本站小编为你精心准备了汽车发动机连杆激光3D打印工艺分析参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
《激光与红外》2017年第5期
摘要:为了研究汽车发动机连杆激光3-D打印制造工艺,采用连杆打印试验的方法,建立了连杆3-D数据模型,进行分层切片处理,扫描S型扫描和轮廓偏移规划两种连杆加工路径。选用铁基合金粉末以及相应的工艺参数,在激光3-D打印系统中进行连杆打印试验,扫描单层轨迹用时4min30s~4min56s,总用时4h20min。结果表明,连杆成形区底部的金相组织主要是柱状晶和树枝晶,中上部是细小的等轴晶,层间致密搭接,形成良好的冶金结合;成形连杆显微硬度为450~490HV,屈服强度为754MPa,抗拉强度为1189MPa,延伸率为9%。连杆激光3-D打印成形制坯相比于锻造、粉锻制造工艺,减少了工装成本支出并缩短了生产准备工时,其屈服强度、抗拉强度等力学性能超过钢锻连杆,与国外粉锻连杆相比差别不大,能满足连杆制坯要求。
关键词:激光技术;发动机连杆;3-D打印;工艺研究;试验
引言
连杆是活塞式内燃机传递动力和转换运动的核心零件,连杆在工作中承受着气体压力、往复惯性力等大小、方向周期性变化的交变载荷,因此成形连杆的尺寸精度和机械性能要求极高。目前,国内外大量使用的发动机连杆主要采用模锻锤、热模锻压力机、电液锤等设备模锻成形,美国、德国和日本也有采用粉末锻造工艺批量生产连杆并实现装机[1]。然而,汽车行业竞争的日益激烈要求了汽车包括内燃机技术的快速升级换代,但由于连杆模锻和粉锻工艺中长达数月的模具研制周期以及模具使用的高损耗,都在一定程度上阻碍了内燃机样机的开发速度。激光3d打印技术是在基于快速原型技术的基础上结合自动送粉、激光熔覆所发展起来的一种快速制造技术[2],通过计算机辅助设计软件(CAD-ComputerAidedDesign,CAD)设计模型采用材料逐层堆积的原理成形实体零件。与传统模锻、粉末锻造工艺相比,激光3D打印具有的无模具、短周期以及快速响应能力将更适于技术快速换代的多品种、变批量零件加工。
激光3D打印直接成形金属零件实现了形状、尺寸接近或等同成品,能够有效减少后续机械加工工序和加工量。目前国内外众多学者对变径回转体模型[3-4]、薄壁结构模型[5-6]的激光3D打印成形工艺参数控制,以及采用不同粉末配方的激光熔覆层显微组织和性能[7-11]进行了大量的研究。在金属零件激光直接快速成形方面,北京航空航天大学制造出了TA15、TC18、TC21等钛合金材料的飞机大型整体主承力构件以及A100等超高强度钢飞机起落架关键构件[12],西安交通大学对激光熔化镍基合金的沉积凝固过程进行了长期研究,并制造出高尺寸精度和高表面质量的空心叶轮样件[13]。目前,金属零件激光直接快速成形的研究主要集中于航天、航空、石油、船舶等现代化高端装备的高性能大型金属构件的生产制造[12]。在汽车金属零部件制造领域,激光3D打印技术应用较少。本文选取汽车发动机连杆,建立了连杆激光3D打印数据模型,并采用该模型在激光3D打印系统中实现成形,并分析了3D打印成形连杆不同截面的微观组织和显微硬度分布。
1连杆激光3D打印模型
根据某普及型轿车发动机连杆设计参数,建立图1(a)所示的三维模型并转化为三角形网格(STereoLithography,STL)文件格式,利用三角形面片表征连杆实体模型表面轮廓,生成三角形面片单元776个,三角形顶点2328个。识别连杆模型特征截面及特征线进行分层切片处理,确定模型内外轮廓尺寸,补偿激光3D打印系统采用的直径1mm圆形激光光斑,连杆模型分层切片结果如图1(b)所示。单一片层成形过程就是对内外轮廓线包络区域扫描填充的过程。根据连杆结构特点,采用如图2(a)所示的S型扫描和图(b)所示的轮廓偏移扫描。S型扫描是采用等间距平行线往复扫描的方式填充轮廓内部区域;轮廓偏移扫描是将单一片层内外轮廓线向实体内部等距偏移并逐段连接,从而形成填充线。激光3D打印模型的分层切片高度和填充路径间距等参数是由连杆的设计尺寸(图3)和3D打印系统工艺实验决定。连杆3D打印模型切片高度为0.3mm,单层等距扫描,规划S型扫描和轮廓偏移扫描填充路径如图4所示。扫描路径坐标点不能直接输入激光3D打印系统控制器执行,将路径代码与激光功率、扫描速度、送粉速率等相关工艺参数进行组合后输出控制文件。
