美章网 精品范文 光传输通信技术论文范文

光传输通信技术论文范文

前言:我们精心挑选了数篇优质光传输通信技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

光传输通信技术论文

第1篇

摘要:本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。

关键词:光纤通信技术发展历史现状发展趋势

1、导言

目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。

自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。

2、光纤通信技术的发展历史总结

近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。

光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。

上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0.2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。

由以上光纤通信技术的发展历程,可以把光纤通信技术分为大致五个阶段,即850纳米波段的多模光波,到1310纳米多模光纤,到1310纳米单模光纤,再到1550纳米单模光纤,最后是长距离进行传输的光纤通信技术。

3、光纤通信技术的现状研究

(1)光纤通信技术中的波分复用技术。即WDM,充分利用了单模光纤低损耗区的优势,获得了大的带宽资源。波分复用技术基于每一信道光波的频率和波长不同等情况出发,把光纤的低损耗窗口规划为许多个单独的通信管道,并在发送端设置了波分复用器,将波长不同的信号集合到一起送入单根光纤中,再进行信息的传输,而接收端的波分复用器把这些承载着多种不同信号的、波长不同的光载波再进行分离。

(2)光纤通信技术中的光纤接入技术。光纤接入网技术是信息传输技术的一个崭新的尝试,它实现了普遍意义上的高速化信息传输,满足了广大民众对信息传输速度的要求,主要由宽带的主干传输网络和用户接入两部分组成。其中后者起着更为关键的作用,即FTTH(意思是光纤到户),作为光纤宽带接入的最后环节,负责完成全光接入的重要任务,基于光纤宽带的相关特性,为通信接收端的用户提供了所需的不受限制的带宽资源。

4、光纤通信技术的发展趋势

下面介绍在未来将会大有发展的几种光纤通信技术,如下图1所示。

(1)光接入网通信技术的更进一步发展。现存技术上的接入网依旧是双绞线铜线的连接,仍然是原始的、落后的模拟系统,而网络中的光接入技术的应用使其成为了全数字化的,且高度集成的智能化网络。

光接入网通信技术所要达到的主要目标有:最大程度的使维护费用得到降低,故障率得到明显下降;可以用于新设备的开发和新收入的不断增加;与本地网络相结合,达到减少节点数目和扩大覆盖面范围的目的;通过光网络的建立,为多媒体时代的到来做好准备;另外,可以最大化的利用光纤本身的一些优势特点。

(2)光纤通信技术中光传输与交换技术的融合一光接入网通信技术的后延。基于上述光接入网通讯技术的成熟发展,网络的核心架构己经得到了翻天覆地的改变,并正在日新月异的变化发展着,在交换和传输两方面来讲也都早已进行了好几代的更新。光接入网技术和光输与交换技术的融合技术,前者较后者在技术应用上有了一些技术上改进,从而也就提高了全网的往前的进一步有效发展,但此项技术相对来讲仍不成熟。

(3)新一代的光纤在光纤通信技术中的应用。传统意义上的G.652单模光纤已经在长距离且超高速的传送网络发展中表现出了力不从心的缺点,新一代光纤的研发己成为当今务实之需,它也构成了新一代网络基础设施建设工作的一个重要组成部分。在目前普遍需求的干线网和城域网的背景下,基于不同的发展需要,己经发展出了两种新一代光纤一非零色散光纤和全波光纤。

第2篇

通信论文3000字(一):铁路通信系统中的光纤通信技术探讨论文

内容摘要在科学技术水平快速提升的大背景下,很多先进技术已融入各个行业的发展中,光纤通信技术作为一种现代化技术,技术应用日益成熟,在通信技术中表现出了很大的应用优势,在很多领域得到了有效应用。在铁路通信系统中,光纤通信技术的应用发挥着重要作用,在很大程度上提升了铁路通信系统信息传播速度,提高了我国铁路通信系统的整体水平。文章主要对铁路通信系统中的光纤通信技术进行了分析。

关键词铁路通信系统光纤通信技术应用

1引言

随着社会经济的快速发展,我国光纤通信技术也在迅猛发展,在很大程度上提升了现代化信息传播速度,使通信技术水平得到了很大提升。现阶段,光纤技术的应用范围越来越广泛,在铁路通信系统中发挥着重要作用,优化并完善了铁路系统,推动着铁路通信系统的智能化发展。基于此,文章阐述了光纤通信技术的相关内容,分析了铁路通信系统中光纤通信技术的应用,研究了铁路通信系统中光纤通信技术的发展趋势,希望实现我国铁路通信行业的持续、稳定发展。

2光纤通信技术的相关内容

2.1光纤通信技术概述

光纤通信技术中的两种主要技术分别是光纤接入技术和波分复用技术。光纤接入技术的关键是实现信息传输的高效性,利用宽带输送网向各个家庭传递各项信息和数据,在宽带管线传输过程中,传输方式多元化,光纤到户(FTTH)和FTTCab是宽带光接入网的主要应用形式,能够在光纤各个位置实现信息传输[1]。波分复用技术为人民群众提供了带宽资源,能够有效地整合发送端,将波长光载波的差异性由接收端完成分割,且各个分波器需要负荷不同的载波信号。在现代化铁路通信系统中,波分复用技术发挥着重要作用,这项技术可以根据波长的差异性,有效地传输通信信号,不会受电磁信号、天气因素的影响,在很大程度上提升了信号传输的整体效率。

2.2光纤通信技术的优势

2.2.1通信容量大

光纤传输带宽比较大,一根光纤的潜在带宽可以达到20THz,且波分复用技术的传输容量更大,这项技术的传输通道是光纤的不同波长,将光信号在同一光线中的不同波长信道中进行传输,在很大程度上增加了通信传输容量。

2.2.2信息传输损耗低、传递距离长

光纤信息的传输载体主要是光学纤维钢丝,通过分析用途、性能和功能的不同,可以分成不同的类型,但这项技术的制作和应用原则基本一致,不会受输出距离的影响,在有光纤的情况下都可以传输信息,既能够确保信息长距离传输,又可以完善信息传输过程,避免受环境因素的影响出现误差。

2.2.3光纤损耗极低

在现代化社会的发展中,我国光纤通信技术的主要材料是石英光纤,石英光纤和其他材质的光纤相比,不易出现损耗问题,施工运营成本较低。并且,石英光纤属于玻璃材质,具有电气性能,在石英光纤施工过程中表现出了良好的绝缘性能,无须在线路中设置接地、回路,有利于加快施工进度,减少施工成本的投入。

3铁路通信系统中光纤通信技术的应用

3.1波分复用技术的应用

3.1.1掌握复用器、解复用器的使用方法

在设计复用器和解复用器的过程中,相關人员需要深入分析复用器和解复用器的生产成本和稳定运行。在实际应用过程中,技术人员需要确保复用器和解复用器的质量,以此为基础减少能源消耗问题的出现,光纤通信系统的应用,必须确保波导宽度满足光纤通信系统的各项要求,深入分析波导的宽度,及时地了解波导之间出现振荡的原因,通过应用波分复用技术了解振动和传输过程中的温度变化情况。

3.1.2合理地选择光源

在过去选择光源的过程中,人们往往会应用低效率、低能量的发光二极管,这在实际应用中会遇到很多问题,如发射功率小、光谱宽等。在科学技术的快速发展过程中,激光二极管在光源选择中得到了有效应用,解决了发光二极管中的很多问题,避免了光波之间的相互干扰问题,并加快了信息传输速度。但是,激光二极管在实际传输中会被环境温度而影响,因此相关人员需在稳定环境中布置激光二极管,将温度控制在合理范围内,让温度影响降至最低。

3.2PDH技术

在铁路通信系统的快速发展中,PDH技术是应用频繁的一项光纤技术,这项技术的应用主要是根据PDH二芯搭建局干线网络通信系统。二芯配置是PDH技术中常用的一种模式,这一模式的应用从本质上确保了铁路同轴模拟通信,有利于实现铁路通信系统的稳定性。PDH光纤通信技术的复用接口具有一定的复杂性,为网络管理工作带来了很大难度,严重影响着PDH技术的有效应用。

3.3SDH技术

SDH光纤通信系统是PDH光纤通信系统的升级版,这项技术有效地改善了PDH光纤通信技术中存在的问题,在很大程度上推动着铁路通信技术的发展。SDH光纤通信技术作为一项现代化高速发展的数字化通信技术,会在未来科学技术发展过程中实现数字信息的转化,将所需信号固定在特定的机构中。SDH光纤通信技术具有很大的应用优势:①能够有效地简化网络中各个支路的字节复用;②为各个厂家设备互联之间的有效连接提供支持,确保光纤通信技术标准和比特率标准一致;③SDH光纤通信技术的网络和自我完善功能比较强,在网络信号中断的情况下可以自动恢复,且在恢复后网络信号传输可以继续使用;④SDH光纤通信技术的自我管理能力比较强,有利于实现铁路通信传输的安全性、可靠性;⑤SDH光纤通信技术的通信功能比较强,尤其在铁路通信系统中的应用具有很大优势,在未来通信行业的发展中,日益完善的SDH光纤通信技术必将代替系统中的PDH光纤通信技术。除此之外,在铁路通信系统中,SDH光纤通信技术得到了有效应用,在铁路建设过程中,为了充分发挥出SDH光纤通信技术的作用,铁路部门通过搭设光同步传输系统,应用不同芯数的光缆[2],将铁路沿线各机房设备的传输设备进行了有效连接,组成铁路光纤传送信息网络,构建了铁路信息网,提高了铁路通信技术的整体水平,推动了铁路信息化、高速化发展。

3.4DWDM技术

DWDM技术是将多个波长作为载波,在一条光纤中有效地传输各个载波通信通道,有效地减少光线数量,一般单根光纤传输速度可以达到400GB/s。在现代化社会的发展中,DWDM技术在铁路通信系统中得到了有效应用,相关人员需要将波长和光纤频率进行融合,利用DWDM设备实现信息系统的兼容,并利用SDH设备传输信号波,DWDM技术不会受恶劣天气的影响,在初期应用中信号传输不稳定,但在长时间应用中会提高信号传输的整体效率,加快信号传输速度。

4铁路通信系统中光纤通信技术的发展趋势

4.1速度快、容量大、距离长的传输新模式

在新时期的发展中,新型波分复用技术需要转变成速度快、容量大、传输距离长的全光传输模式。光时分复用技术和密集波分复用技术的融合,可以改善传输信道数局限性问题,不断提升信道的传输效率,进而提升光纤传输容量。

4.2光孤子通信

在铁路通信系统运行过程中,光弧子通信是一种超短光脉冲,其主要是在光纤反常色散区的基础上,利用平衡光纤非线性、群速度色散效应,实现通信技术的超快传输,这项技术在长距离传输中性能比较稳定,且传输信息比较完善,不会影响光纤的速度和波長。

4.3全光网络

全光网络是具备未来概念的高速通信网络,光纤通信技术发展最理想的方向是全光网阶段,全光网是在传输信息网络各个阶段实现全光化。全光网络是一种极具未来概念的高速通信网络,是通过在传输信息网络的各节点处都实现全光化,同步完成高效的信息转换与传递。用光节点替代传统通信网络中的电节点,使信息能够在网络的各层级之间快速传输。

