前言:我们精心挑选了数篇优质工业废水论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
对煤制天然气废水中酚和氨的处理不仅能够减少资源的浪费,而且能够在一定程度上降低之后的处理难度。一般来说,对煤制天然气废水的预处理主要包括脱酚以及脱酸。
1.1脱酚煤制天然气废水中含有一定量的酚类物质,目前使用较多的是溶剂萃取脱酚技术,如果单一的溶剂萃取脱酚技术不能满足要求的话,可以和水蒸气脱酚法相结合。目前国内溶剂萃取脱酚技术采用的原料主要是二异丙基醚或乙酸丁酯等物质,例如如果采用鲁奇加压气化工艺进行煤制天然气的生产,那么相应的,其溶剂萃取脱酚技术使用的脱酚溶剂应该是异丙基醚。实际情况证明,采用异丙基醚对煤制天然气废水进行脱酚,脱酚后废水中酚的含量能够低于0.6g/L。
1.2脱酸除了对煤制天然气废水进行脱酚以外,其预处理工艺还包括脱酸。脱酸简而言之就是对煤制天然气废水中含有的CO2、H2S等酸性物质进行分离。需要注意的是,在实际的脱酸操作中,一定要考虑到CO2、H2S等酸性分子在遇水后会出现弱电离现象,弱电离会导致煤制天然气废水的脱酸效率下降。因此,在实际的脱酸操作中,排放CO2、H2S等酸性气体时尽量做到向上排放,即将其从脱酸塔顶部进行排出,而且还要对脱酸塔顶部的温度进行控制,这样才能把部分游离的氨分子留在酚水中,将酸性气体排出。
2.生化处理技术
所谓的生化处理技术指的是通过对微生物自身存在的新陈代谢作用加以利用,对污染物进行分解并且对其进行转化,使之最后能够成为二氧化碳等物质。目前我国煤化工废水处理,普遍采用改进后的好氧生化处理技术,主要包括两方面工艺,分别是SBR技术以及PACT技术。由于煤化工废水中存在着联苯等比较难降解的有机物,这些有机物在好氧生化处理技术中难以降解,需要采用厌氧生物处理技术进行处理。此外,一些煤化工废水成分十分复杂,可采用厌氧和好氧工艺相结合的方式处理煤化工废水。
2.1SBR工艺SBR工艺的优势,简单来说就是能够保证整个生物反应器中好氧和厌氧环境不断交替。通过两者不断交替,保证整个生物反应器能够获得较为多样化的生物菌群和耐冲击负荷能力。除此之外,SBR工艺还能够保证生物反应器能够处理一些有毒或者高浓度煤制天然气的能力。以我国中部地区某煤化工业废水处理厂为例,该厂采用的就是SBR工艺。通过对整个生物反应器的相关装置(如:曝气、温度、加碱装置)进行改造,从而提升了鲁奇工艺处理煤制天然气废水的能力。
2.2好氧生物膜法相比SBR工艺,很多煤化工业废水处理厂采用更多的是好氧生物膜法。好氧生物膜法的优势在于菌群的生长方式。通过对优势菌群的筛选,可以实现对煤制天然气废水中污染物的降解,特别是对一些传统工艺降解起来较为困难的有机污染物,其效果更加明显。我国西南某煤化工业废水处理厂采用的就是好氧生物膜法,实践证明,好氧生物膜法能够有效做到对煤制天然气废水中COD、酚以及氨氮污染物的去除,而且其具有较高的缓冲能力。2.2.3深度处理技术在对煤化工废水进行生化处理后,废水中仍然存在一些少量难降解污染物,在一定程度上使色度难以达到排放标准,需要采用深度处理技术。当前主要采用方法包括了混凝沉淀法以及高级氧化法等。
3.煤化工废水处理存在的不足和展望
由于煤化工废水中含有的有机物的浓度比较低,需要采取有效措施对废水的氨氮加以去除,随着排放标准提高,需要对生化水进行深度处理。由此可见,深度处理已经成为未来十分重要的研究方向,在实际深度处理过程中技术选择有十分重要的意义。当前我国进行产业投资的一个重点就是煤制天然气,但是对于煤制天然气废水处理技术的研究还存在着不足,因此相关的人员要加强对于高浓度废水处理技术的研究力度。
4.结语
