美章网 资料文库 动力学控制技术经济论文范文

动力学控制技术经济论文范文

本站小编为你精心准备了动力学控制技术经济论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

动力学控制技术经济论文

1流程设置选择

因控制超温的方式不同,目前主要分为高水气比、低水气比、中低水气比变换工艺[3]。其中高水气比变换工艺又分为全高水气比、高水气比分股变换工艺。对于SE-东方炉粉煤气化制甲醇,经计算,变换水气比0.5左右即可满足制甲醇的部分变换需求,其粗合成气自身所带水气是过剩的。因此,试图通过提高粗合成气的水气比来控制变换反应温度的工艺显然非常不经济。目前运行的高浓度CO高水气变换流程存在如下问题:①初期开车由于负荷低,第一变换炉超温到500℃,为降低床层温度,水气比要高于1.6,甚至达到1.8,造成了能量巨大的浪费;②由于湿气空速大,变换反应深度增加,因此单炉催化剂用量多;③催化剂使用寿命短,目前运行的Shell和GSP气化高水气比装置,第一变换炉催化剂使用寿命都不超过1a。对于高浓度CO粗合成气,现有高水气比变换纷纷进行技术改造,降低其水气比,节约能耗。Shell粉煤气化在国内应用较为成熟,与之相配套的变换工艺有全高水气比、全低水气比、低串中水气比工艺[4]。全高水气比工艺为预变换炉前一次性补足水蒸气,如SE-东方炉粉煤气化采用全高水气比变换来控制炉温,需要添加大量的高压蒸汽,由于合成甲醇不需要过高的变换率,这些添加的蒸汽最终并未参与变换反应,并且需要通过换热将其冷凝成水,能耗较高。属于改进型的高水气比分股变换工艺,仍需将一股配加蒸汽至高水气比,虽然达到相对节省蒸汽的目的,但造成蒸汽和热量浪费的同时,仍然增加了后续工段管线设备的投资和冷凝液处理的负担。而全低水气比、低串中水气比工艺则需先降低SE-东方炉粉煤气化粗合成气中的水气比,后续又补充蒸汽或水。显然以上与Shell粉煤气化配套的变换工艺均不适用于SE-东方炉粉煤气化制甲醇。因此,SE-东方炉粉煤气化制甲醇变换工艺技术选择思路为降低其水气比控制变换反应温度,并且在后续变换炉前不补充蒸汽或水。目前有两种与之配套且先进的变换工艺:动力学控制变换工艺和热力学控制变换工艺。以某年产180万吨甲醇装置为例,该装置生产规模日投煤量7500t,生产的粗合成气有效气量为516000m3/h,粗合成气中CO(干基)体积含量70%,水气比0.92,要求变换装置出口变换气中H2/CO为2.26±0.02。因装置规模大,变换设置两系列。以下针对单系列对两种工艺进行比较。

1.1动力学控制变换工艺动力学控制变换工艺流程见图2。粗合成气全量进入1#低压蒸汽发生器副产低压蒸汽,同时调整水气比至约0.55后,经气气换热器升温进入第一变换炉进行变换反应,出口气体经换热后,进入1#中压蒸汽发生器副产中压蒸汽,降温后进入第二变换炉继续变换反应,出第二变换炉变换气进入2#中压蒸汽发生器副产中压蒸汽后,与第一变换炉出口跨线变换气混合,调整出装置工艺气H2/CO,混合工艺气依次进入2#低压蒸汽发生器、锅炉给水预热器、脱盐水预热器回收热量。动力学控制变换工艺通过适当减少第一变换炉中的催化剂,即控制催化剂装填量的办法,能达到控制床层热点温度从而达到控制反应深度的目的[6]。但是,由于CO浓度和水气比都高,反应的推动力太大,催化剂的装填量只要有少量的变化,就会明显影响床层的热点温度,因此催化剂的用量必须准确,否则会因为反应深度的增加而造成床层“飞温”的不良结果。如果催化剂的装填量固定不变,则在装置开车初期,负荷小或气量波动时,催化剂装填量势必富余,导致粗合成气反应深度加大而超温。运用一种新开发的分层进气变换反应器技术,当生产装置运行负荷低时,气体只经过下层进行变换反应,可以避免因为催化剂装填富余,CO过度反应使床层超温;当生产装置运行正常时,气体可以全部从上段进入或者上段和下段同时进入,以此来满足生产要求。该工艺主要缺点是:变换反应温度控制的影响因素较多,催化剂的装填量、原料气负荷、水气比的波动均影响反应温度,操作控制系统设计较复杂。