5结语

综上所述,在我国铁路系统的发展中,光纤通信技术得到了有效应用,有效地改善了我国铁路通信系统中的难题,使铁路系统逐渐进入通信时代,满足了现代化铁路发展的实际需求。

通信毕业论文范文模板(二):关于通信行业市场营销管理体系和构架问题研究论文

摘要:通信是以某种引子在自然界中进行的信息交流与输送,可以是人与人之间的,也可是人与自然之间的信息传输。而通信业所说的自然是这种交流、传递信息的行业。通信业在经济、技术的推动下得以发展,近几年,不论是通信方式还是通信设备都得到了稳定发展,不过同时也有一些问题制约着通信业更优更快的发展。比如通信行业在营销管理这方面,存在严重缺憾。因此,本文针对通信行业市场营销管理体系存在的问题进行了深入分析,并根据问题提出了相对应的策略,希望对强化市场有一定作用。

关键词:通信行业;市场营销;管理体系;问题;策略

引言

在经济、科技推动下,通信技术逐步发展并一步步渗入到生活中的各方各面。就整个通信行业来说,如果要想持续在市场中占据一席之地,除了加快自身稳步发展,还需通过多角度、多层次、多方面的营销方式实现综合营销,另外,还要加强对市场营销的管理控制,保证市场营销体系符合通信行业的发展以及满足市场变化的需求。

1推动通信行业市场营销管理体系构建的作用

通过建设具有针对性的管理体系对市场营销加以管理,对通信行业是极为重要的,作用众多,如下所示:一方面,根据市场营销所设立的管理体系与加强市场营销管理的要求相一致。在推动行业发展过程中,营销作为最主要的因素,依旧存在一些问题,比如管理落后等,导致营销工作很难实现高效能、高效率。而促进通信行业市场营销管理体系的建立,需要结合多方面的因素来实现,并不断完善,使其全方位趋于完美,从而提高营销工作的效力、强化营销管理。且营销体系的建立一定要从营销人员本身素质、制度管理和服务等方面综合考量并得以落实。另一方面,管理体系的建立是通信业得以有效发展的基础。目前,通信市场存在的竞争越来越猛烈,通信企业想要在市场中取得一定盛势,就必须要通过营销管理来增强竞争力。

2通信市场营销管理体系存在的问题

2.1缺乏完善的法律法规的制约

其实,发展与风险都是并存的。在通信市场中也是如此,经济发展、社会进步带动了通信市场,而通信市场中,其营销问题也逐渐显现出来,并且有愈加严重的趋势。之前的有关与通信市场营销方面的法律法规已很难满足目前的需求了。在此情况下,也衍生了一部分违背法律秩序的人,在没有一套标准、完善的法规下用不正当的手段谋取暴利。而且整体通信市场本身就缺乏法律法规的约束,这也使得市场管理的难度加大,碰壁严重。因此,必须要完善相关的法律法律,并落实到实处,保证市场营销得到有效管理。

2.2营销管理机制不一致

目前,通信市场竞争异常激烈,这也导致很多企业迫切的想要在市场中占据一定优势,从而以各种各样的营销方式来强化自身,使得众多范围内出现交错。比如拿一个县城来说,通信行业包含了多家通信公司,导致出现不同厂家的通信产品在功能或营销方式上相互抄袭并逐渐一致的竞争,对通信市场的综合管理受到限制。由于不一致的营销管理机制,通信企业很难设法避免资源浪费这一情况,最终各通信企业的发展受到限制,影响整个通信市场的发展。

2.3售后服务尚不完善

目前,像电信、移动、广电、联通等国内四大运营商在通信领域具有很大优势,并积累了一定的客户群体。不过随着一些新企业的兴起,导致通信市场连续不断的对外发展,市场竞争也呈现出多样性、广泛性趋势。此时,很多企业忽视了售后服务这方面,售后得不到保障,引起群众不悦,也失去了对企业的信任感,企业一旦出现信任危机,也只能被通信市场踢出局。所以,各个企业一定要完善售后服务,以良好的服务体系来树立良好的品牌与企业形象。

3推进通信市场营销管理体系合理构建的策略

3.1建立健全营销机制

各行各业想要得到稳步发展,必须要依靠完善的制度标准来进行。目前,通信行业在营销方式方面就缺乏一定标准,从而营销过程中出现许多管理方面的问题。所以,相关部门推进营销机制朝着全面、完善的方向改进,以市场营销为引导,规范营销管理行为,另外,还可以实现奖惩机制。对于一些诚实守信、恪守本分、遵纪守法的企业加以奖励,要通过政府的权利加以帮助,保证市场的规范性,如果一些企业不按标准办事,只追求自身利益而全然不顾其他,一定要加以严惩,在相关法律的引导、制约下对其严惩不贷,使得通信市场拥有一个良好的竞争环境,确保其有条不紊的整固发展。

3.2合理配置资源,推动管理机制一体化

就整个通信市场而言,其发展水平依然是处于错落不齐的状态。在管理体制以及管理方向等方面均没有取得理想效果,这就导致企业间“各自为营”,完全按各自主张办事,不懂得合作发展,共同进步。因此,必须要在市场营销的引导下,优化、完善管理机制,并按照整个的发展方向做到全面一致性的管理,加强企业之间的交流沟通,并在管理机制的制约下合理配置资源,保证良好的市场秩序。

3.3推动多种营销方式共发展

市场需求一般都是多样性的,这就要求通信企业加以改进营销方式,并严格以市场需求为指导。在营销方式上一定要集合市场需求不断创新,以满足市场需要。具体可分环節进行,在产品技术方面一定要加强研发,提高质量,确保技术处于领先地位;而营销方式可以通过网络、实体店以及广告的方式来进行,使通信企业有一定的知名度,为其后续销售提供前提,保证后续利润。另外,在售后服务这块儿,只有把这一环节做好了,不仅可以保持跟客户的良好关系,对打造品牌形象也是特别重要的。售后是客户通企业进行的第二次深入接触,因此可以从售后服务出发,以绝对性的专业服务赢得客户信赖,引导客户进行二次或者多次消费,从而得到客户的支持。

第3篇

关键词:光纤,光交换,FTTH,多模光纤,单模光纤

 

0.引言

光纤技术发展到现在,已经十分的成熟,应用也先当广泛,但是还是有很大的发展空间的。本文从它比较有前景的光交换技术以及FTTH两个大的方面来分别论述一下他们的现状已经优缺点,最后再介绍一下光纤的种类和选择光纤的方法。

1.光交换是未来发展的趋势

光交换是指不经过任何光/电转换,将输入端光信号直接交换到任意的光输出端。光交换是全光网络的关键技术之一。在现代通信网中,全光网是未来宽带通信网的发展方向。全光网可以克服电子交换在容量上的瓶颈限制;可以大量节省建网成本;可以大大提高网络的灵活性和可靠性。光交换技术也可以分为光路交换和分组交换。由于技术上的原因,目前还主要是开发光路交换,但今后发展方向将是分组光交换。

光纤只是解决传输问题,还需要解决光的交换问题。过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。现在,通信网除了用户末端一小段外,都是光纤,传输的是光信号。合理的方法应该采用光交换。但目前,由于目前光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。显然是不合理的办法,是效串不高和不经济的。正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。

目前市场上看到的光交换,多数是基于光电和光机械的。而基于热学、液晶、声学、微光机电技术等光交换机将逐步被研发出来。其中微光机电技术(MEMS)是目前最有前途的一项技术。光交换为IP骨干网的光子化提供了一个非常有竞争力的方案。一方面,通过光交换可以使现有的IP骨干网的协议层次扁平化,更加充分的利用DWDM技术的带宽潜力;另外一方面,由于光交换网对突发包的数据是完全透明的,不经过任何的光电转化,从而使光突发交换机能够真正的实现所谓的T比特级光路由器,彻底消除由于现在的电子瓶颈而导致的带宽扩展困难。此外,光交换的QoS支持特征也符合下一代 Internet的要求。因此,光交换网络很有希望取代当前基于ATM/SDH架构和电子路由器的IP骨干网,成为下一代光子化的Internet骨干网。

2.光纤到家庭(FTTH)的发展

FTTH(Fiber To The Home ),顾名思义就是一根光纤直接到家庭。具体说,FTTH是指将光网络单元(ONU)安装在住家用户或企业用户处,是光接入系列中除FTTD(光纤到桌面)外最靠近用户的光接入网应用类型。FTTH的显著技术特点是不但提供更大的带宽,而且增强了网络对数据格式、速率、波长和协议的透明性,放宽了对环境条件和供电等要求,简化了维护和安装。

FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤是现有已敷光纤的2~3倍。论文参考网。过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能大力发展,只有少量的试验。近年来,由于光电子元器件的进步,光收发模块和光纤的价格大大降低;另外宽带内容日趋丰富,都加速了FTTH的实用化进程。

FTTH的优势主要是有5点:第一,它是无源网络,从局端到用户,中间基本上可以做到无源;第二,它的带宽是比较宽的,长距离正好符合运营商的大规模运用方式;第三,因为它是在光纤上承载的业务,所以并没有什么问题;第四,由于它的带宽比较宽,支持的协议比较灵活;第五,随着技术的发展,包括点对点、1.25G和FTTH的方式都制定了比较完善的功能。

发达国家对FTTH的看法不完全相同:美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。日本NTT发展FTTH最早, 早在1997 年日本NTT 公司就开始发展FTTH,2000年后由于成本降低而使用户数量大增;美国在2002 年前后的12 月中FTTH的安装数量增加了200%以上。

FTTH[遇到的挑战:现在广泛采用的ADSL技术尚有一定优势。与FTTH相比:①价格低廉②利用原有铜线网使工程建设简单③对于目前影视节目及文件的传输ADSL既可满足需求。这些原因使得FTTH目前大量推广受制约。

设备成本过高造成投资效益低是阻碍FTTH发展关键因素。目前FTTH的设备价格还非常高昂,往往一线售价近1000美元,但在日本和美国等发达国家仍然得到了较好的发展,其原因之一就是其电信运营商可以向用户收取较高的服务费。据了解,在日本电信运营商向FTTH用户每月收取5000—6000日元服务费,折合人民币约400—500元,在美国FTTH用户每户每月服务费也约为80—100美元,电信运营商的FTTH网络一般2—3年可以收回投资,这种投资效益显然是不错的。但在中国情况则完全不同。在国内不少城市,由于激烈的市场竞争,ADSL和基于5类线的LAN宽带接入月使用费已降到50元人民币以下,个别使用费较高的地区,如深圳,月使用费也只有100元人民币。基于这种宽带接入服务的资费水平根本无法支撑FTTH网络建设和运营,投资回收周期长达10年,这样的投资效益显然不可能唤起电信运营商的投资兴趣。可见,宽带接入市场需要的是低成本的FTTH,惟有低成本的FTTH才会有应用和发展的机会,而且也一定会有发展的机会。

光纤本身也有缺点,如质地较脆,机械强度低就是它的致命弱点。稍不注意,就会折断于光缆外皮当中。而且光纤的接续比较困难,施工人员要有比较好的切断、连接、分路和耦合技术。

FTTH的解决方案: 目前,FTTH接入技术主要有两大类:基于无源光网络(Passive Optical Network—PON)接入技术的EPON和GPON,基于小区有源交换接入(Active Optical Network——AON)的Fiber P2P技术。

P2P方案一一优点:各用户独立传输互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。缺点:需要在用户区安置1个汇总用户的有源节点,用以减少用户直接到局的光纤和管道数量。