关键环节一:根据制革废水的上述水质,可以看出,其悬浮物浓度相当高。主要是动物皮屑、毛、泥砂等。首先,其处理采用以生化为主,并辅以物化处理是正确的,因其生化性较好,B/C=0.4~0.5,宜采用生化处理作为制革废水的主处理工艺。此处的物化处理是指在生化处理之前的预处理,这一点对制革工业废水处理至关重要。在无极县部分制革工业企业中,其皮革工业废水治理初始阶段,工艺设计中,忽略了预处理环节,导致运行失败。由于在生化处理单元前没有设足够停留时间的沉淀池或气浮池,使原水中的高悬浮物随同原水一并进入生化处理单元,从而严重地影响了生化处理效果。
当废水中含有较高的悬浮物时,悬浮物会隔离微生物与废水中有机污染物的接触,从而影响微生物对水中BOD的吸附和降解,进一步造成生化处理效率下降。因此,制革工业废水(包括皮革、裘皮、羊绒加工等废水)的处理,必须强化生化处理单元之前的物化预处理,这是很重要的一个处理环节。关键环节二:如前所述,皮革工业废水含盐量较高,特别是Ca2+浓度,这是皮革废水另一个特点。
皮革废水的生化处理单元是采用活性污泥法还是采用生物膜法,这也是一个关键环节,在这里存在一个误区。活性污泥法常应用于市政污水处理,而生物膜法则常应用于工业废水处理,特别是生物接触氧化法。生物接触氧化处理工艺具有如下优点:(1)使水力停留时间HRT与污泥停留时间SRT完全分离,虽其水力停留时间HRT相对较短,生活污水HRT约2h~4h,但污泥停留时间SRT却很长,可以达到30d,甚至更长至60d。(2)BOD(或COD)容积负荷率比活性污泥法高得多,因此生物接触氧化法单位容积的生物量比活性污泥法大得多。一般活性污泥法VSS为3.0kg/m3~3.5kg/m3,而生物接触氧化法VSS为7kg/m3~12kg/m3,因此,其负荷率为活性污泥法的2~3倍,相应其容积占地面积生物接触氧化法要比活性污泥法小得多。(3)生物接触氧化法既适合低浓度有机废水处理也适合高浓度有机废水处理,而活性污泥法,对低浓度有机废水处理效果甚微。实践证明,当废水COD及BOD浓度较低时,COD<100mg/L,BOD<50mg/L时,微生物会因食料不足,而形不成菌胶团,只能成单体状态存在于水中。基于上述优点,生物接触氧化法在工业废水处理中得到了广泛的应用,如印染废水、焦化废水、食品废水、淀粉废水、啤酒废水等。根据上述生物接触氧化法的优点,制革工业废水采用生物接触氧化法是顺理成章的事,但运行实践证明这是一个误区。
由于皮革废水中含盐量较高,其中Ca2+含量也很高,如采用填料式生物接触氧化法,会使填料上逐渐结成矿化物垢,而且逐渐增厚,此种矿物垢对生物膜起到抑制作用。而这种矿物垢人工无法清除,从而使废水处理效果愈来愈差,甚至填料上的生物膜完全脱落。近期的两例革园区污水处理,由于上述原因而导致运行失败。综上所述,皮革废水的生化处理,应采用活性污泥法,切忌采用填料式生物膜法。
二、结论
1.制革工业废水应强化预处理,用混凝沉淀或混凝气浮法将悬浮物予以去除,以免影响生化处理效率。
UASB即为上流式厌氧污泥床,也叫厌氧水解反应器,是集沉淀、吸附和生物絮凝等物理化学过程,以及水解酸化和甲烷化过程等生物降解功能于一体的综合反应器。厌氧反应器由污泥反应区、三相分离器(气、液、固)和气室三部分组成。厌氧生物处理化学过程为水解酸化、产酸、产甲烷3个阶段。UASB厌氧反应器的基本工作原理为:首先,在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和絮凝性能的污泥在下部形成污泥层。污水从厌氧污泥层底部流入与污泥混合在以前,污泥中的微生物把废水中的有机物分解成甲烷,这是一种把污水转化为气的过程。