,X射线晶体学创立以来,石墨薄片的研究开始兴起,科学家们努力尝试观察并分离更薄的石墨薄片。另一方面,也有很多科学家认为石墨烯是不可能在常温下存在的。1918年,Kohlschütter和Haenni通过粉末衍射法发现了石墨氧化物薄片(graphiteoxidepaper)的性质。1924年,通过单晶衍射法发现了石墨氧化物质的结构。1934年,Peierls提出准二维晶体材料由于其本身的热力学不稳定性,在室温环境下会迅速分解或拆解。关于石墨烯存在的可能性,科学界一直有争论。1947年,Wallace率先开始研究石墨烯的性质,这是对石墨三维电子性质探索的开始。在这期间,Semenoff、DeVincenzo和Mele提出了无质量狄拉克方程,提出狄拉克点导致量子霍尔效应(石墨烯的特性之一是存在常温量子霍尔效应)。随着电子级显微技术的发展以及分离萃取技术的发展,科学家们提取出的石墨薄片越来越薄。1948年,Ruess和Vogt发表了最早用透射电子显微镜拍摄的少层石墨(层数在3~10层之间的石墨)图像。随后,电子显微镜观察到单层石墨。1966年,Mermin和Wagner提出Mermin-Wagner理论,证明不可能存在二维晶体材料。因此,作为二维晶体材料的石墨烯只是作为研究碳质材料的理论模型,一直未受到广泛关注。然而对石墨薄片的研究热情依然没有减退,20世纪70年代,对单层碳原子石墨平面材料的关注超过了其他材料,这期间对石墨的研究主要依靠透射电子显微镜。1990年,开始尝试微机械分离法制作石墨薄片,但到2004年前,薄度一直在50~100层以上。2002年,出现最早的石墨薄片生产技术专利,叫做“纳米级石墨薄片”。这是最早的石墨薄片大规模生产的专利。第二时期(2004—2005):成功分离单层碳原子石墨层,即石墨烯。2004年,Geim和Novoselov首次成功从石墨中分离出了单层碳原子石墨层,即石墨烯。由于上述提取技术,石墨烯的光、电、热传导、机械、生物化学、化学传感等一系列优良性质得以直接观察。2005年,Kim和Zhang证实了石墨烯的准粒子(quasiparti-cle)是无质量迪拉克费米子(diracfermion),引起一股研究石墨烯的热潮。自此,众多科学家投身于石墨烯的研究。第三时期(2005至今):石墨烯的各种特性被发现,科学成果激发了许多技术创新,产业化迅猛发展。由于成功实现了石墨烯的制备,大大促进了科学研究的进度,石墨烯在光、电、热传导、机械、生物化学、化学传感等多方面的多种优良特性在9年的时间里不断被发现。如室温量子霍尔效应、室温高载流子迁移率、高光电转换效率、石墨烯薄片与单层氦键合形成绝缘的石墨烷、超高等效热导率和超低界面热阻等。同时,在9年的时间里,石墨烯的制备方法也有了改善,从最初的昂贵且产量小的机械剥离法到SiC热解外延生长法、氧化石墨还原法以及目前最常用的化学沉降法,成本不断降低,产量不断提升。科学领域,石墨烯的各种优良特性激发了一系列的技术创新,形成了石墨烯包装材料、石墨烯单分子传感器、石墨烯高频电路、石墨烯锂电池、石墨烯薄膜等。这些技术创新推动了海水淡化、DNA测序、飞机材料、包装材料、医用传感器、电子产品、光通讯系统、防弹衣等领域的发展。Geim和Novoselov因成功制备石墨烯获得了2010年诺贝尔物理学奖。
3对案例的讨论——基于科学的产业发展模式