PON方案——优点:无源网络维护简单,原则上可以节省光电子器件和光纤。缺点:需要采用价格昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不仅要网络扩容,还需要更换PON和更换用户模块来解决。

PON有多种,一般有如下几种:(1)APON:即ATM-PON,适合ATM交换网络。(2)BPON:即宽带的PON。(3)OPON:采用通用帧处理的OFP-PON。(4)EPON:采用以太网技术的PON,0EPON是千兆毕以太网的PON。(5)WDM-PON:采用波分复用来区分用户的PON,由于用户与波长有关,使维护不便,在FTTH中很少采用。

近来,由于无线接入技术的迅速发展,可用作WLAN的IEEE802.11g协议,传输带宽可达54Mbps,覆盖范围达100米以上,目前已可商用。论文参考网。如果采用无线接入WLAN作用户的数据传输,对于一般用户其上行数据量不大,IEEES02.11g是可以满足的。而FTTH主要解决HDTV宽带视频的大数据下行传输,在需要时也可包含一些下行数据。这就形成“光纤到家庭+无线接入”(FTTH+无线接入)的家庭网络。这种家庭网络,如果采用PON方式就特别简单,因为此PON无上行数据,不需要测距的电子模块,使得成本大大降低,维护也十分简单。如果所属PON的用户群体被无线城域网WiMAX(1EEE802.16)覆盖,那么就不需要再建设专用的WLAN。接入网采用无线是趋势,但无线接入网仍需要密布于用户附近的光纤网来支撑,与FTTH基本相当。FTTH+无线接入是未来网络的发展趋势。

3.光纤的正确选择和使用

下面谈谈光纤的正确选择和使用方法。光纤大类上可分为多模光纤和单模光纤。

多模光纤是指可以传输多个光传导模的光纤。在光纤通信初期,就是使用的就是多模光纤(G.651光纤),其工作波长在850nm或1300nm,衰减常数分别为<4dB/km和<3dB/km,色散系数分别为<120ps/(nm.km)和<6ps/(nm.km)。由于它的衰耗和色散大,故只能用于短距离通信。但它芯径大,对于接头和连接器的要求都不高,使用起来比单模光纤要方便,目前多用于局域网。

单模光纤是指只传输一个光传导模(基模)的光纤。其主要优点是衰减较小,传输距离长,传输容量大,在长途骨干网、城域网、接入网等场合均有广泛应用。单模光纤由于只能传输基模,它不存在模间时延差,具有比多模光纤大得多的带宽,单模光纤的带宽可达几十GHz以上。论文参考网。所以单模光纤特别适合用于长距离、大容量的通信系统。随着光纤制造技术和通信技术的不断发展,单模光纤的种类也在发展。常用的单模光纤有以下几种: G.652光纤,G.653光纤,G.655光纤。

选择光纤时应该注意以下三个参数:①最大无中继传输距离 ②波长的最大比特率 ③光纤的波长数。以上参数都必须考虑到光纤布设终期的要求。如果最大无中继传输距离在50~100km,建议选择G.652常规光纤,它价格低廉,适合短距离传输。如果距离更长,但只需要单波长在10Gbit/s 以上,则可选用G.653色散位移光纤。如果不但距离长,而且需要多波长承载10 Gbit/s 或更高速率,那么最佳选择则是G.655光纤。

由此可以总结出以下光纤选择原则:1.距离短应选择G.652常规光纤,采用较多纤芯所增加的投资不大。2.长距离光缆因为传输距离长,必须采用高速率和多波长的波分复用技术,G.655色散位移光纤是最为理想的选择。

4.结束语

光纤通信技术现已作为一种重要的现代信息传输技术之一,在现在的信息社会背景下得到了普遍意义上的应用,在全球通信领域及相关行业在全球处于非常低迷的状态时,光纤通信技术仍得到了一些发展。依照我国现行的通信技术领域的发展模式,光纤通信技术的应用必会代替一切其他的信息传送方式,而成为未来通信领域发展的主流技术,带领人类进入全光时代!

参考文献

[1] 徐公权, 段鲲, 廖光裕等译. 光纤通信技术[M]. 北京: 机械工业出版社, 2002.

[2] 杨淑雯. 全光光纤通信网[M]. 科学出版社, 2004

[3] 孙学康, 张金菊. 光纤通信技术[M].北京: 人民邮电出版社, 2004.

[4] 陈才和. 光纤通信[M]. 北京:电子工业出版社, 2004.

第4篇

【关键词】光纤通信技术 铁路通信 应用技术

从光纤通信问世到现在,光传输的速率以指数增长,光纤通信技术得到了长足的进步, 应用范围也不断扩大。随着铁路通信朝着数字化、综合化、宽带化、智能化方向发展,光纤通信技术已经大量应用于铁路通信系统中,显著地提高了铁路通信能力,极大地促进了铁路通信系统的完善和发展。

一、光纤通信概述

光纤通信是以很高频率(大约1014Hz)的光波作为载波、以光纤作为传输介质的通信。1966年7月,美籍华人高锟博士《用于光频的光纤表面波导》,分析证明了用光纤作为传输媒体以实现光通信的可能性,预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门。1970年,美国康宁公司根据高锟论文的设想首次研制成功当时世界上第一根超低损耗光纤(衰减系数约为20dB/km),光纤通信时代由此开始。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。光纤通信系统的传输容量从1980年到2000年增加了近一万倍,传输速度在过去的10年中大约提高了100倍。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。

二、光纤通信技术现状

(一)波分复用技术

波分复用技术可以充分利用单模光纤低损耗区带来的巨大带宽资源,根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。

(二)光纤接入技术

光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。

三、光纤通信技术发展趋势

(一)超高速、超大容量和超长距离传输

超大容量、超长距离传输的波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的 WDM 系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。仅靠OTDM和WDM 来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和 WDM通信系统的关键技术中。

(二)光孤子通信

光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km 以上;在高性能EDFA方面是获得低噪声高输出EDFA。

(三)全光网络

第5篇

【关键词】光纤通信;光信息传播;通信设备

一、光纤通信的应用背景

20世纪90年代以来,我国光纤应用飞速发展,在有线电视网络、能源探测等方面都大量被用到,随着有线电视网络普及率的提升,光纤的优点使其逐渐取代电信号传播。尤其是光纤在广播电视网络中的应用,呈现出剧增的趋势。光纤通信技术有以下两种:光纤接入技术,波分复用技术。光纤接入技术即光纤到路边或用户的宽带网络接入技术,光纤通信极大的满足了家庭和企业的信息通信的要求,所以它成为了电信通信技术的重要替代,尤其光纤到户(FTTH)可以使用户不受限制的进行信息接受与反馈。我国与2003年开始FTTH的推广,到2014年已经在全国30多个城市建立了FTTH网络,遍布家庭、网吧、企业等需求地,发展成果极为显著。波分复用技术是将不同波长的信号整合在一根光纤中进行传输,到达后再区分为不同波长的信号,最终传输完毕。这一技术大大提升了光纤通信的信息传输量,受到了相关领域的广泛关注。

二、光纤通信技术原理

光纤通信利用了光的全反射原理,即当光注入角度满足一定条件时,光可以进行全反射,从而到达远距离传输。在传输过程中,首先利用电信号对光波进行调制,使其成为带有信息的已调光波,然后将已调光波发送到光纤线路中进行传输,光收信机最终将光信号转化为电信号并进行接收。在传输过程中,中继器可以补偿光纤信号的衰减和对失真波形进行正形,无源器件(包括耦合器、光纤连接器等)完成以上各部分的连接。在传输过程中,在技术功能上,分为信号发射、信号合波、信号传输和放大、信号分离、信号接收五个结构。

三、光纤通信的特点

由于光纤通信是以光为载体,用光导纤维进行信息传输,玻璃材料的特性导致其具有以下优良特性:它的频带极宽,通信容量极大,是微波通信的几十倍,满足了用户需求也降低了运输空间,解决了管道拥挤的问题;石英这一介质的损耗低,中继距离长,大大减少了中继站的数量,从而减小了系统复杂性和运输成本,且信息不易失真;由于其材料为绝缘的石英,所以其抗电磁干扰能力强,且不易被腐蚀,也不受自然界的一些电力和太阳黑子活动干扰,而且还能与电力导体进行复合,并运用于军事领域;在传输过程中,光信号只能在纤维中传输,微弱的泄露信号也被外表吸收,所以它无串音干扰,保密性极好;光纤通信的材料使用玻璃为载体,节省了很多的稀有金属材料。它同样具有一些缺点:由于其材料特性,光纤的弯曲半径不能过小;光纤的操作技术、分离、耦合较为麻烦。但它的这些特点同样随着技术发展将一步步得到改进。

四、光纤通信的发展趋势

在光纤通信技术发展上,超高速传输是其主要研究方向,速度越高,信息传输的成本降越低。未来,信息量将越来越大,大数据的发展也需要光纤通信的高速传输进行大力发展。另一方面,高性能光纤也将得到大力发展。在未来发展中,光纤产品需要满足IP业务的长距离甚至超长距离的信息传输,所以高性能光纤的开发是光纤发展的刚性需求。由于光线通信的优良特性,其逐渐取代了传统的电力通信,已经在有线电视、电力通信网络、电信干线传输等方面占据了极大的份额。从20世纪60年代开始,高锟博士的论文已经预见了光纤将取代传统电通信,到如今,光纤已有了极大进展。在21世纪中光纤将如何发展成为了备受关注的话题。光纤通信与移动设备的式结合具有巨大前景,移动设备通信已融入到每一位居民生活中。光纤通信利用其优点渗透进入其中,市场巨大,且具有理论技术支持,和客户需求;另外,光网络与毫米波如果结合成功,也是革命性的进步;再有,制造高精度的光纤陀螺也具有巨大市场,除了未来航空系统,导弹系统,部分汽车也有陀螺;光纤传感器也在一些技术精度要求较高的领域有潜在需求。21世纪以来,我国光纤通信发展迅猛,但自主知识产权的占比仍然极小,大多产品技术含量低,不具备较强的竞争力。但我国仍是光纤运用方面的世界第二大国,因此我们的自主知识产权也将越来越受到重视,知识作为第一生产力将越来越雄厚。另外,光纤通信的其他功能随着其他领域的进步与发展也将一步步被挖掘,随着更多的需求,光纤通信会展现其更多的技术功能。

五、结语

光纤通信以其优良的特性,已逐渐取代传统电信号通信,未来将渗透到生活、军事、航天等领域的方方面面,我国已在世界前列,但仍然需要加强技术研究。

参考文献

[1]吕璠.光纤通信的发展趋势及应用[J].科技信息,2009,23:431-432.