该气体不断分离上升,最初以微小气泡的形态从污泥层中放出,在上升过程中不断合并,气泡逐渐变大,在污泥层上部由沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器。然后,气泡通过与三相分离器下部接触,分离器下部的反射板折向反射板的四周,然后穿过水层进入气室。进入到气室的甲烷用导管导出,固液混合液经过反射进入三相分离器的沉淀区。废水中的污泥层发生絮凝,颗粒在逐渐的变大,在重力作用下沉淀到分离器的厌氧反应区。在厌氧反应器处理污水过程中,可以看出,先是在污泥反应区,通过污泥层中的微生物完成了水解酸化。厌氧水解反应器中大量微生物进行水中颗粒物质迅速截留和吸附,截留下来的物质吸附在污泥表层。在大量水解细菌、产酸菌作用下,将废水中不溶性有机物分解出来,这个过程就是产氧产酸的过程。同时在分离水分子的过程中也产生了甲烷小气泡,小气泡穿过污泥层不断上升,上升过程中形成大气泡,最后到达厌氧反应区。甲烷也是不可多得了有机气体,是可很好利用的。分离出来的有机物进行二次利用,符合资源再利用的原则。
2SBR工艺在酒精废水处理中的应用观察
SBR工艺是序批式活性污泥法的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。该操作功能改造了原有活性污泥主反应区对厌氧断出水进行好氧处理,进一步去除废水中的污染物物。运行方式相对来说比较灵活,能够适应各式不同的废水处理要求,不仅限于酒精废水的处理。它的运行周期一般包括进水期、反应期、静置期、排水期和闲置期5个基本阶段。SBR工艺需要与UASB工艺结合使用,UASB反应池的水必须进行二次处理才能达到废水排放标准。SBR工艺正好完成了UASB的这一要求,UASB的出水进入到SBR工段,这是一个好氧处理过程,在这里碳源有机物和氨氮类有机物得到了很大程度上的处理。SBR相对其他传统废水处理工艺,有生化反应速度快、处理效率高、运行灵活、操作简单的几大特点。它最大的特点就是能大量脱离氨氮类有机物,通过静止沉淀,分离出大量有机物,出水水质不仅达标还相对较好。
3UASB+SBR工艺效果显示
本文通过对该酒厂进行了实例研究,取用酒厂废水50m?/d进行研究。酒精生产过程中废水首先是洗药材产生的泥沙等悬浮物,可用沉淀的方法率先把其去除。然后投放混凝剂PAC及絮凝剂PAM,使沉淀物形成絮凝物通过斜管进入沉淀池,从而清除洗涤后产生的杂质。出水在经过石英砂过滤器进行过滤,达标排放。调节池搭配水井,收集污水,减少流量变化给污水处理系统带来的冲击,调节池设置搅拌、混合装置,为使调节池出水水质均匀,防止杂质沉淀。UASB工艺的使用,在底部反应区内存留大量厌氧污泥形成污泥层,需处理的污水从厌氧污泥层底部流入与污泥混合,污泥中的微生物分解污水中的有机物,形成沼气。沼气以微小气泡形式不断放出、上升,上升过程形成较大气泡,进入三相分离室碰到下部折射板,折向四周穿过水层进入气室,再将其用导管导出。这时固液混合液进入三相分离器的沉淀区,污泥发生絮凝在重力作用下沉降,沉淀的污泥降到厌氧反应区内,而分离后的处理水从沉淀区溢出,排出污泥床。此中设计了四座UASB反应器(并联两级),每座尺寸均为:φ3.3×6.5m。UASB反应器处理完成后进入SBR反应器,SBR反应器为间歇性进水并自流入SBR反应器,因此在SBR反应器进水前设置配水井,配水井安装自动阀门控制水量和时间。SBR反应器间歇曝气方式来运行活性污泥污水处理技术,设置鼓风机为SBR反应器供氧,使微生物好氧分解代谢有机物,降低有机物浓度达到排放标准。经过处理的污水由原来的:CODcr=18000mg/L,BOD5=10000mg/L,SS=200mg/L,经过处理为CODcr=98mg/L,BOD5=20mg/L,SS=70mg/L。