前言:写作是一种表达,也是一种探索。我们为你提供了8篇不同风格的建筑结构论文参考范文,希望这些范文能给你带来宝贵的参考价值,敬请阅读。
1剪力墙计算模型
本工程采用SATWE软件进行设计分析。基于组合有限元法建立空间组合结构计算模型,梁、柱仍采用空间杆单元,由于采用薄壁杆件代表剪力墙遇到上下洞口错位大、框支剪力墙等问题,采用墙元模型是将剪力墙视为若干墙体组成墙组,以节点支撑传递上下的内力,分析精度提高。薄壁杆件模型将剪力墙视为杆件,墙元模型以竖向位移为未知量,多点传力,变形协调。高层建筑结构考虑楼板变形,采用空间板壳单元模拟。计算模型考虑空间扭转变形的同时也要考虑楼板变形,对计算条件要求更高,适用于楼板开有大洞口结构和复杂剪力墙结构等。本工程为剪力墙结构采用墙元模型计算分析。
2软件计算参数选取分析
2.1地震信息输入
①考虑偶然偏心和双向地震作用。对于高层建筑结构,考虑偶然偏心计算出位移比大于1.2,说明结构质量和刚度分布不均匀,抗扭能力较差,此时应该计入偶然偏心的影响。②高层建筑振型计算个数。振型组合数如果取值小不能全面反映整体结构地震响应导致计算结果失真,如果计算个数过多会增加计算时间,消耗计算机资源,具体取值根据工程规模、结构规则性等因素确定。振型数太少不能正确考虑模型最大地震作用情况,本工程计算振型个数取15个。③周期折减系数。框架结构中填充墙数量较多,故折减系数较小,剪力墙结构中填充墙较少,通常折减系数取0.9-1.0之间,具体取值多少需要根据实际结构中填充墙多少及对结构刚度影响程度来确定。综合考虑上述因素本工程为落地剪力墙结构,填充墙较少取0.98。④结构阻尼比。阻尼存在延缓结构破坏,延性得到提高。在设计地震反应谱时假定普通结构阻尼比为0.05,软件默认值也为0.05。本工程结构阻尼比取0.05。
2.2设计信息
①梁刚度放大系数。采用刚性楼板假定计算楼板自身刚度没有考虑到主体结构中,规范规定通过采用放大梁刚度方法来近似考虑楼板刚度对结构贡献。在计算时梁按未考虑刚度放大前数值计算,如果不乘刚度放大系数梁承载力仍能满足荷载组合作用下设计要求,说明梁不存在安全隐患。本工程梁刚度放大系数取1.5。②连梁刚度折减系数。为保证连梁在正常使用状态下不发生开裂或开裂变形在一定范围内,该参数取值不宜小于0.5,实际工程设计时取0.7。此项系数大小对于以墙体开洞方式形成连梁和以普通梁方式输入连梁都起作用。本工程取0.7。③梁扭矩折减系数。若现浇楼板按楼板刚性假定计算,考虑到受力过程中楼板和梁共同抵抗扭矩而对梁扭矩值进行折减,参数取值范围一般为0.4-1.0。定义弹性楼板,在计算时考虑楼板和梁抗扭作用,所以梁扭矩值无需再折减。本工程取0.4。
3计算结果分析
一、民用建筑中常用的几种结构设计
为了保证建筑的使用空间,使建筑物具有相对的稳定性,满足人们对建筑物的要求,就需要对民用建筑进行合理设计,保证建筑结构的稳定。
(一)砖混结构砖混结构是建筑物的主要竖向受力构件,为砖墙或其他类砌体,横向承重的梁、楼面、屋面为钢筋混凝土结构。适合房间面积小、开间进深不大的低层和多层建筑。在进行结构设计时,墙体做为主要受力构件,要保证墙体的厚度和抗震性,保证建筑物整体的稳定性。同时在设计时,还要注意施工过程的方便快捷,节省工期。