2连杆激光3D打印工艺试验
2.1试验材料
试验基体为尺寸300mm×200mm×20mm的板材,表面进行打磨处理以减少激光反射,粉末选用JG-3型Fe基合金粉末。
2.2试验设备
主要作用是控制加工系统的运动轨迹、激光功率、送粉速率以及监控激光实际功率、冷却水温度等各项指标;图(c)为三轴式数控工作台,采用广州数控GSK980MDc加工设备,配以激光发射器、光外侧向同轴送粉头等装置;图(d)为YFL1000-CS大功率光纤激光器,激光束通过光学元件扩束、聚焦,在加工表面形成直径1mm的圆形光斑;图(e)为载气式送粉装置,图(f)为循环水冷装置。
2.3工艺参数
连杆模型的加工轨迹规划形成了两种扫描路径,S型扫描形成的填充线运行轨迹简单,但由于激光熔化金属粉末快速凝固形成椭圆形熔道,片层内单一方向熔道多次搭接会直接影响成形件的径向力学性能,并且填充线方向相同会引起收缩方向应力一致,导致表面翘曲程度增加,甚至在填充线方向突变处出现“结瘤”现象,从而影响成形件的成形精度和表面光滑度。轮廓偏移填充线的扫描方向不断变化,成形区域内应力发散,能有效减小收缩率,而且成形件内外表面轮廓线是一条完整的封闭曲线,以模型主要尺寸确定的内外轮廓向成形件内部等距偏置规划填充路径,能提高成形件的尺寸精度,减少后续加工余量。试验选取连杆轮廓偏移扫描路径。试验表明,激光功率、送粉速率和扫描速度等工艺参数对熔池形貌以及性能有显著影响[14-15]。多道搭接熔覆过程中,每道熔覆层相互影响,熔覆层及其整体内部的应力状态相对复杂[16]。结合激光3D打印系统的单道熔覆实验数据及相关结论。
2.4试验过程及结果
按照确定的工艺方案,将加工路径与工艺参数组合生成控制文件,输入激光3D打印系统控制器。试验前对基板进行预热,减小初始打印过程中熔覆层与基板间的温度梯度,完成对刀后启动控制程序打印发动机连杆。图6(a)~(c)为激光3D打印连杆不同时刻的形貌,随着加工过程的推进,连杆片层不断堆积,成形高度增大,整体三维结构逐渐显现。图6(d)为激光3D打印连杆,激光扫描单层轨迹用时为4min30s~4min56s,连杆毛坯模型总层数为50层,打印总用时4h20min。
3成形连杆性能分析
3.1试样的选取制备
连杆打印成形后,根据连杆不同工况下受力状况的理论分析确定危险截面,选取如图7a所示的连杆大头截面A-A、B-B、E-E,连杆杆身截面C-C、D-D,以及连杆小头截面E-E制备试样,采用电火花线切割切取表面积10mm×10mm的试样进行组织结构与性能分析。选用粒度由小到大的金相砂纸进行打磨,然后在金相研磨机上用抛光剂对试样表面进行抛光,采用HV-1000A显微硬度计测试其维氏硬度,加载压力500g,保持时间5s。抛光后的金相试样用现配王水(盐酸和硝酸按照3:1比例混合物)进行金相腐蚀,然后立即用水冲洗、无水乙醇洗净、吹风机吹干,采用金相显微镜观察试样的微观组织形貌。在杆身处制备室温拉伸试样(GB/T228.1-2010),取样位置如图7a所示,试样标距L0=8mm。用Reger电子万能试验机进行室温拉伸实验,拉伸时加载变形速率为0.5mm/min。
3.2试样截面微观组织及其成因
激光3D打印过程熔池内传热、传质情况复杂,同时还伴随着组织相变的发生。图7b为低倍镜下连杆截面试样的微观形貌,可以看出,层内、层间熔道相互致密搭接,形成良好的冶金结合。图中部分区域存在少量气孔,产生的原因主要是合金粉末在激光加工前氧化、受潮或者有的元素在高温下发生氧化反应,多道搭接过程的搭接率等工艺参数设置不合理也会导致孔洞的产生。为了提高成形连杆质量,可以采取的工艺措施有优化激光加工系统,设置保护气氛,粉末输送前烘干去湿。图7c为连杆截面试样底部的金相组织,可以看出靠近基体的底部组织为柱状晶,且生长方向与基体结合面垂直。