1.2热力学控制变换工艺热力学控制变换工艺流程见图3。粗合成气首先分为两路,一路进入1#低压蒸汽发生器副产低压蒸汽,同时调整水气比至约0.25后,经气气换热器升温进入第一变换炉进行变换反应,出口气体经换热后,进入1#中压蒸汽发生器副产中压蒸汽,降温后与另一路粗合成气汇合后经脱毒槽进入第二变换炉继续变换反应,出第二变换炉变换气依次进入中压蒸汽过热器、2#中压蒸汽发生器、2#低压蒸汽发生器、锅炉给水预热器、脱盐水预热器回收热量。热力学控制变换工艺在粗合成气主路设置非变换旁路跨越第一变换炉,再与另一路经第一变换炉的低含水量变换气混合后进入第二变换炉反应,可稳定调控水气比,且无需补充蒸汽调整水气比,节约能耗效果显著。第一、二变换炉催化剂装填量均为足量,都按照接近反应平衡控制变换深度进行设计,结合粗合成气旁路、主路流量比值控制及第一变换炉之前设置蒸汽发生器,运行负荷变化时不需要调整;且由于反应平衡控制的特点,在不同运行负荷下第一变换炉发生甲烷化反应的风险很小。该流程应注意的是,运行过程特别是开工导气初期,由于操作或调整不当出现水气比过低而容易导致甲烷化超温发生。此时可根据床层温度适当调整第一变换炉水气比,控制床层热点温度不高于380℃,避免甲烷化的发生。在运行末期,可以通过适当减小进入第一变换炉的气量或者适当提高第一变换炉反应器入口的水气比,来维持较高的CO转化率,使装置仍能够稳定运行。此工艺操作过程简单,兼顾了第一、二变换炉反应器的温度控制和水气比要求,既很好地控制了第一变换炉反应器的热点温度,又使第二变换炉反应器入口气体在降温的同时提高了水气比。

2分析比较

两种工艺有相似之处,即均采用了降低原料粗合成气中水气比的方法。究其原因,一方面制甲醇其水气比是过剩的,节能效果显著;另一方面可以降低变换反应的剧烈程度,增强了装置的稳定性和可操作性。不同的是第一变换炉变换反应控温方式的差异,动力学控制变换工艺是减少催化剂装填量,使变换未反应完全即送出第一变换炉,而热力学控制变换工艺是变换反应达到平衡后送出第一变换炉。

2.1技术参数表1是两种工艺的主要技术参数对比,从表1中可知,两种工艺均能满足生产要求。两种工艺经废热锅炉后,降低第一变换炉进口的水气比,因各自控温方式的不同而产生较大差异。且2个变换炉进口温度、床层热点温度呈现出不同的高低分布。动力学控制变换工艺2个炉进口温度均较高,床层热点温度前高后低。热力学控制变换工艺2个炉进口温度均较低,床层热点温度前低后高。比较而言,较低的进口温度有利于催化剂的升温还原操作和使用寿命的延长,也便于换热流程的组建,而且变换工艺的控温关键是第一变换炉,第一变换炉较低的床层热点温度可以更有效避免甲烷化的发生。由于两种工艺变换炉热点温度的差异,换热流程从热量有效利用的角度考虑,中压蒸汽过热器设置位置不同,动力学控制变换工艺中,中压蒸汽过热器直接设置在了第一变换炉出口,而热力学控制变换工艺则设置在了第二变换炉出口。

2.2能耗表2是两种工艺的主要消耗对比。当生产规模一定时,不同变换工艺的能耗主要体现在蒸汽和工艺余热上。由表2可知,两种工艺副产的蒸汽基本相当,低温位工艺余热、冷凝液总量、循环冷却水水量,热力学控制变换工艺略多,此结果是由于热力学控制工艺进入变换系统的总水气比略高于动力学控制工艺。两种工艺均采用了前置废热锅炉,并且后续不补充蒸汽或水,变换深度相当,变换产生的整体热量和冷凝液基本相同,只是热量及冷凝液的分配有所不同,故由表2可看出两方案能耗相当。

2.3投资两种工艺主要设备投资费用见表3。可以看出,变换炉费用因两种工艺催化剂装量的不同存在较大差异;各换热设备因两种工艺换热流程、参与换热工艺气气量、平均传热温差等因素存在明显差异。虽然热力学控制变换工艺多设置一台脱毒槽,但动力学控制变换工艺主要设备投资费用比热力学控制变换工艺多。两种变换工艺中,第一变换炉催化剂设计使用寿命均为2a,第二变换炉催化剂设计寿命为4a,脱毒槽吸附剂设计使用寿命为4a。综合以上几方面的分析比较,两种变换工艺均能满足生产要求,能耗相当,在操作稳定性和主要设备投资方面,热力学控制变换工艺优于动力学控制变换工艺。

3结束语

由于激冷型粉煤气化制甲醇,粗合成气具有高水气比、高浓度CO等特点,作为下游的一氧化碳变换工艺技术的选择较为关键。从节能降耗考虑,通过降低其水气比来控制变换反应是必然选择。由上述对动力学控制变换工艺、热力学控制变换工艺分析比较可知,虽然动力学控制变换工艺采用了变换炉分层装填、分段进气等技术来控制变换反应,但因其受催化剂装填量、原料气负荷、水气比的波动影响较大,生产稳定性较差,投资较高。热力学控制变换工艺巧妙控制和分配进入各变换反应器的水气比和热量,使第一、二变换炉都能以接近化学反应平衡的方式进行反应,该工艺能有效防止变换反应器床层温度过高,不同负荷下,避免第一变换炉甲烷化反应的发生,生产稳定性较好,投资较低。激冷型粉煤气化制甲醇配套的一氧化碳变换推荐采用热力学控制变换工艺。

作者:余勤锋单位:中石化宁波工程有限公司