(二)框架结构框架结构是建筑物中由钢筋混凝土柱和梁共同组成框架来承担竖向荷载和侧向水平力荷载的结构体系。框架结构具有较好的抗震性能和抗弯能力,平面布置比较灵活,有利于布置较大空间,可以满足多功能的使用要求。由于构件截面尺寸的影响,框架结构的房层高度受到限制。
(三)剪力墙结构剪力墙结构是钢筋混凝土墙共同承担竖向荷载和侧向水平力荷载的结构体系。钢筋混凝土墙不仅承受荷载,而且对空间起分割作用。由于主要受力构件均为钢筋混凝土结构墙,所以该结构具有刚度大、抗震性能好、整体性强的特点,适用范围较大,可建造较高的建筑。但受剪力墙间距的影响,开间距太大,对大空间建筑该结构的灵活性就比较差。
(四)筒体结构在现代的高层建筑中筒体结构被广泛地应用,最主要的特点是该结构刚度好、防震能力强。筒体结构主要由核心筒和框筒结构组成。建筑布置灵活、抗侧刚度大、整体性好,能够提供较大的使用空间。筒体结构能有效地抵抗水平荷载,因此比较适用建筑高层及超高层的建筑。在民用建筑设计中还有其他建筑结构设计形式,对这些建筑结构进行设计时不仅要考虑结构的选型、适用条件,还要考虑建筑物的功能和使用年限等多方面因素,才能使民用建筑结构设计更加符合需要,更加科学合理。
二、民用建筑结构设计存在的问题
现阶段,民用建筑结构设计存在着许多不合理设计现象,许多建筑结构设计为了追求较大的使用空间没有设计抗震墙,使建筑物存在着很大的安全隐患。与此同时,施工与设计方案不一致,擅自更改设计方案,使得建筑施工不合理,设计粗糙简单,也使得建筑存在着安全隐患。在一些设计图纸中,存在着许多漏洞,没有对建筑结构的消防、耐火等级、安全等级进行详细标注,使得建筑结构不符合工程施工要求,达不到居住标准。
1剪力墙结构概述
根据不同的标准,建筑结构的分类也有所区别。根据不同的施工方法,建筑结构可分为混合结构、框架结构、剪力墙结构等。由于剪力墙具有较强的抗侧刚度和抗震性能,而且用钢量也比较小,因而在建筑结构设计中得以广泛应用。简单来说,剪力墙结构就是利用钢筋混凝土墙板来承受来自垂直方向和水平方向的力的结构。在设计剪力墙结构时,通常会使用钢筋混凝土墙板取代之前框架结构中的梁柱,从而提高承受荷载的能力。换言之,剪力墙结构主要指的是竖向的钢筋混凝土墙板,而横向仍然沿用钢筋混凝土的大楼板搭载在墙上,而这个结构就成为剪力墙结构
2剪力墙结构设计的基本原则
2.1剪力墙的厚度与高和宽相比,要小很多,几何特征类似于板,受力形态接近于柱,但其又与柱存在明显的区别,即其肢长和厚度的比值,当比值不超过3时,可以按照柱来计算,当比值介于3-5之间,则可作为异形柱,并按双向受压构件设计。
2.2在剪力墙结构中,墙作为平面构件,不仅需要承受来自平面作用的水平剪力和弯矩,同时还需要承受竖向压力。在这种状态下,剪力墙在水平作用下如同底部嵌固与基础悬臂梁在地震作用或风载下,因此,剪力墙不仅需要具备一定的刚度,还需要具备能够满足非弹性变形反复循环下的延性。
2.3剪力墙结构中最突出的特点就是在同一平面内刚度和承载力较大,而平面外刚度以及承载力则比较小。当剪力墙与平面外的梁相接时,会导致墙肢外平面外弯矩的发生,但一般不会对墙的平面外刚度和承载力造成影响,因此,应尽量避免开平面外搭接,如果遇到不得不搭接的情况,则应根据具体的相关规定采取合理的解决办法,以对剪力墙平面外的安全形成可靠保障。