通过实例研究可以表明,UASB+SBR+沉淀过滤工艺出水能够达到设计要求,满足废水排放标准。简单来讲,是一种厌氧水解+好氧的废水处理过程。厌氧水解处理过程无需曝气,运行费用少;SBR工艺操作简单,管理方便,投资省。UASB+SBR工艺对COD及BOD去除率较高,在一定程度上解决了酒精废水处理工艺中存在的设备投资大、运行费用高的问题。另外,UASB+SBR工艺不仅减少了设备投资和运行的费用,该工艺产生的沼气可满足设备自身用电需求,还将有大量剩余沼气可用于该处理厂其他用电,或是家庭用电。在处理过程中产出的大量有机物也可作为饲料供给养殖户,有机污泥也可用于农业开发。这样的处理方式,不仅使污水达到了排放标准,还产生大量有机物可二次利用。从经济学角度出发,设备成本低,而且还将产生大量有机物可再次创造收益,无疑是一个值得选择和提倡的酒精废水处理工艺。
4结语
1.1实验原理在强酸溶液中,样品在重铬酸钾氧化剂及复合催化剂作用下(若样品中含有氯离子,则需加入掩蔽剂硫酸汞),于165℃催化消解样品10min,重铬酸钾被水中有机物还原为三价铬,在波长610nm处测定三价铬含量,根据三价铬的含量换算出消耗氧的质量浓度。
1.2实验步骤(1)打开消解器开关,选择“COD消解”消解器自动升温,达到设定温度后自动报警器提示,按任意键停止提示;(2)准确移取2.5mL脱盐水加入到“0”号反应管中,然后分别移取水样一次加入到反应管中,最后加水补至2.5mL;(3)依次向各反应管中加入2滴掩蔽剂,1mL氧化剂和5mL催化剂,并盖盖摇匀;(4)取下盖子,一次放入消解器消解孔中,按下“消解”键并盖上防喷罩,消解计时结束后仪器会报警提示;(5)将反应管取出冷却2分钟,依次向各反应管加入2.5mL水并混匀,然后放入水中冷却至室温;(6)比色:打开比色系统开关,并预热10分钟,按“测量”键进入测量;
1.2.1比色管比色:(1)按“高量程”并按“确定”键选择高量程模式,在高量程模式下按“比色管”并按“确定”键选择管比色方式,确认曲线号为HT-01;(2)先将比色管架四角朝上放入高量程比色池,将空白管放入比色管架中,稍停顿2~3秒,读数稳定后按“空白”键使屏幕显示“C=0.000mg/L”否则重按“空白”键。(3)依次将样品反应管放入比色管架中,等数值稳定后所显示的数值即为COD值。
1.2.2比色皿比色:(1)按“高量程”并按“确定”键选择高量程模式,在高量程模式下按“比色皿”并按“确定”键选择皿比色方式,确认曲线号为HC-01;(2)空白倒入3cm比色皿中,放入高量程比色池,稍停顿2~3秒,读数稳定后按“空白”键使屏幕显示“C=0.000mg/L”否则重按“空白”键。(3)依次将样品倒入比色皿中,然后放入高量程比色池等数值稳定后所显示的数值即为COD值。
2结果与讨论
2.1两种试剂的准确度对比(1)标准曲线制作:分别准确移取1.12.10mL、0.1mL、0.25mL、0.5mL、1.0mL、2.0mL、2.5mL于两组消解管中,加水至2.5mL,分别记为0、1、2、3、4、5、6和0’、1’、2’、3’、4’、5’、6’。相当于0mg/L、40mg/L、100mg/L、200mg/L、400mg/L、800mg/L、1000mg/L标准COD值。向0-6加入专用试剂,向0’-6’加入自制试剂,以下步骤同样品测定。(2)根据测得的结果计算其回收率,判定两种试剂的准确度,结果见表1。由表1可知,两种试剂制得的标准曲线回收率都在99%~101%,说明两种试剂的都有很好的准确度。
2.2两种试剂测定样品的精密度为了验证自制试剂和专用试剂具有同样的精密度,通过使用两种试剂测定同一组样品所得结果计算其精密度。结果见表2。由表2可知,测定的相对标准偏差小于2%,说明自制试剂与专用试剂测定的结果精密度较高,自制试剂可以代替专用试剂测定污水COD。