第6篇

关键词:光纤,语音,传输,光电检测

 

1、光纤通信系统的基本组成

最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波有0.85、1.31和1.55三个低损耗窗口。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。论文格式。在光纤通信系统中,光纤中传输的是二进制光脉冲'0'码和'1'码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。光纤通信系统的基本组成原理图如下图1-1所示:

图1-1光纤通信系统

1.1光发射端机

光发射机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆中传输。电端机就是常规的电子通信设备。光发射机的原理图如下图1-2所示:

图1-2光发射机原理框图

光源是光发射机的核心,其性能好坏将对光纤通信系统产生很大的影响。目前光纤通信系统使用的光源都是由半导体材料制成的,而半导体光源分两种:发光管LED和激光管LD。由于半导体激光器发出的是激光,发光功率大、谱线宽度窄,但电路结构复杂,温度特性差。而半导体发光二极管发出的是荧光,发光功率不大,谱线宽度宽,但电路结构简单、寿命长、价格便宜。在实验室中经常用到。

1.2光纤或光缆

光纤作为传输媒介,作用是将发射端机光源发出的光信号,经远距离传输后耦合到接收端机的检测器,完成信息传输任务。在通信中使用的光纤通常是由石英玻璃制成的,由纤芯和包层组成。目前,塑料光纤应用于低速、短距离的传输中。其构成光纤的纤芯与包层都是塑料材料。与大芯径50/125μm和62.5/125μm的石英玻璃多模光纤相比,塑料光纤的芯径高达200~1000μm,其接续时可使用不带光纤定位套筒的便直注塑塑料连接器,即便是光纤接续中芯对准产生 ±30μm偏差都不会影响耦合损耗。正是塑料光纤结构赋予了其施工快捷,接续成本低等优点。另外,芯径100μm或更大则能够消除在石英玻璃多模光纤中存在的模间噪音。论文格式。

1.3中继器

含有光中继器的光纤传输系统成为光纤中继通信。光信号在光纤中传输一定的距离后,由于受到光纤衰减和色散的影响会产生能量衰减和波形失真,为保证通信质量,必须对衰减和失真达到一定程度的光信号及时进行放大和恢复。中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲进行整形。

1.4光纤连接器、耦合器等无源器件

由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的(如1Km)。因此一条光纤线路可能存在多根光纤相连接的问题。于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。

1.5光接收端机

光收信机是实现光/电转换的光端机。 它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。光接收机原理图如下图1-3所示:

图1-3光接收机电路原理方框图

2、光纤语音电路设计

光纤语音电路由三部分组成:光发射电路、光纤和光接收电路。论文格式。其工作原理是:音频信号最初是声波,由发送器的电子麦克风转换为电信号。此信号由LM358组成的音频放大器放大,并且借助于一个单独的晶体管控制LED的端电压,将电信号转换为光信号。光信号送入光纤或光缆。在光纤或光缆的另一端,光信号照射到接收器的光电检测器上。光电检测器再将其转换为电信号。此信号被放大并送入扬声器转换为声波恢复为原始信号。

2.1、发射器电路板

此电路主要是把音频信号经麦克风转换为电信号,电信号经滤波器、多级放大器把微弱的电流信号转换为适合半导体二极管发光的电压信号,在晶体管的调制下把电信号转换为光信号送入光纤中进行传输。在发射器电路上有一个话筒和调制LED发光的线路。LED装在塑料壳中以便于连接光纤或光缆进行发送信号。在实验室里设计操作可以使用200m长的塑料光纤传送语音信号,也可以使用玻璃光纤在更远的距离内通信。光纤语音发射器电路如下图1-4所示:

图1-4光纤语音发射电路

2.2、光电接收器电路板:

在接收器电路板上通过光电检测器把光纤传输的微弱的光信号转换为电信号,经电容滤波、运算放大器放大,把电流信号转换为电压信号,放大到适合扬声器输出的电压,恢复原始的语音信号。光纤语音接收电路如下图1-5所示:

图1-5光纤语音接收电路

3、结 语

本文详细的介绍了光纤通信系统的组成,为设计光纤语音传输电路提供理论基础。在该电路系统中语音信号以光波形式在光缆内传输、不受任何电场和磁场的影响。传输距离远,抗干扰能力强。每个电路板需要一个9V电池,元件简单,易于实现,在实验室就能操作完成。

参考文献

[1] 顾畹仪,李国瑞.光纤通信系统[ M].北京:北京邮电大学出版社,2006.

[2]周增基,周洋溢,胡辽林,任光亮,周绮丽.光纤通信[M].西安:西安电子科技大学出版社,2008.12.

[3]田国栋.光纤通信技术[M].西安:西安电子科技大学出版社,2008.9.

[4]杜庆波,曾庆珠,李洁,王文轩.光纤通信技术与设备[M]. 西安:西安电子科技大学出版社,2008.2.

[5] 杨家德.光电技术使用电路精选[J]..四川:成都科技大学出版社,1996.

[6] ic37.com/

第7篇

[论文摘要]分析光纤通信技术的发展历史与发展现状,并对光纤通信技术的发展趋势进行了展望。

一、光纤通信技术的发展及现状

光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。

目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。

二、光纤通信技术的趋势及展望

目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。

(一)向超高速系统的发展

目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(二)向超大容量WDM系统的演进

采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。

(三)实现光联网

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。

由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

(四)开发新代的光纤

传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(五)IPoverSDH与IpoverOptical

以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。

(六)解决全网瓶颈的手段一光接入网

近几年,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都己更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络,而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上存在巨大的反差,制约全网的进一步发展。为了能从根本上彻底解决这一问题,必须大力发展光接入网技术。因为光接入网有以下几个优点:(1)减少维护管理费用和故障率;(2)配合本地网络结构的调整,减少节点,扩大覆盖;(3)充分利用光纤化所带来的一系列好处;(4)建设透明光网络,迎接多媒体时代。

参考文献:

第8篇

光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。

目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。

二、光纤通信技术的趋势及展望

目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。

(一)向超高速系统的发展

目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(二)向超大容量WDM系统的演进

采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。

(三)实现光联网

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。

由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

(四)开发新代的光纤

传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(五)IPoverSDH与IpoverOptical

以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。

(六)解决全网瓶颈的手段一光接入网

近几年,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都己更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络,而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上存在巨大的反差,制约全网的进一步发展。为了能从根本上彻底解决这一问题,必须大力发展光接入网技术。因为光接入网有以下几个优点:(1)减少维护管理费用和故障率;(2)配合本地网络结构的调整,减少节点,扩大覆盖;(3)充分利用光纤化所带来的一系列好处;(4)建设透明光网络,迎接多媒体时代。

参考文献:

[1]赵兴富,现代光纤通信技术的发展与趋势.电力系统通信[J].2005(11):27-28.

[2]韦乐平,光纤通信技术的发展与展望.电信技术[J].2006(11):13-17.

第9篇

论文摘要:从4G主要技术指标分析了其优越于3G之处,探讨了4G系统网络结构和必须突破的关键技术,初步展望我国在4G方面发展。?

1 4G的定义与主要技术指标?

第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mb/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。 ?

第四代移动通信技术的主要指标:1.数据速率从2Mb/s提高到100Mb/s,移动速率从步行到车速以上。2.支持高速数据和高分辨率多媒体服务的需要。宽带局域网应能与B-ISDN和ATM兼容,实现宽带多媒体通信,形成综合宽带通信网。3、对全速移动用户能够提供150Mb/s的高质量影像等多媒体业务。

2 4G相对于3G的超越之处?

与今年年内即将推出的3G移动通信服务相比,4G技术更为复杂,4G技术在通信特点方面较3G移动通信技术相比,有许多超越之处: ?

(1)4G移动通信技术的信息传输级数要比3G移动通信技术的信息传输级数要高一个等级,其最大的传输速度将是目前“i-mode”服务的10000倍。 ?

(2)主要发展数字广带(Broad band)为基础的概念。在“毫米”过程中,传播条件相对困难,蜂窝小区也会相应小很多,这会引起一系列技术上的难题。 ?

(3)灵活性要比3G强得多。它能自适应的资源分配,能够处理变化的业务流、信道条件不同的环境,有很强的自组织性和灵活性。 ?

(4)4G移动通信技术将可让所有移动通信运营商的用户,享受共同的4G服务。 ?

(5)该技术应该能根据网络的动态和自行变化的信道条件,使低码与高码的用户能够共存。这些方面都要比2G、3G先进。 ?

(6)它能综合固定移动广播网络或其他的一些规则,实现对这些功能体积分布的控制。 ?

(7)该技术将以几项突破性技术为基础,例如一些光纤产品公司用来提高Internet主干带宽的技术,它将对无线频率的使用效率比第二代和第三代系统都高得多。 ?

我们相信,在不久的将来4G在业务上、功能上、频宽上均有别于3G,应该将会是将所有无线服务联合在一起,能在任何地方接入互联网,包括卫星通讯、定位定时、数据收集、远程控制等综合功能。移动无线互联网会是无边无际,而预计两年后3G的传输速度上限2Mbps很可能会到达饱和。所以4G将会是多功能集成的宽带流动通讯系统,是宽带接入IP的系统。

3 4G系统网络结构及其关键技术?

4G移动系统网络结构可分为3层:物理网络层、中间环境层、应用网络层。物理网络层提供接入和路由选择功能,它们由无线和核心网的结合格式完成。中间环境层的功能有QoS映射、地址变换和完全性管理等。物理网络层与中间环境层及其应用环境之间的接口是开放的,它使发展和提供新的应用及服务变得更为容易,提供无缝高数据率的无线服务,并运行于多个频带。第四代移动通信系统的关键技术包括信道传输;抗干扰性强的高速接入技术、调制和信息传输技术;高性能、小型化和低成本的自适应阵列智能天线;大容量、低成本的无线接口和光接口;系统管理资源;软件无线电、网络结构协议等。第四代移动通信系统主要是以正交频分复用(OFDM)为技术核心。OFDM技术的特点是网络结构高度可扩展,具有良好的抗噪声性能和抗多信道干扰能力,可以提供比目前无线数据技术质量更高(速率高、时延小)的服务和更好的性能价格比,能为4G无线网提供更好的方案。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将采用OFDM技术。

4 发展我国的第四代移动通信?

第10篇

【关键词】 卫星通讯 发展方向 发展前景

一、卫星通讯的当前情况

1964年,国际通讯卫星组织INTEL-SAT在美国总部成立,同年发射了地球上有史以来第一颗商用卫星,经过大半个世纪的不断发展的壮大,相比较二十世纪五十年代的卫星通讯,如今的卫星通讯取得了许多突破性进展。卫星通讯被大范围的应用于农业、商业和军事等各个与我们息息相关的方面。在日常生活中,卫星通讯占据了很高的地位,例如精彩绝伦语音广播和电视广播都是靠卫星通讯提供技术支持,为偏远地区提供了必不可少的通信,也为发生了严重自然灾害的地方提供了紧急通信,并为各种重大事件提供了及时的实况直播。

总之,为人们日常的生活提供了巨大便利。在军事领域,卫星通讯也发挥着巨大能力。新世纪的到来,科学技术得到了前所未有的发展,生产力也随之增长,这也为卫星通讯技术的发展提供了强有力的理论支撑和科技帮助。

二、卫星通讯新技术

2.1星上信号处理

早期,采用透明转发器实现中级传输是GEO卫星通讯的常用手段,用户可以根据自身需要,租用不同频率的转发器,有较强的灵活性是这种信道资源的一项优势。

2.2星上交换

支持星上交换是OBP最重要的一个作用。其中,再生式的OBP由于其能获得各路信号所传输的数据流,能支持任何方式的交换,比如程控电路交换、ATM交换和IP交换等等。特别是,IP交换的技术若能在星上实现,那么地面因特网和卫星网之间的链接就会变得非常简单和方便。

2.3空间激光通信技术

空间激光通信技术是一项用激光束作为载体在自由空间进行通信的技术,既可作为卫星与地面之间的通信链路,也可以作为卫星与卫星之间的告诉传输链路。但由于前者在存在较浓的云雾或降雨的情况下,无法完成正常的通信,所以空间激光通信技术作为卫星与地面的通信链路时,信息传输的速率不太高。此技术将携带信息的电信号调制到光束上发送,通过初定位和调整,再经过光束的捕获、瞄准和跟踪,在通信的两端建立起光链路,从而进行信息传递。