2.4剪力墙的设计技术需要对竖向和水平作用下的结构整体进行综合分析,在求得内力后,按照偏压或偏拉进行正截面承载力和斜截面受剪承载力进行验算。一般情况下,在计算剪力墙承载力时,对带翼墙的计算宽度应当根据实际情况取最小值。
3剪力墙的特点分类
1远程微动测量方法
1.1激光多普勒测速仪基本原理在结构振动检测领域,由于各种原因引起的振动可以用作确定结构的固有频率。在正常情况下,由于人或者自然的原因产生的非常小的震动称为微动,如,地震波、冲击波、潮汐波、工业振动、交通噪音等。因为不需要专门的震动源,如移动的车辆或者冲击敲击结构,所以对于观测结构特征微动测量是非常安全和有效的方法。使用微动测量的方法能够容易的获得结构的动力特征,如固有频率和振型。基于上述优点,如果能够使用远程测量微动技术将能极大提高测量工作的有效性和安全性。检测一些较高的结构,如高层建筑、桥塔、高架桥、高坝等,安装传感器需要危险高空的作业[3]。另一方面,对于地震后的结构的损伤检测,可能会面临余震造成的二次灾难。如果采用远程测量技术,就不免除了危险的位置或条件下安装和拆除传感器和电线。激光多普勒测速仪(LaserDopplerVelocimeter以下简称LDV,图1)可以准确远程测量结构微动,是一种可以取代的方法。LDV是一种光学测量装置,通过使用入射和反射的激光束之间的频率的差值,以检测运动目标的速度。反射光速和入射光束间的频率变化,见图2。
1.2LDV振动的干扰除去LDV观测到的数据是LDV自身与测量对象间的相对速度。因此,对于一个非常小的振动测量,LDV自身的振动将会有一个显著的影响测量记录。一些在户外进行的结构检测,由于地面运动或者风荷载等因素引起的LDV自身的振动不能被忽略,见图3。在地震后建筑结构的损伤检测的情况下LDV自身振动的影响尤其严重,因为由于震后的重建,使检测工作在一个高噪声坏境下进行的。再如,桥梁的加固检测也是在一个高交通噪声下进行的。因此,结构微动的高精确测量必须要去除LDV自身振动的影响。文献[4]提供一个去除LDV自身振动影响的方法,图4。在LDV上安装一个震动传感器记录LDV的运动速度,是LDV在t时刻时测量到的结构上的测点和LDV的相对速度。通过对进行傅立叶变化即可得到测点频谱,通过频谱可以得到结构的固有频率。例如混凝土建筑结构,沿建筑的高层分别测量转化成频谱,可以得到固有频率对应的幅值,通过对这些测点幅值的归一化处理就可以得到振型。
1.3LDV与PIV比较随着计算机技术与图像处理技术的快速发展,产生了PIV(ParticleImageVelocimetry)粒子成像测速技术。PIV技术的最大贡献是突破了LDV激光多普勒测速仪等空间单点测量技术的局限性,既具备了单点测量技术的精度和分辨率,又能获得平面流场显示的整体结构和瞬态图像,可在同一时刻记录下整个流场的有关信息,并且可分别给出平均速度、脉动速度及应变率等,同时它还是一种非接触式的测量方法。
2模拟实验
为验证方法的可靠性,实验室内浇筑一个高为0.65m的低强度直角梯形混凝土块,通过应变片测量得到的固有频率基本符合于LDV测量得到的固有频率为53Hz。为了测量振型沿高层布置5个测点,通过有限元分析得到振型和测的振型的比较结构见图5,表现出了有较好的一致性。
3总结