3结论
采用移动车式半固定处理法对火力发电厂工业废水进行处理主要是通过将处理工业废水的主要设施和设备集中在移动车上,然后再另外适当敷设少量的固定管线,在需要进行工业废水的处理工作时,可以将移动车运到工业废水现场,随时进行废水处理。这种移动车式半固定火力发电厂工业废水处理系统具有维修方便、管理方便、操作灵活、安全可靠的特点。该系统的投资仅仅是相同容量火力发电厂工业废水处理费用的四分之一左右。因此,移动车式半固定处理法已经逐步被应用于国外电厂的工业废水处理中[3]。目前,日本已经在扩大生产这类设备,在我国电厂中得到广泛推广与应用,并取得了非常有效的效果。近年来,我国也在努力研制这种产品,以期研制出更加符合我国国情的移动车式工业废水处理系统。
2火力发电厂工业废水处理的资源化技术研究
2.1锅炉清洗废液处理技术锅炉清洗废液是火力发电厂运行锅炉周期性清洗和新建锅炉清洗时排放的钝化废液和酸洗废液的总称。其污染物浓度变化非常大,浓度非常高,且排放时间非常短,如果不对其进行处理而直接排放,会对环境造成非常严重的影响。酸洗废液中含有大量的溶解物质和钝化剂、缓蚀剂及游离酸[4]。目前,锅炉清洗废液处理方法有活性污泥法、化学处理法、吸附法及化学氧化分解法。
2.2酸碱再生废水处理技术火力发电厂的离子交换设备在冲洗和再生过程中,会产生一部分再生废水,虽然这部分废水的水量不会很大,大约是处理水量的百分之一,但是水的质量非常差,且含有大量的有机物以及酸性物质和碱性物质。目前,大多数火力发电厂通常采用中和池来对再生过程中所排放的废酸液和废碱液进行处理。由于受到各种不确定因素的影响,如每周期再生时所排放的酸性物质和碱性物质、阴阳离子交换器的运行周期不同步、酸碱中和反应的非线性特性等等,使得中和池的运行效果非常不理想,需要很长的中和时间、且排水的pH值很不稳定[5]。针对酸碱再生废水中的有机物处理,由于难以控制中和废水池的PH值超标问题,使得国内许多火力发电厂已将中和废水引入冲灰系统,排进冲灰管路,直接由灰将泵排入灰厂。
3结语
1、污染问题
工厂是一个生产作业的集中区域,其涉及到多种工业化产品,因而最终产生废弃物类别也是多重多样的。从环境监测结果分析,工厂废水可导致大面积水域污染,水质恶化、污染物超标、水生植物无法生长等,这些都是工厂周边区域普遍存在的问题。水资源是人类社会活动不可缺少的元素,水资源污染将对社会环境、人居生活、产业发展等造成诸多不利影响。
2、标准问题
为了整顿工业经济发展秩序,国家对各类生产区域实施项目规划,要求工厂建立科学的环境监测体系,帮助企业解决现实生产中遇到的污染问题。实际监测发现,废水环境监测缺少明确的标准参数,对工厂监测内容达不到预定标准,影响了环境治理决策的有效性。目前部分国家重点源监测项目与行业标准污染物项目不一致,如制糖、造纸、城镇污水处理厂等。
制糖行业监测项目监测分类监测项目重点污染源pH值、色度、COD、BOD5、氨氮、石油类、流量行业标准污染物基本控制项目pH值、COD、BOD5、氨氮、SS、总氮、总磷、单位产品(糖)基准排水量
3、治理问题
监测是为了更好地治理环境,对环境监测中发现的质量问题,工厂并没有及时采取措施处理,导致废水污染面积逐渐扩大化,对新水域产生了更多的危害性。总结原因,多数工厂从运营成本角度考虑,对环境治理未投入足够的出污费用,废水问题无法从根本上得到解决。另一方面,环境监测机构职能不健全,现阶段难以达到预定的监测指标,这些都阻碍了废水监测与治理工作。
二、基于监测结果的废水处理方法
水资源是人类长期生存与发展的根本,注重水资源保护是科学发展观要求。考虑到工业经济的重要性,以及工业化发展带来的环境污染问题,必须强化工厂废水治理力度,为工厂建立更加全面的废水治理方案。当钱,废水治理技术包括:物理法、化学法、生物法等,可根据工厂内设备建立针对性的监测处理方案。