三、卫星通信技术发展前景

骨干网由计算机局域网、有线电视网以及有线电信网三部分融合组成,除此之外,地面移动通信蜂窝网通过其自身的无线核心网与骨干网进行互联,卫星通讯网也通过无线核心网与骨干网建立了链接。近几年,IP化是大势所趋,正是由于卫星通讯不断IP化,各种各样的不同性质与不同业务的卫星通讯终端都变成了类似的因特网接入设备,由此可见一斑。需要指出的是,@里所说的IP化不代表卫星通讯网内部的传输和交换全部实现IP化,而是将其特别的传输和交换方式保留,这样对于发挥卫星通讯的特点而获得更高的卫星资源利用率和达到更高水平的业务质量都更有利。随着Ka频段的LEO卫星群蜂窝网的不断发展,使得频率资源和通信容量大幅度增长,同时,也在一定程度上降低了用户终端的成本,卫星通讯无线覆盖的优势也得以体现,基于此,卫星通讯技术在国际民用通信市场上占据了一席之位。但是,在我国情况有所不同,原因在于相比于国外大多数国家,我国的4G地面蜂网在我国民用通信市场上占有很大比例,使得卫星通信接入互联网的竞争力远不如4G。

根据我国目前的情况,卫星通讯技术可实现的可用频率的地域覆盖密度,相比4G的地域覆盖密度,要低好几个数量级。

数字通信和个人通信的飞快发展。在移动卫星通讯中,中低轨卫星通讯有很大的发展前景,能为未来“全球个人通讯”的实现助力,使得人们真正地进入个人通信时代。伴随卫星通信容量和速率的持续增加,以及先进的数字通讯技术的不断影响,数字卫星广播的数量的质量都得到了很大改善,卫星电视广播业务的空间有十分充足,人们的文化生活水平也得到了提高。

通信卫星的功能随着卫星高新技术的不断出现、推广和利用而扩大,所应用的领域也正在不断扩宽。在二十一世纪,卫星通讯将拥有更广阔的发展空间,并占据更加重要的地位。与光纤通信一起,发展成为一项供未来人类通信的最为重要的手段。

参 考 文 献

第11篇

论文关键词:通信网络 实验平台 综合 建设

论文摘要:针对目前通信技术的发展状况及就业形势,并结合我院实验室现状,提出了建设综合通信网络实验平台的必要性;给出了综合通信网络实验平台的拓扑结构;论述了SDH传输系统、程控交换系统及EPON光接入等系统的详细配置情况。

随着通信技术的发展及信息业务量的剧增,社会对通信专业人才的需求不断加大,从近几年的就业情况来看,企业需要的是既有较好的理论基础,又有较强的实践能力,并且了解通信行业技术的综合应用型人才。因此,高校必须不断完善通信实验室建设,改进实验模式,才能适应市场对人才的需求。我院于2009年提出了建设综合通信网络实验平台的计划,并获得了中央地方共建专业特色实验室项目的资助。

1实验室现状及建设综合实验平台的必要性

2000年以来我院先后建设了计算机技术、电子技术、通信原理、高频电子、EDA等基础实验室及检测与控制专业实验室。2004年通信专业开始招生,为满足教学要求,筹建了通信专业实验室。由于当时学校经费紧张,制定了通信专业实验室的建设在现有基础上分两步走的计划:第一步,建设以满足教学需求的基本型专业实验室,主要完成光纤、程控、通信网、移动通信等专业课程实验。该实验室建设方案以各种实验箱及相关的仪器设备组成,基本1人1箱,其特点是:技术成熟,投资少,维护方便。第二步,建设综合通信网络实验室。第一步建设方案已于2006年完成。

2006年以来,通信专业实验室在实验教学工作中发挥了其应有的作用。但这些设备各自独立,没有形成网络,系统性不强,实验内容多以演示、验证为主。随着通信技术的迅猛发展,这类实验室条件局限性较大,没有通信全程全网的系统性,学生对所学的专业课程缺乏系统整体概念,无法满足对通信技术的深入研究及市场对人才的需求。因此建设综合通信网络实验平台是非常必要的。

2综合通信网络实验平台的建设思路与目标

随着通信行业的不断发展,电信领域正在向着移动化、宽带化的方向不断融合。因此,综合通信网络实验平台建设的基本思路是建设一个集传输、交换、宽带接入及有线、无线通信为一体的综合现代通信网络,是一个类似于电信系统的全真式网络。该系统能够实现模拟网络运行,各个网络对接,并能够完成每种设备平台的实训与研究。通过该实验系统,让学生从软件到硬件全方位感受现代通信的真实环境,对所学专业有直观的认识及深入的了解,提高专业素质,锻炼动手能力,把学生培养成符合社会需求的综合型、应用型通信技术人才。

3综合通信网络实验平台的建设方案与内容

建设方案既要技术先进,又要经济合理,通过反复多次的论证,提出了适应现有资金条件,适合当代通信技术发展的综合通信实验平台。整个平台由SDH传输网、程控交换网、移动无线接入网、EPON光接入网、网规、网优等系统构成。

3.1 网络拓扑结构网络拓扑结构如图1所示。

图1 综合通信网络实验平台拓扑图

3.2 光传输系统

光传输系统是整个实验网络的核心,沟通了各模块之间的通信联络。系统采用SDH技术,由3台STM-1设备构成环形网络。SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足宽带数据及视频图像等多业务的传输需求,自愈功能强。掌握传输技术对通信工程专业的学生来说,是非常重要的。

传输系统选用华为公司的Optix155/622HMetro1000型设备,主要功能及配置如下:

(1)系统高阶交叉能力为136×136VC4,低阶交叉能力1638×1638VC12。

(2)单台传输系统配置STM-1光接口2个,E1接口21个,FE接口数量为4个,支持155M至2.5G光速率的在线升级能力。

(3)具备多业务处理能力,提供多路E1,T1,E3和T3业务及各种音频接口,数据接口功能。

(4)系统采用MSTP第三代技术,支持以太网信号的汇聚、二层交换和VLAN。

(5)传输系统配备了设备级管理软件,在提供完备的网元级管理功能的同时,提供了网络层管理功能,支持传统业务的端到端管理。

(6)整个传输网络保护机制健全,交叉、时钟、电源均采用1+1保护措施,具备强大的告警分析和故障自动诊断功能,提高了网络系统的安全性和可靠性。

3.3 程控交换系统

程控交换系统采用华为公司C&C08程控交换设备,通过传输网络及其他配合设备构建一个完全模拟实际应用的,具有局间交换、远端接入功能的完整交换网络。主要配置为:

(1)系统交换能力为16K×16K,配置模拟电话用户96路,数字中继120DT(最大可扩充至50000线模拟用户及10000线数字中继)。

(2)提供中国1号信令、7号信令,满足局间通信的要求;提供语音业务及其他综合接入业务,配置各种接口。

(3)提供设备级网管软件,可对硬件设备进行设置、配置, 进行信令的观测、跟踪等。

3.4 TD-SCDMA移动通信无线网络系统

TD-SCDMA技术是目前广为使用的新技术,大幅提升了数据传输速率,实现了移动宽带,能够处理图像、音乐、视频等多种媒体形式,提供网页浏览、电话会议、电子商务等多种信息服务。

系统由TD-SCDMA无线侧基站控制器单元(RNC)、无线侧基带处理及射频单元(Node B)及无线网络操作维护中心(OMC-R)等主要设备及相关系统软件组成。

TD-SCDMA无线侧基站控制器单元(RNC)采用华为公司新一代基站控制器DRNC820型设备,该设备集成度高、容量大、可靠性好,可以满足未来高速分组业务发展,大大提升TD-SCDMA全系统的带宽和容量。系统采用MAIO(Multiple Access To I n One)技术,统一ATM,TDM和IP交换体系,既支持对2G传输资源的前向兼容,也支持向全网IP的演进。设备采用模块化设计,支持单框解决方案与平滑升级;采用双平面GE Star交换网,可提供最大120Gbps的交换容量;接口丰富,可提供多种组网方式。

TD-SCDMA无线侧基带处理及射频单元采用业界技术领先的多形态统一模块设计,具有体积小、容量大、功耗低、安装灵活的特点,最大可支持36载扇的TD-SCDMA基带处理能力。

操作维护系统主要完成软件管理、故障管理、性能管理、测试管理、传输管理等功能。

3.5 EPON光接入系统

EPON光接入系统采用华为公司MA5680T型设备,具备多种丰富的功能特性,可提供大容量、高速率、高带宽的语音、数据和视频业务接入。设备为GPON/EPON一体化设备,满足用户扩容升级需要;系统能力满足背板交换容量为275Gbps,业务交换容量双向为68G;单框可支持ONU/ONT数为7168;支持3层特性,支持RIPV1/V2和OSPF路由协议;满足多种FTTx组网应用,满足基站传输、IP专线互联、批发等业务组网需求。

3.6 网规网优系统

无线网络测试系统选用鼎利公司的测试软件,具备完善的GSM/GPRS/TD-SCDMA/HSDPA网络测试功能。能够提供多种测试方法。

3.7 专用e-bridge实验软件

由于本次实验平台选用的硬件设备均为商用设备,所以要考虑整个网络系统如何适合于学生进行实验,一般来说,实际商用设备的管理终端数只有一个,这样对于有40名学生的班级来说,需要分40组,显然不现实。讯方公司研发的专用e-bridge实验软件,解决了多人操作的问题,满足每个系统平台可以40名学生进行实验操作,把商用设备转化为适合高校教学的实验设备。

专用e-bridge实验软件具备实验过程控制功能,实验教师可灵活分配实验项目和实验时间,可以调整每组学生的实验时间,软件能同时满足多人多次上机实验的要求。

综合实验平台系统组成除配置以上设备、软件外,还考虑设置了通信电源设备、光纤配线架、数字配线架、音频配线架等其他配合设备。

4实验项目内容

整个实验系统通过通信网管软件,可满足40个学生终端进行实验操作,可开展的主要实验项目内容如下:

(1)SDH光传输系统:①传输设备配置实验:通过传输网管软件对设备进行操作加载及维护;硬件数据配置、分配功能模块资源等;②组网实验:可进行SDH链型网、环型网组网配置;③通道保护实验:通过对传输光口、逻辑系统、保护制式的设定,实现通道保护和复用段保护机制的实验;④网管操作实验;⑤开销分析实验:⑥传输复用解复用字节分析实验等。

(2)程控交换系统:①交换机硬件配置实验:通过交换机网管软件对设备进行操作加载及维护;分配各个功能模块资源;②用户实验:配置、分析用户及号码;本局用户新业务设定及注册等;③电话呼叫处理实验:观察呼叫处理过程、信号流程;④局间中继信令系统实验:包括NO1和NO7中继调试,局向设置、路由选择,观察计发器信令流程及出局呼叫过程;⑤计费系统实验;⑥全局综合业务实验等。

(3)RNC系统实验:①数据配置实验:对RNC设备状态、网络结构、后台数据库进行配置;②链路、通道信息配置;③小区参数配置、优化、参数测试实验;④RNA网络结构实验;⑤手机注册、呼叫、切换流程分析等实验。