建筑结构固有频率和振型是抗震检测最常用的特征。振型越高,阻尼作用造成的衰减越快,所以高振型只在振动初始才比较明显,以后逐渐衰减,因此,建筑抗振设计中仅考虑较低的几个振型。第一振型很容易出现,高频率振型需要输入更多能量,能量输入供应次序优先给低频率振型,建筑结构抗震分析只取前几个振型就能满足要求。电阻传感器在结构抗震检测中,尤其对高耸结构的检测显示出局限性,包括:①误差的处理难度;②高空安装的危险性;③需要给定荷载。激光多普勒测速仪精确测量结构微动的方法,克服了其他方法的缺点,有效去除掉LDV自身振动的干扰,可以进一步提高检测精度。通过对绝对速度进行傅立叶变化即可得到测点频谱,通过频谱可以得到结构的固有频率。对固有频率对应的幅值进行归一化处理就可以得到振型。室内试验和有限元模拟取得了较为一致的结果,证明了该方法的有效性。文章还比较了LDV与PIV的不同点及相同点。
1现代高层建筑的结构分析
1.1常微分方程求解器分析。在高层建筑结构分析中利用有限元技术,并借助能量泛函的变分,将控制的偏微分方程半离散化为用结线函数表示的常微分方程组,然后用常微分方程求解器直接求解。这种方法,能够有效的解决高层建筑结构中考虑楼板变形时的静力计算、动力计算和稳定计算。
1.2有限条法和样条函数法分析。在高层建筑中,几何形状和物理特性沿高度方向比较规则的结构体系,采用有限条法合理地选择结构计算模型,等效连续体的物理常数和条元的位移函数,沿着某些方向采用简单多项式,而其它方向则为连续、可微、并且事先满足条端边界条件的级数。
2高层建筑结构分析的基本假定
2.1弹性假定。弹性假定计算法只有在结构处于弹性的状态下才能使用,目前这种分析方法使用也非常普遍。但这种方法并不适合于当建筑物遭到某些外在的因素的影响,如滑坡、地震、台风等,其位置发生了改动。因为这时的建筑物处于塑性状态,也就是随时都有改变的可能,所以只能采取塑性假定法计算。
2.2小变形假定。小变形假定也是各种方法普遍采用的基本假定。但有不少人对几何非线性问题(P-$效应)进行了一些研究。一般认为,当顶点水平位移$与建筑物高度H的比值$/H>1/500时,P-$效应的影响就不能忽视了。
2.3刚性楼板假定。这一假定大大减少了结构位移的自由度,简化了计算方法。并为采用空间薄壁杆件理论计算筒体结构提供了条件。
2.4计算图形的假定。高层建筑结构体系整体分析采用的计算图形有三种:一维协同分析。在水平力作用下,将结构体系简化为由平行水平力方向上的各榀抗侧力构件组成的平面结构。根据刚性楼板假定,同一楼面标高处各榀抗侧力构件的侧移相等,由此即可建立一维协同的基本方程。二维协同分析。二维协同分析虽然仍将单榀抗侧力构件视为平面结构,考虑了同层楼板上各榀抗侧力构件在楼面内的变形协调。三维空间分析。三维空间分析的普通杆单元每一节点有6个自由度,按符拉索夫薄壁杆理论分析的杆端节点还应考虑截面翘曲,有7个自由度。
1建筑结构设计中存在的问题
1.1地下室设计中存在的问题建筑结构设计单位在设计建筑结构的时候,必须要加强对地基稳固度的重视程度。地基的质量在很大程度上会受到地下室设计状况的影响,所以说做好地下室的设计工作时非常重要的。从我国很多建筑结构设计企业的发展现状来看,其中还存在不少问题,例如,没有严格要求地下室设计成效;在未详细了解建筑物墙体厚度、混凝土强度、建筑材料性能的基础上,就盲目地开展地下室设计工作,这直接影响到了建筑结构设计工作的可靠性,对将来的建筑工程施工质量而言,埋下了安全隐患。
