本站小编为你精心准备了产品制造企业的政府干预研究参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
《统计与信息论坛杂志》2014年第六期
一、系统模型与参数
本文所考虑的系统可以简单地用图1表示。这个模型是以制造商为中心,其生产计划受市场与政府调控政策参数的影响,详细描述如下。制造商:假设产品制造商同时生产高风险与低风险两种产品,必须为两种产品安排生产计划分配生产资源。在本文的模型中,我们假设制造商制定计划和资源调度时首要考虑的是最小化其金融风险。市场:这里主要指市场上产品的价格和需求。每一种产品都有一个固定的已知市场价格,而需求量是服从已知分布的随机变量。政府职权:政府职权以两种方式影响制造商的生产决策。一是以等同或低于市场价格订货;另一种方式是产品回购,也就是政府部门以低于生产成本的价格回购部分或全部厂家未能售出的产品,回购的价格和比例都由政府职权部门决定。根据以上描述,模型中各个单位的调整参数和变量列举如下:如前面所述,制造商在制定生产计划的时候,主要考虑的是最小化财务风险。接下来我们就讨论如何进行具体财务风险的测量。
二、量化财务风险
本文利用著名的条件风险价值(CVaR)模型来测量制造商的生产计划的财务风险,在这一部分,首先给出了制造商的损失函数并证明其凸函数特性,接着给出了CVaR的定义和属性。
(一)损失函数和其凸性描述随着决策变xH、xL和随机市场需求dH、dL变化的利润也是一个随机变量。根据第二节的描述,利润由两部分构成:1.常规销售获取的利润;2.政府回购获取的利润。我们取利润的相反数为损失函数,因此高风险产品的损失函数可以表述为:
(二)条件风险价值(CVaR)我们用系统的损失函数的条件风险价值来测量制造商生产计划的风险。首先我们对条件风险价值的定义和属性作一个简短的回顾。CVaR被提出之前,在20世纪90年代风险价值模型(VaR)作为一种最著名的风险测量工具被广泛研究和应用[5]。损失函数L(x,d)包括一个决策向量x和一个随机向量d以及一个给定常数的0<a<1。损失函数的VaR被定义为:HuangD.等很好地研究了函数Fa(x,β)的特性以及它与VaR和CVaR的关系[8]。这些研究结果将在下面的定理中分别总结。正是由于CVaR具有这些良好的特性,使之被广泛应用于管理学各领域的研究中。
三、仿真结果与分析
本部分通过一个例子进行仿真分析。在这个例子中,制造商生产2种类似疫苗的产品,一种是高风险产品,一种是低风险产品。高风险产品类似于流感疫苗,需求是不确定的,只有在年末北半球是否发生疫情才能决定。低风险产品类似于常规疫苗,需求是稳定的,出生率等其它因素是可以估计的。在这个例子中,这两种产品的数据我们从Cˇerba′ko-va′的研究中获得并描述如下高风险产品的需求dH[9]817-822。我们假定它是截断常正态分布在区间[50,200]上,原始的正态分布均值为125(百万),方差75,表示为N(125,75)。低风险产品的需求dL也被取值为在区间[3050]上的正态分布N(40,5)。其它的参数包括CH=8,PH=12,CL=25,PL=40。加之在所有的模型中a=0.95。
(一)生产商无政府干预下的产品选择在这个模型中,政府干预被假设为无效的。此外,R=0并且LbH=0因此约束条件1和3无效。制造商行为的目的集中在选择产品上。在约束条件2中IL的值从1350增加到1750,并且可以观察到随着总投资的增长,在高风险产品和低风险产品中总投资曲线是如何分布的。仿真的结果见图3,从图3中可以看出总投资增长越多,在低风险产品上的投资也越多。它表明了金融回报如果得到保障或者不是主要的关注重点,制造商总是尽量避免额外的风险[10]。这就可以解释为什么在1990年疫苗生产厂家一直停止交易。因此,期望某些药物保持一个稳定的供给,这些药物的风险应该降低至不至于厂家退出市场。在其余的部分,我们通过模型来分析政府干预和紧急供应对减少制造商风险的作用。
(二)政府干预1.采购合同。在这个仿真中,假设高风险产品为制造商的唯一产品,在没有政府回购的情况下,我们研究企业风险和对企业决策的影响。约束条件1和2无效,并且LbH在约束条件3中取值150以保持最小的产量。政府采购合同的取值OG从50到210,相应的计划输出和企业风险的变化情况在图4中标出。在图4中企业风险随着政府采购合同的增加而减小,由于最小产量的限制,计划输出没有改变。当政府采购合同超过最小产量后,企业风险以很小的比率持续减少,也就是企业的产出效益保持在一定的水平。如同我们期望的结果一样,由于政府的采购合同使得风险从企业转移到政府。不管怎样,政府部门没有面对更多的风险,因为其可通过防疫补助基金获益,也就是说从那些各州的卫生部门,某些大城市的防疫基金等处获得。2.回购政策。这个仿真和前一个相似,假设没有政府采购合同,而回购是有效的。政府回购比率为SB=1并且回购价格在0到7.8之间变化。最小的产量也是150。采用政府回购,政府的损失函数可以简单的表述为PB(dH-xH)+,并且这个损失的CVaR也可十分简单的计算。这个模拟的结果表明随着PB的变化,xH仍然保持为150,但是制造商和政府的CVaR改变了。回购价格PB的改变在图5中表示。从图5可以观察到制造商的风险随着PB的增加而减小,但是转移给政府的风险总是正相关的,并且与政府采购合同相比,其风险性更高。通过上述分析可以看出政府干预可以很好地平衡企业效益与政府支出的关系,通过调整模型的输入参数,能够比较政府不同干预政策的结果。
四、结论
本文将高风险必备产品制造企业的政府干预研究从理论研究扩展到实际研究层面上,以美国制药企业为例,提出了一个适合分析高风险必备产品生产工业的通用模型,并引入制造商损失函数的条件风险价值来测量其财务风险,为企业和政府制定决策提供理论依据。将政府干预研究的结果作为公共政策评估的一种方式,本文提供了检验公共政策的一种新方法。通过这种方法,可以比较不同的政府政策,从中选出最优的政策。在中国某些疫苗的制造业和市场还处在初期阶段,如果只采用国家投入生产高风险必备产品不符合市场规律,应该通过市场调节和政府干预相结合,通过立法或者是产业政策促进高风险临床必备药品的研发和生产,提高药品企业生产制造、改进创新的积极性。政府特别要加强关于药品短缺的立法建设,从法制层面明确药品短缺的主要责任人,建立药品短缺的信息平台,指导企业的研发与生产。
作者:赵春江王晨单位:哈尔滨商业大学财政与公共管理学院德克萨斯A&M大学化学工程系