3.1基于科学的产业中科学、技术、产业互动三角形基于科学的产业遵循积淀—突破—爆炸式增长的发展模式。图3描述了这种发展模式中科学、技术、产业以及其他产业的互动关系以及技术兴起、产业兴起、产业融合的现有顺序和科学重大突破、核心产品主导设计几个重要节点形成的时间区间。产业发展中这种互动系统依次经历技术的兴起、产业的兴起和与其他产业的融合几个阶段,形成了一个科学、技术、产业及其他产业的互动三角形。在科学的重大突破之前,有一个较长时间的科研积淀。在这个时期,技术和产业层面比较平静。经过长期的科研积淀,科学研究产生重大突破,形成科学研究、技术创新、产业发展爆炸式的进步,并形成一个发展的平台,支持相关的创新。科学的重大突破后产业开始逐渐形成。产业经过一定的发展形成核心产品的主导设计。而与其他产业的融合往往出现在核心产品的主导设计形成以后。在这个发展过程中,科学研究往往是每一项新进步的发端,是整个发展的原动力。上述科学研究的重大突破,根本性地提升了科学研究进步、技术创新、产业发展速率,使得整个领域的图景发生根本性变化。例如人类心电5种波形的发现和标准的确定就是心电图产业发展的一个“爆炸点”。人类将电疗应用于临床用了将近3个世纪的时间,而早搏,二联律,房颤,心绞痛,梗死,心动过速等一系列心脏疾病的诊断和治疗方法应用于临床一共经历了不到一个世纪的时间。总的来看,在爆炸点之前该领域科学、技术和产业的发展都相对平静,而爆炸点之后,形成了三方面的变化:科学层面,基于人类心电标准波形和心电图仪器的进步,上述很多心脏疾病得以研究。技术层面,心电标准的形成大大促进了心电图仪的进步,同时发端于对各种疾病的科学研究,对应的起搏器、除颤器等设备应运而生。产业层面,各种仪器设备越来越便携和便宜,产业化程度不断提高。再如,石墨烯领域“爆炸点”以前的平静和以后的活跃程度对比更加显著。人类分离石墨烯的尝试经历了150年的时间,而之后石墨烯迅猛发展并渗透到各个领域仅仅用了10年的时间。在“爆炸点”之后,科学层面,石墨烯各个方面的性质研究速度增长迅速,新研究成果的公布需要按月衡量。这种速度的暴涨也是因为石墨烯的成功分离吸引了众多其他相关领域的科学工作者进入该领域。技术层面,各类产品技术在10年的时间里迅速发展。产业层面,石墨烯向海水淡化、DNA测序、包装运输、通讯、电子等产业的渗透蓄势待发。图3说明的科研核心角色、核心与衍生创新的关系、与其他产业的融合以及科学与技术的Z字形互动关系将在下面中进行论述。这种互动三角形在心电图产业中表现十分典型,但在石墨烯产业中表现不很明显。主要是由于石墨烯产业兴起仅仅十几年的时间,整体的三角形互动模式还未完全显现。
3.2科研在基于科学的产业发展中的角色本文发现在基于科学的产业发展中,科学研究自始至终处于核心地位。这种科研在产业发展中的核心角色并不能被经典产业演化理论所解释。Ver-non将产品生命周期划分为导入期、成熟期和标准化期3个阶段。20世纪70年代,Abernathy和Utter-back提出了A-U模型,讨论了产品创新和工艺创新的关系,并将产品的创新过程分为流动、过度和确定3个阶段。Gort和Klepper提出了G-K模型,论述了产品的主导设计。他们按厂商数目对产品生命周期进行划分,提出引入、大量进入、稳定、大量退出(淘汰)和成熟等5个阶段。Phaal提出了产业发展的科学—技术—应用—市场(S-T-A-M)的转化,认为产业发展的S曲线上,随时间推移产业发展的核心遵循科学—技术—应用—市场的转化路径。Christensen、Kim等人提出了技术成长曲线,认为技术的发展遵循S型路径成长。Dos(i1982)等学者提出了技术范式和技术轨道的概念。上述理论的一个共同特点是认为在产业发展初期科学研究极其活跃,引领产业的发展,随后科学研发频率和规模下降,引领产业发展的核心要素向技术因素、工艺因素和市场因素转移。然而上述产业演化及创新理论都未能解释本文发现的这一现象,即在某些产业领域,科学自始至终处于核心和引领地位。