美章网 资料文库 超高层装配混合结构力学特性范文

超高层装配混合结构力学特性范文

本站小编为你精心准备了超高层装配混合结构力学特性参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

超高层装配混合结构力学特性

《空间结构杂志》2014年第二期

1筒体结构中的剪力滞后效应

高层筒体结构可以简化成为一端固定的箱型悬臂构件.在受到水平荷载时,腹板和翼缘的正应力根据平截面假定应该呈现线性分布,如图7中的虚线所示.而在实际情况中,腹板和翼缘的正应力呈现出两边大中间小的现象,应力在角柱处集中,如图7中的实线所示,这并不满足初等梁纯弯曲理论中的平截面假定.这种正应力不均匀分布的现象,称为剪力滞后.剪力滞后效应使筒体作为空间结构的受力特性遭到削弱,一些柱的承载能力没有得到充分发挥,降低了筒体抵抗水平力的能力.剪力滞后引起柱应力不均匀分布,在材料还处于线弹性的情况下,柱的应力分布形态与位移分布形态相同,这还会引起楼板的翘曲.已有研究认为剪力滞后产生的原因是:翼缘(主要是裙梁)的剪切变形引起角柱轴力加大,增大柱与柱之间联系的裙梁抗剪刚度,剪力滞后现象随之减少.文献详细解释了这一过程:翼缘框架各柱和窗裙梁的内力由角柱传来;角柱受拉,使与它相连的裙梁承受剪力,同时又使与裙梁相连的第二根柱受拉;剪力就以这种方式传递.这种传递造成中柱的轴力减小,角柱轴力增大.为了定量分析剪力滞后的程度,我们重新定义柱的剪力滞后系数λ(适用于平面形状为矩形的筒体)如下式中,σ表示柱的实际正应力,σ′表示受拉翼缘柱的平均正应力,ΔL表示柱中心到中性轴的距离,L表示柱对应的角柱中心到中性轴的距离,如图8所示.从剪力滞后系数的定义不难看出,当λ>0且越大时,应力集中于此柱,剪力滞后效应越严重;当λ<0且越小时,柱承载能力没有得到充分发挥;λ越接近于0则越符合理想的平截面假定,剪力滞后效应越弱.

2新结构体系中的剪力滞后效应分析

2.1新结构体系的分析方法与模型建立研究高层筒体结构剪力滞后的方法主要分为连续化方法和离散化方法两种.连续化方法是把带有规则开洞的筒体经压弯与剪切等效化为连续的板来进行分析,假定位移函数分布,利用应变能变分原理来建立位移的控制方程,从而得到结构的位移与内力解.但连续化方法中不同位移函数的假定对分析结果影响较大.离散化分析方法主要是有限单元法,这种方法较为灵活,适用范围广,但未知数量多,求解规模庞大.本节采用有限元分析软件对拟建模型进行分析.本节分析的拟建工程模型采用新型空间钢网格“筒中筒”盒式结构,共50层,标准层高3.6m,总高度180m,标准层平面布置见图9.楼盖总厚度为680mm,其中钢筋混凝土板厚为80mm,钢空腹夹层板厚度为600mm.空腹夹层板上、下肋采用T形钢,高度均为150mm,空腹夹层板中空为300mm,剪力键采用方钢管.外筒柱均采用型钢混凝土柱,角柱尺寸为600mm×600mm,边柱尺寸为550mm×400mm.核心筒厚度为700mm.为研究水平力作用下模型的剪力滞后效应和不同因素对剪力滞后效应的影响,对模型做以下假设:(1)结构仅受水平荷载作用,不考虑竖向荷载(包括自重荷载);(2)所有楼层均采用统一标准层.水平风荷载按规范,基本风压50年一遇为0.4kN/m2,根据《建筑结构荷载规范》第7.1.2条和《高层民用建筑钢结构技术规程》第4.2.2条要求,基本风压取1.1×0.4=0.45kN/m2.地面粗糙度按B类,体型系数取1.3.由于平面布置具有两个对称轴,可以取四分之一的模型进行分析,对四分之一外筒柱进行编号,见图10.

2.2新结构体系中的剪力滞后现象根据标准模型四分之一平面绘制出的外筒剪力滞后系数分布见图11.很明显,角柱的剪力滞后系数在底层最大,向上呈递减趋势.由33层开始角柱剪力滞后系数小于0,表明33层以上的楼层呈现出负剪力滞后现象.腹板侧柱的剪力滞后系数除顶层外均为负数,说明其承载力没有充分发挥.腹板柱抵抗水平力引起的弯矩上所起作用本身并没有翼缘柱大,腹板中柱附近的柱子接近中性层,它们的剪力滞后系数不具备研究价值,而靠近角柱的腹板柱的剪力滞后系数楼层越高越接近于0,表明层数越高,腹板的正剪力滞后效应越弱.图11中翼缘侧的剪力滞后系数分布与以往的研究结果有些差异,主要是中柱附近的翼缘柱也产生了和角柱一样的应力集中现象.16号到19号柱在所有楼层的剪力滞后系数均大于1.从平面布置图上来看,从15号柱开始要与核心筒相连接,增大了其抗侧刚度,导致了正应力的增大.以往对剪力滞后效应的研究大都针对框筒结构,没有考虑到与核心实腹筒体连接对抗侧刚度的贡献,结论显然不能适用于筒中筒结构.从数值上看,底层角柱剪力滞后系数最大也仅为0.135,顶层中柱在前文所提的抗侧刚度增加和负剪力滞后效应的叠加作用下,剪力滞后系数最大为0.173,剪力滞后效应引起应力增量相对理论值都没有超过20%.可见新结构体系的剪力滞后效应相对较弱.虽然顶层中柱的负剪力滞后效应比较严重,剪力滞后系数数值很大,但是顶层的倾覆力矩很小,负剪力滞后效应对结构的影响不是很大.以下分析中,主要考虑底层的正剪力滞后效应.