1.2图纸设计中存在的问题建筑工程的施工步骤都是按照事先设计的施工图纸展开的,所以对于整个施工环节来说,建筑施工设计图纸有着至关重要的作用。可以说图纸设计工作的成效,会对整个直接建筑工程的施工质量产生重大影响。然而,从我国建筑施工企业的施工现状来看,很多施工团队都忽视了设计图纸工作的重要性,采取了不认真的态度对待施工图纸设计工作,使得施工图纸不够严谨,缺乏学科、合理性。例如,在设计各层结构的具体施工图的时候,使用了不标准的图集,也没有弄清楚各层梁、柱、墙的详细构造。
1.3建筑选址中存在的问题我们常说:“万事开头难。”如此可见,要想做好一件事情,就必须要有一个好的开头。这句话运用到建筑结构的设计工作中,也就意味着要做好最基本的结构设计工作。对于任何建筑施工项目而言,倘若选址存在不稳定状况,那么再好的建筑结构也无法为整个建筑工程的施工质量提供保障。当前,在建筑选址中存在的选址缺乏合理性、科学性等问题,直接影响到了建筑施工项目的安全系数,不利于提高建筑施工项目的质量。
2建筑结构设计对策
2.1优化建筑结构设建筑结构设计单位在优化设计高层建筑结构的时候,需要注意几个问题:(1)设计工作要为提高建筑工程的施工质量服务;(2)要尽可能地控制好工程造价,将之设计在可接受范围内。对此,需要建筑结构设计单位,在开展设计工作的过程中,要充分考虑投资商的经济实力和实际的施工需求,权衡建筑项目的施工质量与建筑施工企业投资回报之间关系。所以建筑结构设计单位,要借助“强柱弱梁、强剪弱弯、强压弱拉”的原则,对建筑结构进行优化设计,促使建筑结构设计单位制定的方案可以达到令人满意的效果。
2.2加强沟通与交流建筑结构设计师在开展建筑结构设计工作之前,应该要加强与承包商、投资商之间的沟通与交流,并通过与他们之间展开的交谈活动,了解到建筑工程的具体施工要求,同时充分了解本次到建筑工程的施工基调,对建筑工程的施工现场以及地质条件进行整体把握,明确建筑方每个部门需要注意和配合的地方,将建筑结构设计的基本方案确定下来。
2.3明确参数含义在建筑工程中的有些专业术语难以区分,对于建筑结构的设计师而言,在没有明确参数定义的前提下,开展设计工作,必然会影响到设计质量。理论上而言,参数是没有明确界限的,但是在具体建筑工程施工环节中,每个参数都需要界定实际有效意义,所以设计人员应该明确参数的含义,并在实际的设计工作过程中,对这些参数加以正确利用。
1钢框架结构强度方面的要求
在进行高层连体结构施工过程中,钢框架结构必须切实注意强度要求。如果是现浇的连体结构梁板,其强度可以按照T形断面进行计算。在对框架梁跨中配筋量进行计算时,可以按照T形去考虑跨中截面。在对框架梁支座的配筋量进行计算时,如果也是按T形考虑,这样计算的强度是不对的。因为在实际施工过程中,钢框架结构梁支座处是负弯矩,此时梁翼缘处在受拉区,而梁底则在受压区,主要为倒T形截面。所以,只能按照矩形截面计算。
2浅谈高层连体建筑结构的施工技术要点