例如心电图产业的发展过程中,科学研究一直是产业发展的原始动力,是每一次进步的发端。第一时期基础科学的进步阶段,观察电对生物体组织的影响以及发现生物电,特别是心电成为心电图产业发展的基础。正是这些基础科学的积淀,逐渐催生了心电图产业。这一阶段科学原理的发现也推动了技术层面各种验电设备的早期发展。第二时期心电图产业开始形成的直接原因在于实验室首次成功绘制了人类心电图。由于前一时期对生物电的长期科研积淀,人们对生物电有了充分的了解并认可临床的电疗方法,实验室心电图的成功发现使人们看到了它的临床价值。因为之前对心脏的电疗处于“误打误撞”碰运气的状态,并没有原理上的指导,电疗使病情加重甚至使病人加速死亡的现象十分常见。心电图的出现无疑成为了电疗的“眼睛”,从此电疗结束了误打误撞的发展阶段。实验室心电图的发现很快促成了产业化生产。到了第三时期,心电图产业的几乎所有发展都来源于Einthoven发现的人类心电的5种波形。这5种波形至今依然是心脏疾病诊疗的基础。即自从人类心脏正常波形发现后,所有的产业发展都遵循这样的模式。心脏异常临床表现、发现心电图与标准心电图的差异、研究干预原理和方法、干预仪器的发明及生产制造、二联律、心肌梗塞、心绞痛等心脏疾病的诊断和治疗都是以人类心电5种波形为基础的。再如石墨烯产业的发展,在最初的基础科学进步阶段,发现石墨的层状结构、观察并分离石墨薄片成为石墨烯成功提取的基础。第二阶段,实验室成功分离出单原子层石墨薄片,即石墨烯,成为该产业兴起的直接原因。第三阶段,由于之前对石墨烯的研究处于“猜想”阶段,进展缓慢。实验室中成功提取了石墨烯,使得它成为研究者能够拿在手中的“实实在在”的研究对象,对石墨烯的研究发展速度迅速提升。对石墨烯光、电、热、机械、化学传感等一系列优良性质的研究都来源于实验室的石墨烯提取技术。在这一阶段,产业开始形成,但精密光学仪器、石墨烯薄膜、包装材料、纳米器件、光感材料、电路器件等一系列石墨烯相关技术发展以及在医疗器械、光通讯、电子产品、武器、包装等领域的产业发展都基于科学层面实验室中对石墨烯各种性质的发现和原理的研究。
3.3基于科学的产业中的核心创新与衍生创新基于科学的产业中,核心的科学突破形成核心产品,而一系列周边的技术进步会形成产品系列。例如,核心的心电验电技术和人类5种波形的标准确立形成了该产业的核心产品心电图仪,用于各种心脏疾病的诊断。基于相同的心电基本原理,形成了心脏起搏器,通过脉冲发生器发放由电池提供能量的电脉冲,刺激心脏跳动;形成了心脏除颤器,通过较强电脉冲恢复窦性心律,治疗心律不齐;形成了可以24小时监护的便携心电图仪等仪器。石墨烯产业也有类似的现象。由于科学上石墨烯分离技术实现了石墨烯材料的制备。这个核心产品形成了用于海水淡化的石墨烯薄膜、用于DNA测序的石墨烯薄膜,形成了用于包装、防弹衣、飞机材料等表面材料,形成了用于各种电路的电路材料等。
3.4基于科学的产业领域的产业融合产业发展到一定阶段可能产生产业融合。上述两个产业在发展到一定阶段都出现了产业融合。对于心电图产业,当科学领域形成标准、核心技术成熟,产业层面出现主导设计之后,发生了3次与其他产业的融合,根本性地提高了心电图仪的性能。第一次融合发生在20世纪30年代,电子管应用于心电图,取代了庞大易坏的弦线式电流计心电图。第二次融合发生在20世纪50年代到80年代,晶体管取代了电子管,将静态心电图拓展为动态心电图,发展了三维向量心电图,性能提高的同时,心电图仪的体积大大减小了。第三次融合发生在20世纪80年代,大规模的专用集成电路和计算机芯片应用于心电图,同时CPU和软件支持使得心电图智能程度大大提高,实现了12导联同步描计,能对心电波形数据进行存储、回放、编辑、打印和传输。