(4)网优、路测实验内容:①手机终端的测试:包括呼叫、数据业务、手机强制测试等;②室内、楼宇、楼层测试、数据分析;小区覆盖测试分析;③邻区优化测试,2G/3G系统间邻区优化分析;④网优综合测试实验等。

(5)其他操作实验:线缆布放、光纤接续、光缆终端盒接续等实验。

5综合通信网络实验平台的特色

(1)技术新,功能强,适用面宽。该实验平台模拟现代通信网络系统,集传输、交换、移动通信于一体,可进行通信工程课程实验、毕业设计、专业实习等综合实训内容。

(2)内容广泛、系统性强。以往的实验内容基本以验证为主,综合通信网络实验平台的建成,提供了丰富、宽泛的实验内容,可开展大量的综合型、设计型、研究型实验,为师生提供了全程全网的实验环境。

(3)系统配置高、操作性好。整个平台硬件设备技术先进,软件管理功能全面,可为学生提供良好的实验操作条件。

综合通信网络实验平台的建设,从方案确定到设备选型、系统配置,思路明确、定位准确,建立了完善的实验系统,提升了实验内容的综合程度,促进了理论与实践的结合,必将为提高学生的创新思维、综合能力,提高实践教学质量起到重要的作用。

参考文献

[1] 黄熙岱.高校通信工程专业实践教学体系构建的研究[J].中国现代教育装备,2010,17:140~141

[2] 丁永红,尤文斌.高校专业实验室建设与实验教学改革探讨[J].中国教育技术装备,2010,30:93~94

[3] 张立民,隋燕,李维祥.电子信息类综合性系统实验的教学改革与探索[J].实验技术与管理,2007,24(10):118~120

第12篇

论文摘要:针对目前通信技术的发展状况及就业形势,并结合我院实验室现状,提出了建设综合通信网络实验平台的必要性;给出了综合通信网络实验平台的拓扑结构;论述了sdh传输系统、程控交换系统及epon光接入等系统的详细配置情况。  

 

随着通信技术的发展及信息业务量的剧增,社会对通信专业人才的需求不断加大,从近几年的就业情况来看,企业需要的是既有较好的理论基础,又有较强的实践能力,并且了解通信行业技术的综合应用型人才。因此,高校必须不断完善通信实验室建设,改进实验模式,才能适应市场对人才的需求。我院于2009年提出了建设综合通信网络实验平台的计划,并获得了中央地方共建专业特色实验室项目的资助。 

 

1实验室现状及建设综合实验平台的必要性 

 

2000年以来我院先后建设了计算机技术、电子技术、通信原理、高频电子、eda等基础实验室及检测与控制专业实验室。2004年通信专业开始招生,为满足教学要求,筹建了通信专业实验室。由于当时学校经费紧张,制定了通信专业实验室的建设在现有基础上分两步走的计划:第一步,建设以满足教学需求的基本型专业实验室,主要完成光纤、程控、通信网、移动通信等专业课程实验。该实验室建设方案以各种实验箱及相关的仪器设备组成,基本1人1箱,其特点是:技术成熟,投资少,维护方便。第二步,建设综合通信网络实验室。第一步建设方案已于2006年完成。 

2006年以来,通信专业实验室在实验教学工作中发挥了其应有的作用。但这些设备各自独立,没有形成网络,系统性不强,实验内容多以演示、验证为主。随着通信技术的迅猛发展,这类实验室条件局限性较大,没有通信全程全网的系统性,学生对所学的专业课程缺乏系统整体概念,无法满足对通信技术的深入研究及市场对人才的需求。因此建设综合通信网络实验平台是非常必要的。 

 

2综合通信网络实验平台的建设思路与目标 

 

随着通信行业的不断发展,电信领域正在向着移动化、宽带化的方向不断融合。因此,综合通信网络实验平台建设的基本思路是建设一个集传输、交换、宽带接入及有线、无线通信为一体的综合现代通信网络,是一个类似于电信系统的全真式网络。该系统能够实现模拟网络运行,各个网络对接,并能够完成每种设备平台的实训与研究。通过该实验系统,让学生从软件到硬件全方位感受现代通信的真实环境,对所学专业有直观的认识及深入的了解,提高专业素质,锻炼动手能力,把学生培养成符合社会需求的综合型、应用型通信技术人才。 

3综合通信网络实验平台的建设方案与内容 

 

建设方案既要技术先进,又要经济合理,通过反复多次的论证,提出了适应现有资金条件,适合当代通信技术发展的综合通信实验平台。整个平台由sdh传输网、程控交换网、移动无线接入网、epon光接入网、网规、网优等系统构成。 

3.1 网络拓扑结构网络拓扑结构如图1所示。 

 

图1 综合通信网络实验平台拓扑图 

3.2 光传输系统 

光传输系统是整个实验网络的核心,沟通了各模块之间的通信联络。系统采用sdh技术,由3台stm-1设备构成环形网络。sdh技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足宽带数据及视频图像等多业务的传输需求,自愈功能强。掌握传输技术对通信工程专业的学生来说,是非常重要的。 

传输系统选用华为公司的optix155/622hmetro1000型设备,主要功能及配置如下: 

(1)系统高阶交叉能力为136×136vc4,低阶交叉能力1638×1638vc12。 

(2)单台传输系统配置stm-1光接口2个,e1接口21个,fe接口数量为4个,支持155m至2.5g光速率的在线升级能力。 

(3)具备多业务处理能力,提供多路e1,t1,e3和t3业务及各种音频接口,数据接口功能。 

(4)系统采用mstp第三代技术,支持以太网信号的汇聚、二层交换和vlan。 

(5)传输系统配备了设备级管理软件,在提供完备的网元级管理功能的同时,提供了网络层管理功能,支持传统业务的端到端管理。 

(6)整个传输网络保护机制健全,交叉、时钟、电源均采用1+1保护措施,具备强大的告警分析和故障自动诊断功能,提高了网络系统的安全性和可靠性。 

3.3 程控交换系统 

程控交换系统采用华为公司c&c08程控交换设备,通过传输网络及其他配合设备构建一个完全模拟实际应用的,具有局间交换、远端接入功能的完整交换网络。主要配置为: 

(1)系统交换能力为16k×16k,配置模拟电话用户96路,数字中继120dt(最大可扩充至50000线模拟用户及10000线数字中继)。 

(2)提供中国1号信令、7号信令,满足局间通信的要求;提供语音业务及其他综合接入业务,配置各种接口。 

(3)提供设备级网管软件,可对硬件设备进行设置、配置, 进行信令的观测、跟踪等。 

3.4 td-scdma移动通信无线网络系统 

td-scdma技术是目前广为使用的新技术,大幅提升了数据传输速率,实现了移动宽带,能够处理图像、音乐、视频等多种媒体形式,提供网页浏览、电话会议、电子商务等多种信息服务。 

系统由td-scdma无线侧基站控制器单元(rnc)、无线侧基带处理及射频单元(node b)及无线网络操作维护中心(omc-r)等主要设备及相关系统软件组成。 

td-scdma无线侧基站控制器单元(rnc)采用华为公司新一代基站控制器drnc820型设备,该设备集成度高、容量大、可靠性好,可以满足未来高速分组业务发展,大大提升td-scdma全系统的带宽和容量。系统采用maio(multiple access to i n one)技术,统一atm,tdm和ip交换体系,既支持对2g传输资源的前向兼容,也支持向全网ip的演进。设备采用模块化设计,支持单框解决方案与平滑升级;采用双平面ge star交换网,可提供最大120gbps的交换容量;接口丰富,可提供多种组网方式。

td-scdma无线侧基带处理及射频单元采用业界技术领先的多形态统一模块设计,具有体积小、容量大、功耗低、安装灵活的特点,最大可支持36载扇的td-scdma基带处理能力。 

操作维护系统主要完成软件管理、故障管理、性能管理、测试管理、传输管理等功能。 

3.5 epon光接入系统 

epon光接入系统采用华为公司ma5680t型设备,具备多种丰富的功能特性,可提供大容量、高速率、高带宽的语音、数据和视频业务接入。设备为gpon/epon一体化设备,满足用户扩容升级需要;系统能力满足背板交换容量为275gbps,业务交换容量双向为68g;单框可支持onu/ont数为7168;支持3层特性,支持ripv1/v2和ospf路由协议;满足多种fttx组网应用,满足基站传输、ip专线互联、批发等业务组网需求。 

3.6 网规网优系统 

无线网络测试系统选用鼎利公司的测试软件,具备完善的gsm/gprs/td-scdma/hsdpa网络测试功能。能够提供多种测试方法。 

3.7 专用e-bridge实验软件 

由于本次实验平台选用的硬件设备均为商用设备,所以要考虑整个网络系统如何适合于学生进行实验,一般来说,实际商用设备的管理终端数只有一个,这样对于有40名学生的班级来说,需要分40组,显然不现实。讯方公司研发的专用e-bridge实验软件,解决了多人操作的问题,满足每个系统平台可以40名学生进行实验操作,把商用设备转化为适合高校教学的实验设备。 

专用e-bridge实验软件具备实验过程控制功能,实验教师可灵活分配实验项目和实验时间,可以调整每组学生的实验时间,软件能同时满足多人多次上机实验的要求。 

综合实验平台系统组成除配置以上设备、软件外,还考虑设置了通信电源设备、光纤配线架、数字配线架、音频配线架等其他配合设备。 

 

4实验项目内容 

 

整个实验系统通过通信网管软件,可满足40个学生终端进行实验操作,可开展的主要实验项目内容如下: 

(1)sdh光传输系统:①传输设备配置实验:通过传输网管软件对设备进行操作加载及维护;硬件数据配置、分配功能模块资源等;②组网实验:可进行sdh链型网、环型网组网配置;③通道保护实验:通过对传输光口、逻辑系统、保护制式的设定,实现通道保护和复用段保护机制的实验;④网管操作实验;⑤开销分析实验:⑥传输复用解复用字节分析实验等。 

(2)程控交换系统:①交换机硬件配置实验:通过交换机网管软件对设备进行操作加载及维护;分配各个功能模块资源;②用户实验:配置、分析用户及号码;本局用户新业务设定及注册等;③电话呼叫处理实验:观察呼叫处理过程、信号流程;④局间中继信令系统实验:包括no1和no7中继调试,局向设置、路由选择,观察计发器信令流程及出局呼叫过程;⑤计费系统实验;⑥全局综合业务实验等。 

(3)rnc系统实验:①数据配置实验:对rnc设备状态、网络结构、后台数据库进行配置;②链路、通道信息配置;③小区参数配置、优化、参数测试实验;④rna网络结构实验;⑤手机注册、呼叫、切换流程分析等实验。 

(4)网优、路测实验内容:①手机终端的测试:包括呼叫、数据业务、手机强制测试等;②室内、楼宇、楼层测试、数据分析;小区覆盖测试分析;③邻区优化测试,2g/3g系统间邻区优化分析;④网优综合测试实验等。 

(5)其他操作实验:线缆布放、光纤接续、光缆终端盒接续等实验。 

 

5综合通信网络实验平台的特色 

 

(1)技术新,功能强,适用面宽。该实验平台模拟现代通信网络系统,集传输、交换、移动通信于一体,可进行通信工程课程实验、毕业设计、专业实习等综合实训内容。 

(2)内容广泛、系统性强。以往的实验内容基本以验证为主,综合通信网络实验平台的建成,提供了丰富、宽泛的实验内容,可开展大量的综合型、设计型、研究型实验,为师生提供了全程全网的实验环境。 