2.3与常规筒中筒结构剪力滞后的对比分析在相同的设计条件下建立常规的筒中筒结构模型,平面布置如图12所示.四分之一模型的外筒柱编号见图13.常规筒中筒结构与新结构体系的区别主要有以下三点:(1)常规结构柱距略大于新结构;(2)常规结构楼盖为井字形钢梁而新结构楼盖为协同式空腹夹层板;(3)常规结构不设墙架.加载相同的水平风荷载后,正剪力滞后效应最严重的底层剪力滞后系数分布图如图14.从图14可以看出,常规结构角柱的正应力集中现象十分明显,剪力滞后效应引起的轴力增量达到了39.3%,是新结构形式的三倍.常规筒中筒结构翼缘侧的剪力滞后曲线十分陡峭,而新结构形式翼缘侧的曲线相对平缓.这表明新结构体系翼缘柱的受力较为匀,空间整体性更强.图15为常规筒中筒结构和新结构体系角柱剪力滞后系数沿楼层分布的对比曲线图,从图中可以看到,常规结构角柱的正剪力滞后效应沿竖向分布均大于新结构形式,常规结构形式从47层起,正剪力滞后效应才消失,几乎所有楼层角柱都存在正应力集中的现象.从剪力滞后系数的横向分布和沿楼层的纵向分布来看,新结构体系的剪力滞后效应远小于常规筒中筒结构.整体抗侧刚度的均匀分配使新结构体系的空间整体性更佳.

2.4墙架对剪力滞后效应的影响新结构形式的外筒壁用三道横梁构成了墙架,墙架提高了外筒的抗剪刚度和抗侧能力,但墙架对剪力滞后效应的影响并非完全是正面的.图16为标准模型、去除横梁模型和横梁截面加大三种模型下底层外筒柱的剪力滞后系数分布图.图16中角柱的剪力滞后系数随着横梁尺寸的增大而增大,这是由于角柱跟腹板侧横梁的连接,使抗侧刚度增大,墙架尺寸越大,刚度增加多,角柱的剪力滞后效应越显著.但是翼缘中柱的剪力滞后系数随着墙架尺寸的加大而减小,这使得在设计时必须把握好墙架横梁与柱的刚度比,刚度比过大,应力集中于角柱,刚度比过小,应力集中于翼缘中柱,两种情况都是相当不利的.

2.5角柱尺寸对剪力滞后效应的影响角柱的作用在于提供了腹板框架和翼缘框架之间的联系,使结构能够实现空间受力,中柱的主要作用是提供巨大的抵抗矩来承担外倾覆力矩.图17是不同尺寸底层角柱的剪力滞后系数分布图。从图17可知,角柱尺寸的改变对腹板柱的影响很小,角柱尺寸的增加并没有使角柱本身的剪力滞后系数增加,反而下降,但是中柱的剪力滞后系数上升.这个结论与以往的研究有所不同,产生不同的原因是以往的研究中以轴力作为剪力滞后效应的研究特征值,角柱面积增大导致轴力增大是必然的,但是应力实际上是有所减小.在新结构形式的设计中,应该重视角柱在结构中所起的重要作用,既要承担两个方向的水平荷载,还在抗扭转中起重要作用,所以角柱的尺寸不宜过小,且应该适量增加配筋.角柱的大小在满足设计要求的情况下,尽量平衡角柱和中柱的剪力滞后情况.如果角柱过大则会导致翼缘中柱的应力集中.

3结论

(1)新结构体系的正剪力滞后现象底层最为严重,由剪力滞后引起的底层柱的应力增量小于20%,剪力滞后效应相对较弱,结构的三分之二高度以上开始出现负剪力滞后效应,但负剪力效应对结构的影响不大,设计时可不考虑.(2)与常规的筒中筒结构相比,新结构体系的剪力滞后效应更弱.底层角柱的应力增量仅为常规结构的三分之一,角柱正剪力滞后效应在所有楼层均小于常规结构.(3)网格式墙架横梁刚度越大,应力越集中于角柱;刚度越小,应力越集中于翼缘中柱.(4)角柱刚度越大,应力越集中于翼缘中柱;角柱刚度越小,应力越集中于角柱.设计时应使抗侧刚度沿水平均匀分配,平衡角柱和中柱的剪力滞后情况.(5)新型超高层装配整体钢网格盒式“筒中筒”混合结构外筒的抗侧刚度和抗剪刚度大于常规结构,正剪力滞后效应较弱,结构整体受力均匀.楼盖的空腹部分可以布置管线,有效降低了结构层高,在总高度相同的情况下,可以布置更多楼层,更具经济性.

作者:余德冕马克俭张华刚单位:贵州大学空间结构研究中心