1、物理法
废水处理方法的选择取决于废水中污染物的性质、组成、状态及对水质的要求。一般废水的处理方法大致可分为物理法、化学法及生物法三大类,利用物理作用处理、分离和回收废水中的污染物,这是物理法应用的基本原理,对工业废水过滤起到了基本净化作用。工厂可设计相对规模的生态绿化池,按照工厂生产规模定期回收废水,通过净化池处理后完成净化作用。
2、化学法
利用化学反应或物理化学作用回收可溶性废物或胶体物质,利用化学反应原理执行有效的净化处理方案,这样可以避免废水处理中出现的异常问题。例如,中和法用于中和酸性或碱性废水;萃取法利用可溶性废物在两相中溶解度不同的“分配”,回收酚类、重金属等;氧化还原法用来除去废水中还原性或氧化性污染物,杀灭天然水体中的病原菌等。
3、生物法
利用微生物的生化作用处理废水中的有机物,要求在废水池中设置生物过滤系统,及时清除水中有害物质,避免废水排放后对周围水域产生污染作用。例如,生物过滤法和活性污泥法用来处理生活污水或有机生产废水,使有机物转化降解成无机盐而得到净化。生物法处理要注意考察工厂类型,不同工厂所用方法存在差异性,选择合适方式进行处理以保证净化效果。
三、结论
关键词:生化+臭氧氧化+生化,污水处理,DCS系统,甲基纤维素,乙基纤维素,污水处理调试,运行成本
1工程背景概述
生化处理工艺运行成本低,非常适合水量大、可生化性强的市政污水的处理,是现有污水处理中应用最广泛的工艺之一,目前已在市政污水处理厂中得到广泛的应用。但随着工业的迅猛发展,工业废水的排放已成为导致水环境污染与水资源恶化的罪魁祸首。由于工业废水成分复杂、可生化性差,采用单纯的生化处理工艺很难实现达标排放。物化工艺占地面积小,处理效率高,但其高昂的运行成本让许多企业望而却步,一些采用物化工艺的企业由于不能承受如此高的运行费用而弃之不用。为充分发挥生长工艺的成本优势与物化工艺的处理效果,将物化工艺与生化工艺联合使用,经过物化工艺对废水进行预处理后以达到生化系统进水条件的要求,或先经生化工艺处理后在用物化工艺进行技术把关(如活性炭吸附工艺、Fenton法等),可以在保证处理效果的前提下尽量降低运行成本。但如何将两者有机地结合到一起以降低工程投资、节约运行成本,是目前工程实践中的一大难题。
本工程就是在参考国内外大量技术文件、并经实验室小试、现场中试直至现实工程的基础上,摸索出了一套“生化+物化(臭氧氧化)+生化”的三级处理系统工艺,并将生化系统的主要控制参数与臭氧氧化系统的运行状态进行联锁控制环境保护论文,即在最大程度上发挥生化处理系统能力的基础上减少物化的处理程度,对难生化的工业废水具有较高的去除效果和可接受的运行费用。
2原水水量及水质
本废水处理工程主要处理某工厂军品生产线及辅助生产系统(发射药生产线、溶剂回收系统等)和甲基纤维素生产线、乙基纤维素生产线、羧甲基纤维素钠生产线产生的工业废水、清洗水以及厂区和社区的生活污水。
本工程废水处理规模为 12000m3/d,工业生产废水处理规模为 6000m3/d,工厂厂区和社区生活污水 6000m3/d。本工程废水设计进水水质水量见表2-1。
表2-1 设计进水水质水量表
废水种类
排放
方式
排放量
水质mg/L(pH、色度除外)
CODCr
BOD5
Cl-
pH
SS
氨氮
色度
生产废水
连续
6000m3/d
≤3725
≤1860
≤7000
5-6
≤800
≤100
生活污水
连续
6000 m3/d
≤170
≤85
6-9
≤26
≤50
关键词:含盐废水,预处理,超滤