(3)系统配置高、操作性好。整个平台硬件设备技术先进,软件管理功能全面,可为学生提供良好的实验操作条件。 

综合通信网络实验平台的建设,从方案确定到设备选型、系统配置,思路明确、定位准确,建立了完善的实验系统,提升了实验内容的综合程度,促进了理论与实践的结合,必将为提高学生的创新思维、综合能力,提高实践教学质量起到重要的作用。 

 

参考文献 

 

[1] 黄熙岱.高校通信工程专业实践教学体系构建的研究[j].中国现代教育装备,2010,17:140~141 

[2] 丁永红,尤文斌.高校专业实验室建设与实验教学改革探讨[j].中国教育技术装备,2010,30:93~94 

[3] 张立民,隋燕,李维祥.电子信息类综合性系统实验的教学改革与探索[j].实验技术与管理,2007,24(10):118~120 

第13篇

光通信技术是当今信息技术领域的前沿与支撑技术之一。2013年,国务院颁布“宽带中国”计划,进一步提升了光通信技术在国家发展战略中的地位。简言之,光通信技术是光纤技术与通信技术的综合体,它具有高速、大容量的优点,但亦存在高成本、高复杂度和多学科交叉的特点。这成为该门课程实践教学开展的主要困难。而且,对于省属地方高等院校,同时面临生源基数大、实验教学经费短缺、设备更新缓慢等难题,使得该问题更加凸显。为缓解这一问题所带来的影响,基于专业光通信仿真软件,引入虚拟实验教学时必然趋势。

一、虚拟实验教学改革的背景与意义

作者所在的黑龙江大学电子工程学院,《光通信技术》实验需为两个本科专业(光电子技术系和通信工程系)学生(约180人/年)提供课程资源。原有《光通信技术》包含“光纤低损耗熔接”“光纤纤芯分布测量”“光纤微弯损耗测量”“光时域分布反射测量”和“可视光通信传输系统演示”5个基础专业实验,仅能覆盖《光纤技术》和《光通信技术》两门专业必修课程的实验教学任务,学生缺乏对“光电子器件”应用的认知。而且,光纤与光通信技术是本专业最重要的两个研究方向之一,是专业学生就业与求学的主要支撑技术。近10年来,光通信技术在“光传输”“光交换”“光接入”和“可见光电力线通信”等领域高速发展。然而,现有实验教学设备多购置于2001年,部分已陈旧、老化。与此同时,面临教学经费不足,设备台套数有限,仪器价格昂贵,由于普通高校扩招导致生源剧增的双重压力,对应的实验内容无法得到更新,课程讲授内容与实验教学脱节,学生学习兴趣低下。

图1 原有专业基础实验方案

与之相比,专业仿真软件具有价格低廉,覆盖领域广,专业性强,灵活性、操作性好等系列优点,可实现光放大器设计,光电转换器件测试,多光通信系统实时在线模拟等功能,与本专业光纤技术、光电器件与检测、光通信技术课程内容吻合。鉴于此,将虚拟实验与原有的专业实验相结合,以专业实验为基础,虚拟实验为进阶,二者相互补充、取长补短,将可有效缓解专业实验教学中所面临的困难。

二、虚拟实验教学改革的具体实施方法

(一)方案设计与实验室建设

1.保留原有的“光纤低损耗熔接”“光纤纤芯分布测量”“光纤微弯损耗测量”作为基础实验,删除“光时域分布反射测量”和“可视光通信传输系统演示”两个实验,节省6学时的课程资源。

2.开设“光通信仿真设计”课程设计,以虚拟实验教学方式提高学生对于“光通信系统架构”“光纤放大器设计”“光电子器件工作特性”的掌握能力。课程设计采用机房集中教学模式,包含“光发射机/光接收机的实现”,“误码率与质量因子评价”“色散补偿特性测试”“光放大器性能优化”“格式生成与转换”五个模块,共计32学时。其中,讲授学时8学时,实验学时24学时,第一、二模块为必选,后三个模块至少任选其一。

3.将原有机房进行升级与改造,新购置计算机50台套,服务器1台套,投影教学设备1台套。更新原有网络布线与系统,实现教师与学生互动能力,提升学生间的交互学习能力,改善学生个人的实验学习平台环境。购置专业光通信仿真软件OptiSystem(12.0版)1套,可同时满足30人在线仿真需求。

图2 虚拟实验设计方案

(二)虚拟实验教学实施方法

在实际的教学过程中,该门课程对于光电子技术专业学生(年均60人)为必修课程,分成2个教学班级循环教学;对于通信工程专业学生为选修课程,根据以往统计,选修课程人员约60―80人,亦分成2个教学班级循环教学。除讲授8学时外,学生需在2周内完成24实验学时,教学资源采用开放模式提供,学生可自行安排学习时间,学时计算由智能管理系统完成。教学模式除课上教学、实验外,还包括师生在线交流与在线答疑。课程考试采用报告模式提交,3人一组,需分工明确,格式统一,数据与分析清楚有效。

图3 虚拟实验教学的实施与执行

三、效果与评价

对于通信工程专业,该门课程设置在第六学期,需学习前期的光纤基础实验。对于光电子技术专业,该门课程设置在第七学期。作为中间环节,他是专业实验的进阶,同时作为本科毕业设计的前期训练,起到承上启下作用。运行一年来,效果显著。主要体现在:(1)增加了实验教学资源,缓解了实验设备台套数少的困难,提升了学生的实践实训能力;(2)完成了课堂教学与实验教学的完整对接,教学内容与深度得到进一步提升;(3)激发学生学习兴趣,为教师的科学研究提供有效辅助。截至2014年12月,已有11名专业学生参与到教师的科研团队中,并在光通信设计领域发表EI检索科研论文3篇,申报发明专利1项,获授权实用新型专利2项,获批省级、校级创新创业课题2项。

第14篇

【关键词】光纤通信;发展;前景

1. 光纤通信概念和特点

光纤通信是以光波为信息载体,通过光纤来传递的一种通信设施。光纤通信的特点:(1)光纤通信容量大;传输距离长;一根细细的光纤可以承载很多个光信息,而它的传输时以光速传播,并且损耗非常小。(2)由于光纤较细,质量轻,所以便于铺设和运输。(3)光纤通信具有抗电磁干扰能力,传输信息不易丢失和失真。(4)信号串扰小、保密性能好;(5)光纤通信用材少,而且不污染环境 。(6)光缆适应性强,寿命比较长。

2. 光纤通信技术的形成

2.1早期的光通信。

光无处不在,这句话毫不夸张。在人类发展的早期,人类已经开始使用光传递信息了,这样的例子有很多。打手势是一种目视形式的光通信,在黑暗中不能进行。另外,3000多年前就有的烽火台,直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。望远镜的出现则又极大地延长了这类目视形式的光通信的距离。这类光通信方式有一个显著的缺点,就是它们能够传输的容量极其有限。近代历史上,早在1880年,美国的贝尔(Bell)发明了“光电话”。光电话并未能在人类生活中得到实际的使用,这主要是因为当时没有合适的光源和传输介质。然而,我们不得不说,光电话仍是一项伟大的发明,它的出现证明了用光波作为载波传输信息是可行的,因此,把贝尔光电话称为现代光通信的雏形毫不过分。

2.2现代光纤通信技术的形成。

随着社会的发展,信息传输与交换量与日俱增,传统的通信方式已不能满足人们的需要。为了扩大通信容量,通信方式从中波、短波发展到微波、毫米波,这实际上就是通过提高通通信载波频率来扩大通信容量的。继续提高频率,达到光波波段,用光波作为载波进行通信,通信容量将大大超过传统通信方式。要发展光通信,最重要的问题就是要寻找适用于光通信的光源和传输介质。1970年,光纤和激光器这两个科研成果同时问世,拉开了光纤通信的帷幕,所以我们把1970年称为光纤通信的“元年”。

2.2.1光源。

1960年,美国的梅曼(T.H.Maiman)发明了红宝石激光器,它可以产生单色相干光,使高速信息的光调制成为可能。和普通光相比,激光具有波谱宽度窄,方向性极好,亮度极高,以及频率和相位较一致的良好特性。激光是一种高度相干光,它的特性和无线电波相似,是一种理想的光载波。但是,红宝石激光器发出的光束不容易耦合进光纤中传输,其耦合效率是极低的,因此需要研制小型化的激光光源。1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55 的连续振荡半导体激光器。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。

2.2.2传输介质。

2.2.2.1大气。

1961~1970年,人们主要研究利用大气传输光信号。美国麻省理工学院利用He-Ne激光器和 激光器进行了大气激光通信试验。试验证明用承载信息的光波通过大气的传播实现点对点的通信是可行的,但是大气传输光通信存在很多严重的问题:(1)通信能力和质量受气候影响十分严重。(2) 大气的密度和温度很不均匀,造成折射率的变化,加上大气湍流的影响,光束位置可能会发生偏移和抖动。(3)大气传输设备要求设在高处,收、发设备必须直线可见。这种地理条件使得大气传输通信的适用范围具有很大的局限性。

2.2.2.2光纤。

为了发展光通信技术,人们又考虑和尝试了各种传输介质,其中包括利用玻璃材料制成光导纤维来传输光信号,但是当时最好的光学玻璃材料的损耗在1000dB/Km以上,这么高的传输损耗根本就无法用于通信。1966年,美籍华人高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了光纤通信的基础。1970年,光纤研制取得了重大突破。美国康宁(Corning)公司研制成功损耗20dB/Km的石英光纤。与此同时,为促进光纤通信系统的实用化,人们又及时地开发出适用于长波长的光源,即激光器、发光管和光检测器。应运而生的光纤成缆、光无源器件、性能测试及工程应用仪表等技术的日趋成熟,都为光纤光缆作为新的通信传输媒质奠定了良好的基础。1981年以后,世界各发达国家将光纤通信技术大规模地推入商用。历经20余年的突飞猛进的发展,光纤通信速率已由1978年的45Mbit/s(例如美国MCI于1991年开通了Chicago至St.Louis全长275英里的4×10Gbit/s的商用光纤通信系统等)。

3. 光纤通信技术发展的现状

3.1波分复用技术。波分复用技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。

3.2光纤接入技术。光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。

4. 光纤通信发展趋势及前景

(1)超高速系统:传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,而如今要满足社会发展需要,光纤通信应该按照光的时分复用方式进行。

(2)超大容量WDM系统:如果将多个发送波长适当错开的光源信号同时在一路光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。

(3)全光网络:WDM波分复用技术的实用化,提供了利用光纤带宽的有效途径,使大容量光纤传输技术取得了突破性进展。点到点之间的光纤传输容量的提高,为高速大容量宽带综合业务网的传输提供了有效途径,而传输容量的飞速增长对现存看交换系统的发展产生了压力。全光网络是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在。因为在整个传输过程中没有电的处理,所以PDH、SDH、ATM等各种传送方式均可使用,提高了网络资源的利用率。

5. 结束语

光纤通信的应用给人们带来了一场信息的革命。是整个社会进入了一个信息高速发展的时代。而光纤通信带给我们的不仅仅是高速,还有更为客观的前景,它将带给我们无尽的方便。电话网络系统,电视网络系统和计算机网络系统在不远的未来,必将由于光纤通信的高速发展而完美的结合起来,那将是光纤通信给人们带来的第二次震撼。

参考文献

[1]刘增基,周洋溢,胡辽林,周绮丽编著.光纤通信.西安:西安电子科技大学出版社,2001.8.