由金属凝固理论可知,温度梯度与凝固速率的比值G/R决定凝固组织的形貌[17]。连杆堆积初始基体材料温度较低,熔池主要依靠基体传导散热,熔池与基体之间的界面结合处存在较大的正温度梯度G,并且温度梯度和主热流方向主要沿沉积方向,即垂直于基体结合面,晶粒长大过程中,与主热流方向偏差较大的晶粒被淘汰。图7d为连杆截面试样中部的金相组织,可以看出底层中部组织为垂直于基体结合面方向的树枝晶,由于Fe基合金粉末熔化凝固过程中各种成分的凝固点不同,熔点高的溶质元素先凝固,凝固过程伴随着固液界面前沿溶质的再分配,溶质浓度发生变化导致金属液体凝固温度的改变,即成分过冷。随着距固液界面的距离增大,温度梯度G减小,成分过冷增大,在连杆截面中部形成树枝晶组织。图7e为连杆截面试样中上部的金相组织,为细小的等轴晶。连杆多层堆积成形的部分已经具有了较高的温度,并且在连杆成形上部,热量通过热传导、热辐射以及空气对流等多种方式散发,温度梯度与凝固速率的比值G/R逐渐减小,成分过冷极大,在固液界面前沿生成许多沿各个方向生长的晶核,晶粒自由生长形成细小的等轴晶。由于成分及组织分布不均会在熔覆层内部形成组织应力和相变应力,影响成形连杆质量,在后续工序中会配套相应的热处理工艺,消除内应力。
3.3力学性能
对成形连杆不同截面试样的分层高度方向上和单层轨迹内取点测试了维氏硬度,以结合面中心为原点,沿纵向和横向每间隔0.5mm选取有限个点,硬度分布曲线如图8所示。可知,显微硬度从结合区-连杆打印区呈梯度分布,结合区显微硬度较低,Fe基合金粉末中添加了大量Cr、Si等元素,激光加热熔化合金粉末生成金属化合物,进入熔池迅速扩散并凝固形成硬质点,造成连杆打印区显微硬度大幅度提高。连杆打印区的显微硬度由低到高、再由高到低不断变化,是由于在激光按照加工轨迹成形每一层时,使已经凝固成形的上一层熔池发生部分重熔,相互间形成冶金结合,成形部分热传导使纵向上分别形成回火区和重熔区,显微硬度逐渐降低。单层轨迹内显微硬度值变化不大、较为均匀,稳定在450~490HV。由于激光3D打印成形精度较高,其形状、尺寸接近成形连杆,配套后续铣削、磨削等机械加工工序,提高连杆的几何精度和表面质量。目前,以超细晶粒硬质合金为基体的涂层刀具的铣削硬度可达510HV[18],且成本较低,采用高速铣削工艺能够对激光3D打印连杆进行高效的后处理。室温拉伸实验结果表明,Fe基粉末激光3D打印连杆的屈服强度为754MPa,抗拉强度为1189MPa,延伸率为9%。将获得的激光3D打印连杆的硬度、拉伸性能与模锻、粉锻连杆的性能进行比较,如表3所示。连杆模锻工艺常用材料有调质钢40Cr、35CrMo,非调质钢36MnVS4、C70S6[19];粉锻工艺通常采用3Cu5C、3Cu6C、3Cu7C等Fe-C-Cu系合金粉末[20]。可以看出,Fe基合金粉末激光3D打印连杆的硬度稍高,屈服强度、抗拉强度以及延伸率与3Cu7C粉末锻造连杆相当。
4结论
(1)选用
Fe基合金粉末、激光功率1000W、扫描速度1000mm/min、送粉速率15g/min的工艺参数,采用轮廓偏移扫描规划的连杆加工路径,在激光3D打印系统中进行连杆激光3D打印试验,得到成形连杆,扫描单层轨迹用时4min30s~4min56s,连杆激光3D打印成形总用时4h20min,相比于锻造、粉锻制造工艺,减少了模具制造成本和周期。
(2)激光
3D打印成形连杆层间致密搭接,形成良好的冶金结合。连杆成形区底部由于与基体存在较大的温度梯度,金相组织主要是柱状晶,随着距固液相的距离逐渐变大,温度梯度减小,成分过冷增大,中部形成树枝晶组织,连杆成形上部晶粒自由生长成细小的等轴晶。
(3)测试激光
3D打印连杆各方向的显微硬度,由于激光成形过程中熔池重熔的原因,显微硬度在分层方向上出现规律性波动。对比激光3D打印连杆与传统制造工艺成形连杆的力学性能,发现其屈服强度、抗拉强度高于钢锻连杆,与粉锻连杆相差不大。结果表明,激光3D打印连杆经过后续配套的铣削、磨削等机械加工工序后,提高成形连杆的几何精度和表面质量,能达到连杆制造的要求。
作者:雷凯云;秦训鹏;徐昀;刘华明;胡泽启 单位:武汉理工大学