本站小编为你精心准备了矩形张拉膜结构的应变参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
《重庆建筑杂志》2014年第八期
1薄膜应变公式
根据《膜结构技术规程》4.1.2条和5.2.3条[7]可得出,在膜结构的设计和施工过程中,膜材膜面的预张力都在膜材弹性变形范围内。而实际工程中,由于膜结构预张力测量的不规范,很多膜结构的实际预张力没有达到规定的取值范围;所以可以在膜材弹性变形范围内考虑其应力和应变的关系。为了更好地运用弹性力学公式求解该问题,首先做如下假定:(1)施加的张拉应力在膜材的弹性极限范围内,即假定膜材发生完全弹性变形;(2)膜材在经向和纬向是均匀的,即假定膜材的弹性常数不随经向或纬向的位置坐标而变[8]。张拉膜结构的膜材厚度很薄,只在膜边受平行于膜面并且不沿厚度变化的面力,所以按平面应力问题进行分析计算。由于膜材很轻,可以忽略重力,膜材是静止的,也没有惯性力,所以膜材的体力为零。建立如图1所示的坐标系。在完全弹性的各向同性体内,根据胡克定律可以得出膜材的形变分量和应力的关系如下:式中E是弹性模量(若膜材是正交异性,那么Ex和Ey分别表示两个正交方向的弹性模量);μ是泊松比(若膜材是正交异性,那么μx和μy分别表示两个正交方向的泊松比)。由于图1所建坐标系满足膜材的经向和纬向的边界分别与x和y坐标轴垂直(注意应力边界值与对应面力分量的正负,当边界的外法线沿坐标轴正方向时,两者的正负号相同;当边界的外法线沿坐标轴负方向时,两者的正负号相反),则可简化得出,在经向边界面上。
2ETFE膜结构算例分析
某ETFE薄膜的弹性模量E=650MPa,泊松比μ=0.42,厚度h=0.3mm,取矩形的边长为a=2m、b=1m;张拉力Noy=2Nox。根据公式(16)计算出在不同的预张力下Nox下薄膜的应变,见表1。为了分析ETFE薄膜在张拉下的应变,用传统的PVDF薄膜星益达膜材与之比较分析。星益达膜材的参数如下:经向弹性模量Ex=1520.8MPa,经向泊松比μx=0.4,纬向弹性模量Ex=1292.9MPa,纬向泊松比μ=0.39,厚度h=0.83mm,取矩形的边长为a=2m、b=1m;张拉力Noy=2Nox。由于(16)式适用于各向同性膜材,而星益达是正交异性的编制膜材,所以分别假定以下两种情况:取弹性模量E1=Ex=1520.8MPa,泊松比μ1=μx=0.4,按各向同性弹性材料求其应变;取弹性模量E2=Ex=1292.9MPa,泊松比μ2=μx=0.39,按各向同性弹性材料求其应变。计算结果见图2~图5。根据图2可以看出,在相同预张力的作用下,ETFE膜材的Z向厚度变化量明显大于星益达膜材的Z向厚度变化量,ETFE膜材的最大厚度减少量可以达到原厚度的4%,约为星益达膜材最大厚度减少量的10倍。同样可以由图3得出,在同等张拉力作用下,ETFE膜材的X向纵向伸长量明显大于星益达膜材的。X向纵向伸长量,ETFE膜材的最大纵向伸长量可以达到原长度的3%,约为星益达膜材最大纵向伸长量的6倍。在图4和图5中,将膜材的厚度和边长分别考虑进去,更加直观地看到,相对于星益达膜材,ETFE膜材的厚度减少量和纵向伸长量随预张力的增加而增加的量要大得多,所以可以看出ETFE膜材对预张力更加敏感。
3结论
本文推导了滑动边界条件下的各向同性膜材在预张力作用下的应变计算公式,并计算了星益达(PVDF)和ETFE薄膜在各级预张力作用下的厚度和纵向伸长量的变化量,可以看出ETFE膜材相对于传统的正交异性的编织膜材,对预张力更加敏感,所以在膜结构的设计过程中要充分考虑不同膜材的设计原则应有所区别,ETFE膜材本身就比传统的编织膜材更薄,透光率更大;在张拉膜结构中,其厚度的减少量可以达到0.04h,这将影响到膜结构的松弛、防水性能、透光率和隔热效果等。
作者:郭建军单位:重庆水利电力职业技术学院