2.1高层连体建筑结构施工测量技术要点按照建筑形状,做好内控点的设置。譬如从矩形建筑来看,可以将内控点设置在四角,要避开梁的阻挡,确保顶层到底层可以通视。为了做好竖向投测,应该在上部楼层每层相同位置,做好放线,留下200mm×200mm放线洞口。从预留洞来看,不能出现偏位,也不能被遮掩,以确保上下都具有良好的通视效果。另外,要对底层轴线网进行仔细地校核,再经过复核验收后才能向上投测。要做好内控点的控制,不能将料具堆放在底层内控点钢板上。为了做好仪器的架设,应确保顶板排架与钢板相互避开。主要做好以下几个方面:一是将垂准仪架设在底层内控点上,把有机玻璃板平放在需投点的放线洞口,再通过激光引测,并将十字交叉点与激光点相对准,并引到楼板混凝土上,进行标记,最后将有机玻璃板撤除。将小模板钉在放线洞口,用墨斗弹线。二是用全站仪做好校核,待其闭合之后,再进行细部放线。以内控点标记为准,用全站仪将轴线控制网放出来,并弹好线,作为按照柱模板、上层楼板梁安装的重要依据。等到完成每层楼板放线复核后,就可以拆掉洞口模板,以确保上层测量放线能够顺利通视。在没有实施竖向测量投点的时候,应该在各个放线洞口将防护盖板盖好,以防出现坠物伤人的问题。三是布设好轴线控制网。先将主控轴定下来,再对轴网进行加密处理,切实把握住关键部位和关键节点。在完成结构施工后,应对建筑物结构偏差进行测量和记录。
2.2高层连体建筑结构浇筑施工技术要点在进行混凝土浇筑时,应按照标号从高到低的顺序进行浇筑,先对高标号的进行浇筑,再对低标号的进行浇筑。先完成墙柱的浇筑,再完成梁板的浇筑。在进行浇筑过程中,应选好一个点,当达到标高后,使混凝土向前流动,然后再在坡面进行浇筑,逐渐推进。要严格控制每层混凝土浇筑的间隔时间,其时间综合要控制在初凝时间之内。在采用地泵泵送时,应尽可能地少用弯管作为输送管道,要高度重视施工安全问题,以便施工、清洗、维修和拆卸。输送管道应尽可能地采用管径相同的输送管。要保证输送管接头的严密性,并能满足强度要求,以便快速装拆。要确保管段不出现龟裂、损伤、弯折等问题。应该对模板支撑的纵横间距处采用加密处理,并做好剪刀撑的布设。应对布料机进行架空,不能将其支撑在钢筋骨架之上。在进行梁板混凝土浇筑时,不能在相同位置连续布料,而应采用水平移动的方式实施布料。
2.3高层连体建筑结构的转换层施工技术要点从高层连体建筑结构来看,塔楼连体结构的位置非常高,高达几十米甚至百米,而跨度也可达到十几米甚至几十米。如果按照常规方式进行施工,必须搭设很高的超高支模架。因为在巨大荷载作用下,不仅难以保证架体自身的稳定,就连从裙房屋面也难以承受。所以,如果确保连体结构悬空施工,是当前的重要课题之一。从转换层连体结构来看,一般是用钢梁承重。在安装钢梁时,首先要将起重机安装在裙房屋面,并把钢主梁运输到裙楼屋面,且做好滑移平台的搭设。将滑车与卷扬机组成水平动力系统,并把钢主梁逐根平移,当到一定位置后,再进行垂直放置与固定。在施工过程中,要做好静滑车组的悬挂,并做好动滑车组的安装,利用卷扬机将钢丝绳引出来,安装动静结合的方式,把动滑车组与静滑车组连接起来。在进行提升钢主梁前,要做好试吊。第一次提高0.5m,第二次再提高0.5m。只有等到所有设备性能能完全符合安全要求之后,才能正式进行提升作业。可以同时启动两台卷扬机,再间隔两秒后,再启动另外两台。在提升时,必须确保钢主梁始终处于水平状态,假如出现误差,就需要及时调节。
3结束语
综上所述,高层连体建筑结构施工是一项具有专业性、复杂性的工作,只有确保其垂直度、定位精度,才能保证工程质量。因此,我们应该高度重视连体建筑结构的研究工作,切实掌握施工技术要点,有效把握和攻克转换层施工施工重点难点。作为施工技术人员,必须不断更新施工理念,积极引进先进的施工技术,不断提高专业施工技术水平,才能更好地为现代建筑事业服务。