另外,无线技术也应用于心电图仪,1999年心电图实现了与无线技术结合,有助于组织专家会诊。2005年,丹麦心脏病专家通过无线技术把心电图数据从救护车传送到医生的电脑上,节省了抢救时间。而石墨烯作为材料领域的创新与其他产业的融合体现了材料领域的特性,能够快速向多领域渗透。石墨烯本身也存在很多其他材料没有的特别之处,在光、电、热、化学传感、生物、机械等几个方面都有优良特性,导致石墨烯材料在医学仪器、过滤膜、包装材料、电路、武器、光通讯、飞行材料、电池等很多领域都得到了应用。
3.5科学与技术的“Z”字形互动基于科学的产业中,本文还发现了科学与技术的“Z”字形互动关系。即科学研究明确原理促进了技术的发展,同时,科学的进一步发展需要技术上的支持,形成了技术需求。技术的发展进一步支持和推动了科学的发展。例如在心电图领域,各种验电设备的基本原理来源于对电的研究。同时,为观测生物电,科学对技术的需求催生了无定向电流表的发明,使得生物电得以观察。为了观测心电,需要更精确的验电设备,产生了新的技术需求,推动了毛细静电计的发明,使得心电得以观测。为了绘制心电图,需要进一步增加验电精度,于是发明了弧线电流计,成功绘制了心电图。科学与技术遵循的上述关系,如果以时间作为横轴,发现科学与技术的关系箭头形成了一系列的“Z”字。石墨烯产业也有类似的现象。实验室首次成功分离石墨烯为石墨烯的制备提供了理论依据,但物理剥离法无法应用于大规模制备。于是在技术层面出现了SiC热解外延生长法、氧化石墨还原法及目前最常用的化学沉降法,为科学研究提供了更多的材料。
4理论思考与启示
通过心电图和石墨烯两个产业的案例,本文探讨了基于科学的产业独特的发展模式和规律,指出了科研在这类产业发展中的核心角色,并形成以下创新的结论:第一,总结了这类产业积淀—突破—爆炸式增长的发展模式。第二,与传统产业不同,基于科学的产业发展长期、稳定、高度地依赖于科学研究的进步。第三,科学研究始终是该类产业领域中科学、技术、产业互动的发端,是积淀—突破—爆炸式增长路径的核心。第四,通过案例讨论了基于科学的产业发展中的三类关系,即科学与技术的“Z”字形互动关系、核心产品与衍生产品的关系以及形成主导设计后本产业与其他产业的融合。这些发展在管理实践上有很多重要意义。首先,在企业管理方面,由于公共科研部门作为科研成果的主要源头,在这类产业发展中起着至关重要的作用,企业与公共研究部门保持密切联系来获得外部知识成为创新成功的关键要素。其次,在国家产业发展战略方面,我国基于科学的产业面临的发展困境是:发达国家相对于我国一直保持着较为稳定、强劲的竞争优势,我国难以超越。这说明“引进、消化、吸收、再创新”的技术追赶模式存在局限性。本文认为应更地关注科学的重要作用及其与技术、产业的互动关系,推动重大科研成果的产业化,即科学合理设计产学研合作创新的机制与模式,是走出“落后—追赶—再落后—再追赶”怪圈的根本途径。再次,我国“十二五”规划中确定重点发展的七大战略性新兴产业及子产业中,有很多属于基于科学的产业,如纳米及超导等新材料制备技术,生物技术新药、生物医学工程、生物育种、海洋生物等,新一代信息网络技术,高端智能制造装备技术等。如果这些产业的发展重复“技术学习和追赶”的老路,很可能在新一轮的国际产业竞争中失利。所以需要探索一条基于科学的产业发展的新路径。由于在“基于科学的创新”与“基于科学的产业”研究领域尚未形成系统的理论,本文采用归纳法通过探索性案例研究进行理论构建,通过心电图和石墨烯两个案例归纳出的一般模式可能受到上述两个产业固有特点的影响,研究的外部效度需要通过更多的不同产业案例或者定量研究进一步加以佐证。
作者:张鹏 雷家骕 单位:清华大学 经济管理学院