美章网 资料文库 复数乘除法教案范文

复数乘除法教案范文

本站小编为你精心准备了复数乘除法教案参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

复数乘除法教案

教学建议

一、知识结构

二、重点、难点分析

本节的重点和难点是复数除法运算法则及复数的有关性质.复数的代数形式相乘,与加减法一样,可以按多项式的乘法进行,但必须在所得的结果中把换成-1,并且把实部与虚部分合并.很明显,两个复数的积仍然是一个复数,即在复数集内,乘法是永远可以实施的,同时它满足并换律、结合律及乘法对加法的分配律.规定复数的除法是乘法的逆运算,它同多项式除法类似,当两个多项式相除,可以写成分式,若分母含有理式时,要进行分母有理化,而两个复数相除时,要使分母实数化,即分式的分子和分母都乘以分母的共轭复数,使分母变成实数.

三、教学建议

1.在学习复数的代数形式相乘时,复数的乘法法则规定按照如下法则进行.设是任意两个复数,那么它们的积:

也就是说.复数的乘法与多项式乘法是类似的,注意有一点不同即必须在所得结果中把换成一1,再把实部,虚部分别合并,而不必去记公式.

2.复数的乘法不仅满足交换律与结合律,实数集R中整数指数幂的运算律,在复数集C中仍然成立,即对任何,,及,有:

,,;

对于复数只有在整数指数幂的范围内才能成立.由于我们尚未对复数的分数指数幂进行定义,因此如果把上述法则扩展到分数指数幂内运用,就会得到荒谬的结果。