[2]Joseph C,Palais著;王江平等译.光纤通信(第五版).北京:电子工业出版社,2006.1.

第15篇

关键词:光纤通信;理论教学;实验教学

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2017)08-0167-03

当代信息高速公路的骨干网络是由光纤通信网络构成的,若没有光纤的发明及相关有源和无源光纤器件的发明和发展,当今的高速信息网络是无法想象的。但是当今信息产业的高速发展得益于微电子学、光电子学、计算机技术及通信工程等多门学科的快速发展及它们之间的交叉融合。因此,要想成为一名信息技术领域的电子信息工程师、计算机工程师或通信工程师,除了需要掌握本专业的课程知识以外,也应该熟悉现代信息技g的其他相关主要知识,比如光纤通信网络及其相关器件等。本文从光纤通信技术的研究内容、应用及发展等方面说明其在电子信息工程专业教育中的重要性,并研讨电子信息工程专业中的光纤通信课程的理论和实验教学方法。

一、光纤通信技术简介

1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器[1],给光通信带来了新的希望。和普通光相比,激光具有波谱宽度窄,方向性极好,亮度极高,以及频率和相位较一致的良好特性。激光是一种高度相干光,它的特性和无线电波相似,是一种理想的光载波。继红宝石激光器之后,氦―氖(He-Ne)激光器、二氧化碳(CO2)激光器先后出现,并投入实际应用。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。

1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了现代光通信――光纤通信的基础[2]。在以后的10年中,波长为1.55μm的光纤损耗:1979年是0.20 dB/km,1984年是0.157 dB/km,1986年是0.154 dB/km,接近了光纤最低损耗的理论极限。1970年,作为光纤通信用的光源也取得了实质性的进展。1977年,贝尔实验室研制的半导体激光器寿命达到10万小时(约11.4年),外推寿命达到100万小时,完全满足实用化的要求。由于光纤和半导体激光器的技术进步,使1970年成为光纤通信发展的一个重要里程碑之年。在今后的几十年中,光纤通信网络的逐步商用化带动了相关信息产业链的蓬勃发展[3]。

由于在光纤通信系统中,作为载波的光波频率比电波频率高得多,而作为传输介质的光纤又比同轴电缆或波导管的损耗低得多[4],因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。综上所述,可见光纤通信技术在现代信息产业技术中的重要地位,因此,光纤通信技术这门课程不仅是光学工程专业的基础必修课程[5],也应该作为电子信息工程专业的专业选修课程来开设。

二、光纤通信课程教学研究

(一)光纤通信课程的理论教学

电子信息工程专业的光纤通信课程的理论知识可以分为四个相互关联的层次和内容,它们分别是:第一部分,光纤技术的基础;第二部分,光纤通信器件技术基础;第三部分,光纤通信系统和网络;第四部分,光纤与光纤通信系统测量。这四个部分的关系层层递进,逐渐深入。理论学时总共32学时。

第一部分,光纤技术的基础。可以先讲解光纤通信技术的一些概念性和历史性的知识,比如:电信技术的发展,光通信的必要性及技术基础,光纤通信技术的历史、现状与未来。此处,可详细介绍人类对光通信探索的历史及现代光纤通信技术从学术研究到商业应用的发展里程,并附带介绍微波通信的发展里程,然后通过比较使用光波进行通信和使用微波进行通信的优缺点及使用光纤材料和使用同轴电缆进行通信的优缺点,让学生了解光纤通信的巨大优势。然后可以简单介绍光纤传输的基础理论――电磁场与电磁波理论中的一些基本概念和现象,重点介绍麦克斯韦方程。最后介绍光纤的模式理论、光纤的结构和类型、光纤的传输特性、光纤制造技术与光缆等知识。其中,光纤传输特性包括光纤的损耗特性和色散特性,这是该部分的重点知识。总之,笔者认为,第一部分内容的讲解方法和手段是非常重要的,不宜讲得深奥,而应该结合动画或者视频讲解光纤的传光原理,使学生易于接受,才能提高学生对这门课程的兴趣,从而继续学习往后部分的相对枯燥的知识。该部分学时安排为6H。

第二部分,光纤通信器件技术基础。这部分讲述光纤通信系统中的有源和无源光通信器件,这些器件是构成一个完成的光纤通信系统必不可少的部件,学好这部分内容有利于理解后面学习的光纤通信网络的内容。这部分内容包括:基本光纤器件、光学滤波器、光纤放大器和半导体光电子器件。基本光纤器件包括分波/合波器、光纤活动连接器、光隔离器、环形器和衰减器等;光学滤波器的内容包括Fabry-Perot滤波器、介质膜滤波器、HiBi光纤Sagnac滤波器、Mach-Zender型滤波器、光纤光栅等;光纤放大器的内容包括:掺饵光纤放大器(EDFA)、光纤Raman放大器等。半导体光电子器件的内容包括:普通的半导体激光器(LD)和发光二极管(LED)、FP型双异质结构激光器、动态单纵模激光器、半导体光放大器(OSA)、PN结光电二极管、PIN光电二极管、APD雪崩光电二极管等。对于每一个光纤器件,讲解内容包括这些光纤器件的结构、工作原理、具体参数、应用场合等,应结合动画或者视频讲解,甚至如果有条件的话,可以在课题上带上一些体积很小的光纤器件实物给学生讲解,比如光纤活动连接器、LD、LED、光纤光栅、PIN光电二极管价格便宜、体积小的光纤器件。该部分学时安排为10H。

第三部分,光纤通信系统和网络。这部分是本门课程的核心和精华部分,包括光纤传输系统、光纤通信网、全光网技术及其发展三大部分。其中,光纤传输系统的内容包含:光纤传输系统的基本组成、光发送机组件、光接收机组件、光放大噪声及其级联、色散调节技术、光纤传输系统设计、光纤传输系统性能评估。光通信网络的内容包含:通信网的拓扑结构和分类、准同步数字系统(PDH)、同步数字系统(SDH)、异步传输模式(ATM)、互联网协议、光纤通信网的管理/保护/恢复。全光网技术及其发展的内容包含:通信网络的发展过程、全光网络中的传输技术(WDM、OTDM、OCDMA和分组交换技术)、无源光网络(G-PON、E-PON、WDM-PON)、光传送网(G.709OTN)、自动交换光网络、全光网的网络管理、全光网的安全问题。对于每一种光纤网络技术,讲解内容包括这些光纤网络结构、功能、应用场合等,应尽量使用PPT的图片、动画进行讲解,PPT上要尽量避免文字上描述。该部分学时安排为12H。

第四部分,光纤与光纤通信系统测量。该部分主要介绍光纤通信工程实施、检测中一些常用的设备和仪器,在本门课程的实验教学中都要使用到这些设备,是培养光纤通信工程师的基础技能知识部分。该部分的内容包括:光功率计的使用、光纤几何参数的测量、光纤衰减测量、光纤色散测量、光纤偏正特性测量、光纤的机械特性和强度测量、光时域反射计(OTDR)的使用;光接收机灵敏度和动态范围的测量、光纤通信系统误码率和功率代价的测量、眼图及其测量、光谱分析仪、光纤通信系统的在线监测技术。其中,重点讲解光功率计、OTDR、眼图示波器、光谱分析仪等仪器设备的功能和使用方法。该部分学时安排为4H。

(二)光纤通信课程的实验教学

对于电子信息工程本科专业而言,毕竟培养的学生不属于光学工程或光电子技术领域的人才,而且电子信息工程专业本身都有很多属于自己专业的实验课程及课程设计,因此,笔者认为光纤通信技术课程的实验教学应根据该专业学生的理论基础和将来他们最可能需要的工程能力而设置。因而,笔者建议光纤通信课程的总学时设置为48学时,理论教学学时为32学时,7个实验的教学学时为16学r。

根据笔者10年来给电子信息工程专业本科学生讲授这门课的经验,认为具体的实验课程设置如下。

1.插入法测光纤的平均损耗系数。采用插入法测量待测光纤在1310nm和1550nm处的平均损耗系数。掌握插入法测量光纤损耗系数的原理,熟悉光纤多用表的使用方法。学时设置为2个课时。

2.光时域反射计(OTDR)测光纤链路特性。用光时域反射计测量光纤链路的平均损耗、接头损耗、光纤长度和故障点位置。了解光时域反射计工作原理及操作方法,学习用光时域反射计测量光纤平均损耗、接头损耗、光纤长度和故障点位置。学时设置为2个课时。

3.光波分复用(WDM)系统实验及其误码率测量构建1310nm/1550nm光纤波分复用系统并测试其误码率,了解光波分复用传输系统的工作原理和系统组成熟悉误码、误码率的概念及其测量方法。学时设置为2个课时。

4.数字光纤通信系统信号眼图测试。构建数字光纤通信系统并且用数字示波器观测系统的信号眼图,并从眼图中确定数字光纤通信系统的性能。了解眼图产生的基础,根据眼图测量数字通信系统性能的原理;学习通过数字示波器调试、观测眼图;掌握判别眼图质量的指标;熟练使用数字示波器和误码仪。学时设置为3个课时。

5.光纤切割与焊接技术演示实验。利用全自动熔接机向学生演示光纤熔接的全过程,了解光纤的结构和光纤电弧放电焊接原理;了解全自动焊接光纤的过程和使用方法。学时设置为2个课时。

6.光纤光栅光谱特性测试系统的设计实验。测量光环行器的插入损耗、隔离度、方向性、回波损耗参数;利用PC光谱仪、光环行器和光纤光栅设计光纤光栅光谱特性的测试系统;了解光环行器的工作原理和主要功能;了解光环行器性能参数的测试原理;了解光纤光栅的光谱特性;学习PC光谱仪的使用方法。学时设置为3个课时。

7.光带通滤波器的设计。测量光耦合器的插入损耗、分光比和附加损耗等参数;利用光耦合器或者光环行器和光纤光栅设计光带通滤波器。了解2X2光耦合器的工作原理,了解光耦合器各项参数的测试方法。学时设置为2个课时。

通过以上实验课程,能够使电子信息工程本科学生对光纤通信系统的基本器件、基本测量系统等有一个比较感观的认识,而且能够更加深刻地掌握它们工作的基本原理和基本特性,为将来在具体的工程设计及进一步深造中奠定基础。

三、结束语

光纤通信技术在国家的信息产业、国防工业中具有举足轻重的地位,电子信息技术与光学信息技术的结合也越来越紧密。对于当今的电子信息工程专业的学生而言,除了需要掌握本专业牢固的知识和技能以外,了解和掌握光纤通信技术的基础知识和相关的技术发展趋势也是必不可缺的。本文通过对电子信息工程专业特点和光纤通信课程内容的分析,讨论了该门课程与该专业的内在联系,分析其重要性,并根据笔者10年来在重庆理工大学电子信息工程专业讲授该门课程的经验,提出了本门课程在电子信息工程专业中的理论及实验的教学内容、教学重点、教学方法及课程设置等方面的一些意见和建议。

参考文献:

[1]高D.激光技术应用现状与分析[J].物理通报,2007,(11):50-52.

[2]龙泉.光通信发展的回顾与展望电信网技术[J].2008,(2):30-32.

[3]曲鹏.光纤通信技术的应用及展望[J].硅谷,2014,7(24):2-2.