含盐化工废水的处理是工业废水处理中的难点之一。含盐废水的排放带来十分严重的环境污染,特别是工业含盐废水,除本身含有高浓度的无机盐外,还含有大量的有毒难降解溶解性有机物如苯环类化合物和烃类等,此类废水的溶解性有机物含量高,一般物理化学方法难以处理,而生化处理多局限在配水试验,因此,研究工厂实际排放的高含盐废水生物处理的可行性、机理和处理条件是十分必要的[1]。硕士论文,超滤。目前对含盐废水的处理一般有生化降解、蒸发、电解、离子交换、膜法等方法。与其他方法相比,反渗透膜分离技术具有不发生相变、杂质去除范围广、分离装置简单、脱盐效率高等优点。因此其得到越来越广泛地应用。硕士论文,超滤。通常一个完整的脱盐系统由预处理系统与除盐系统组成。常规的预处理手段主要有混凝沉淀、过滤、超滤与微滤等。通过预处理,可以对废水中的污染物进行一定程度的降低,减少污染物对反渗透膜的污染,预处理对于系统的长期安全稳定的运行至关重要,工艺设计的正确与否直接关系到膜元件的寿命,从而影响到操作成本[2]。
本试验采用混凝-多介质过滤-超滤的工艺对进入反渗透系统的高含盐废水进行预处理,以考察其对COD、硬度、TDS、浊度等的去除效果。超滤作为一种高效的水处理技术已被越来越多的应用于工业废水处理[3~4]。
1 试验部分
1.1 试验用水
试验用水取自天津化工厂含盐化工废水。水样水质分析:COD均值为242.45mg/l,硬度均值为2353.35 mg/L,浊度均值为60NTU,TDS均值为7605mg/l,PH范围为9~11。
1.2 分析项目及分析方法
化学需氧量(CODcr):重铬酸钾法;浊度:哈希2100P浊度仪测定;硬度:EDTA滴定法;TDS、pH值:哈希HQ40d多参数测试仪。
1.3 试验工艺流程
本试验采用的工艺流程如下图1所示,原水先进入反应池1,在PAC絮凝的作用下,总溶解性固体(TDS)、化学需氧量(COD)、浊度等得到一定的去除。在反应池2中投加Na2CO3,去除水中的硬度,降低对后续膜系统的负荷,废水再经过多介质过滤装置、超滤系统,进一步去除微生物、悬浮物和胶体等杂质。
论文关键词:外商直接投资,环境库兹涅茨假说,污染天堂假说
一、引言
随着经济发展,全球环境的承载压力越来越大。经济学家也密切关注环境质量变化。Grossman和Krueger(1991)提出Envieonment Kuznets Curve(EKC)假说,即环境质量随着经济的增长呈现出先增大后缩小的关系,即呈倒U型曲线关系,[1]。
环境竟次理论是指不同国家或地区间对待环境政策强度和实施环境标准的行为类似于“公共地悲剧”的发生过程,每个国家都担心他国采取比本国更低的环境标准而使本国的工业失去竞争优势。因而,国家之间会竟相采取比他国更低的环境标准和次优的环境政策项目管理论文,结果是每个国家都会采取比没有国际经济竞争时更低的环境标准,从而加剧全球环境恶化。
“污染天堂假说”认为在一国单方提高环境标准的情况下,国内企业和环境标准低的外国企业相比失去其竞争优势,从而使高环境标准国家的企业将生产转向低环境标准国家。若在实行不同环境政策强度和环境标准的国家间存在自由贸易,实行低环境政策强度和低环境标准的国家,因外部性内部化的差异而使该国企业所承受的环境成本相对要低。在该国进行生产时,其产品价格就会比在母国生产出同样产品的价格相应要低。因此,该国在投资和生产方面具有更大的优势。这种由成本差异所产生的“拉力”会吸引国外的企业到该国安家落户。
Eskeland 和 Harrison (2003)认为污染密集型的外资企业运用的生产和污染消除技术通常比东道国本地的企业更先进和更有利于改善环境。如果这些企业能够替代部分东道国同行业低效生产的企业, 则东道国的整个污染状况将有可能好转[2]。郭红燕和韩立岩实证研究发现中国的FDI存量与环境管制变量呈正相关,表明中国宽松的环境管制是吸引外商直接投资的一个重要因素,显现出 “污染避难所”效应 [3]。