1采空区稳定性评价
煤矿采空区稳定性影响因素与所开采煤层厚度、埋深、产状及开采方式、开采时间、开采程度、顶板管理方式等密切相关,并受后期重复采动、地面附加荷载、地质环境改变及地震活动等影响。
1.1采空区地面变形特征对地基稳定性的影响该拟建地块一开采最小深度130m,各煤层采厚0.65~0.85m,开采时间为20世纪70—90年代,因此该拟建场地采空区具有采深大、采厚小,且停采时间久的特点。根据采空区地面变形的一般规律可知,各煤层采空区在采深较大、采深采厚比大于30地段,在变形活跃期内产生的地面变主要为连续变形,不会出现冒落、裂缝、台阶等急剧变形特征,该类地面变形对地面构筑物的危害程度较小。
1.2地表移动所处阶段对地基稳定性的影响该拟建地块一煤层最大采深165m,采空区塌陷引起的地表移动时间约1.4a,而采空区停采时间为2001年,停采时间距今已12a以上,属“老采空区”,因此根据煤矿开采时间评价,拟建场地采空区地面变形阶段已经进入衰退阶段,上覆岩层的应力状态已经趋于相对平衡状态,塌陷变形已经相对稳定。
1.3采空区剩余空隙体积估算根据该地块各煤层采空区的分布及叠加情况,煤层厚M=2.30m,煤层采出率K=75%,采空区剩余空隙率△V=0.15,故采空区剩余空隙换算等量的最大采厚值h=M×K×△V=242(mm)。
1.4残余变形对地基稳定性的影响该拟建场地采空区为老采空区,当地质环境条件发生改变,或遭受地震活动等影响时,老采空区将发生“活化”作用,地面将再次产生变形,从而影响地基的稳定。不管是何种原因引起的老采空区“活化”,均通过地面变形而影响地基的稳定性,各种不同原因所引起的老采空区活化变形量的总和应与老采空区残余变形总量相近。如果能够预测出老采空区残余变形总量,并将其与现行相关规范所规定的有关限值进行对比,即可对拟建场地采空区稳定性进行评价。本次地表残余变形的估算方法采用概率积分法,地表残余倾斜值最大为2.8mm/m,残余水平变形最大为1.3mm/m,残余曲率最大为0.16mm/m2。根据《岩土工程勘察规范》第5.5.5条中的相关规定,拟建场地残余变形值均小于规范规定的限值。据此评价,拟建场地地面残余变形对地基稳定性的影响程度较小。
1.5采深采厚比对地基稳定性的影响根据该拟建地块下伏各采空区采深及累积采厚计算场地内采深采厚比为57,远大于30,表明各采空区在变形期内产生的地面变形主要为连续变形,不会出现冒落、裂缝、台阶等急剧变形特征,该类地面变形对地面构筑物的危害程度较小。
1.6老采空区“活化”对地基稳定性的影响综上所述,引起老采空区“活化”的主要因素主要为地震活动的影响。该拟建地块设计地震基本烈度7度,设计地震基本加速度0.10g,设计地震分组为第二组。根据史料记载,该拟建地块地震活动强度微弱,历史上未曾发生过破坏性地震,但遭受区外地震活动影响频繁,在较高烈度地震影响下,采动区上方原已相对稳定的岩体将有可能变得不稳定,从而可能使老采空区产生活化变形,影响地基稳定性。老采空区是否发生“活化”及其破坏程度与地震震级、震中距及地震烈度等有关。老采空区“活化”将引发采空区新的地面变形,新地面变形量的大小与地面残余变形量有关,同时会加剧地面残余变形量的释放,对该拟建块地地基的稳定性造成一定程度的影响。