本站小编为你精心准备了技校数学教学方式研讨参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
一、利用研究性学习的数学方法
想要利用研究性学习的数学方法,一般则是通过开放题来体现。而对于开放题这类型的题目,不仅需要学生掌握一定的数学方法,更多的是学生对题目的自我发现,自我探索和研究的解题要求,因此,在这方面数学教学方式,更多的是学生自己找到答案,也在一定程度上提高数学教学的趣味性。例如,在探索二面角平行这一课题上,面对二面角平行,学生可以推出什么结论?是说明或者进行证明?这样的研究性学习,去掉结论,让学生通过沟通合作学习进行猜测和检验。另外还可以举出若直线与抛物线相交于A、B两点,求直线AB的方程。这道题,教师可以引导学生补充合适的已知条件,使直线方程能够等到相应的确定。对于这样的问题,学生们可能对其已知条件进行补充:①已知|AB|=3;②若O为原点,∠AOB=900;③AB中点的纵坐标为6;④AB过抛物线的焦点为F,等等。从而使学生的思维发散到中点公式、韦达定理、两点间的距离公式、勾股定理、抛物线的相关知识等,都可以求出直线AB的方程。通过这样开放式的研究性学习,加深学生对数学学习的兴趣,从而培养了学生探索精神和应变能力,也开拓了学生的思维,提升了学生数学方法的运用能力。
二、促进数学方法中创新思维能力的培养
时代需要创新,教育也需要创新,在数学方法中,利用创新的思维去解题在一定程度上提高了数学教学的效率。创新思维通过在数学方法上的运用,是学生能够更加有效的对知识点有更深刻的理解。下面笔者将举出一个例子,再将这个例子进行延伸和创新。例:设A1、A2是圆的一条直径的两个端点,P1P2是与A1A2垂直的弦,求直线A1P1与A2P2的交点的轨迹方程。这道题是以A1A2为x轴,线段A1A2的垂直平分线为y轴建立直角坐标系,且设P1(x1,y1),P2(x1,-y1),分别求出A1P1、A2P2直线的方程,然后解方程组得二直线交点的坐标、再消去x1、y1,得轨迹方程。通过对此习题进行创新,可以将原题中的“圆”换为“椭圆”或者“双曲线”通过各种可能所求的轨迹方程也不一样,这样学生就可以从一道题中学到三道题的解题技巧,这样举一反三的数学方法,通过对原题的创新发展,找到一般的解题规律和方法,才能使学生对知识点有了更加深刻的了解。因此掌握创新思维的数学方法,有利于提高课堂的教学的效率。
三、对数学方法进行归纳总结和分层思考路
一般情况下的技工学校数学教学内容大致分为两个层次:表层的包括概念、性质、法则、公式、公理或者定理等等的基本知识和基本技能。另外一个深层的则是数学思想和数学方法。对于数学思想,要根据具体的学生进行教学,一般情况下,一方面为了使学生对题目有一定的认识,可使用数形结合的思想方法,另外一方面为了考察学生对题目的了解,对已知或结论进行合理的想象与演变。而在数学方法中,如数学模型法、变换法、函数法和类分法这几个数学方法,虽说是深层的部分,但是通过学生不断的进行接触和练习,做好归纳总结的同时,通过自身对题目的理解和题目的特点进行方法上的取舍。深层的教学方法一般情况下,是有一定的套路可循,因此教师需要在日常的教学过程中,为学生做好一定的积累和总结。
四、结语
对于技工学校数学教学中进行数学思想方法研究性的探讨学习以及在方法使用过程中创新能力的运用,在一定程度上提高了课堂的效率,实现有效课堂的真正意义在于学生对方法的真正掌握,因此对数学方法进行相应的探讨和研究,从而为技工数学教学带来一定教育帮助。
作者:王海玉单位:江苏省盐城技师学院