二、变量选取及模型构建
(一)东部和中部的FDI区域分布
改革开放以来,中国吸收外商直接投资数量增长迅速。1979-1984年总计41.04亿美元,而后从1985年的19.56亿美元快速增长到2008年923.95亿美元,1979-2008年累计达8526.13亿美元。2007年东部和中部地区利用FDI所占比重分别为78.27%、15.30%。[4] 2008年中国引进的外商直接投资为923.95亿美元, FDI主要集中于东部地区,主要集中于东部地区项目管理论文,东部地区主要集中于江苏、广东、山东、浙江、上海、福建和辽宁,2008年广东、江苏、浙江、上海的FDI的总额为543.7104亿美元。东部地区引进的外商直接投资中,江苏为251.2亿美元、广东为191.27亿美元、辽宁为120.2亿美元,上海、浙江、福建分别为100.84亿美元、100.729亿美元、100.256亿美元(见图1-图3),江苏和广东占2008年中国外商直接投资的47.93%。中部地区主要集中于湖南、江西和湖北。但2007年以来,安徽和河南的外商直接投资增长迅速。2008年中部引进的外商直接投资中,河南为40.327亿美元、湖南为40.052亿美元、江西为36.037亿美元、安徽为34.9亿美元、湖北为32.45亿美元,中部五省占中国2008年外商直接投资的19.89%。
图1中国东部和中部2003~2008年FDI区域分布(亿美元)
图2中国东部十一省(市)2003~2008年FDI区域分布(亿美元)
图3中国中部八省2003~2008年FDI区域分布(亿美元)
(二)变量选取
考虑统计口径一致和数据的连续性,选取工业废气排放总量(亿标立方米)、工业废水排放总量(万吨)、工业固体废物产生量(万吨)、工业固体废物排放量(万吨)、工业烟尘排放量(万吨)、工业粉尘排放量(万吨)和工业二氧化硫排放量(万吨)为环境污染指标;人均地区生产总值(元)作为经济增长指标,此外,考虑国际贸易因素中污染的可输出性,用FDI作为污染的输出指标(万美元)。SO2、FS、FQ、GYYC、GYFC、GTCS、GTPF分别表示工业二氧化硫排放量、工业废水排放量、工业废气排放量、工业烟尘排放量、工业粉尘排放量、工业固体废物产生量、工业固体废物排放量,Y表示人均地区生产总值(元),FDI表示外商直接投资(万美元)。环境污染指标数据根据1986至2009年中国统计年鉴相关数据整理项目管理论文,地区人均生产总值和外商直接投资数据根据1986至2009年省(市)统计年鉴相关数据整理。LNSO2、LNFS、LNFQ、LNGYYC、LNGYFC、LNGTCS、LNGTPF分别表示污染指标的自然对数,LNY、LNFDI分别表示人均地区生产总值和外商直接投资的自然对数。本文中东部十一个省(市)为广东、上海、浙江、江苏、北京、辽宁、海南、山东、福建、河北、天津;中部八省为湖南、湖北、安徽、山西、江西、黑龙江、吉林、河南。通过东部和中部的数据研究中国东部和中部省(市)FDI的对环境影响的差异。
(三)模型设定形式
由于面板数据模型同时具有截面、时序的两维特性,模型中参数在不同截面、时序样本点上是否相同,直接决定模型参数估计的有效性。根据截距向量和系数向量中各分量限制要求的不同,面板数据模型可分为无个体影响的不变系数模型、变截距模型和变系数模型三种形式。在面板数据模型估计之前,需要检验样本数据适合上述哪种形式,避免模型设定的偏差,提高参数估计的有效性。设有因变量与1×k维解释变量向量,满足线性关系:
,=1,2,…,N,=1项目管理论文,2,…,T
其中N表示个体截面成员的个数,T表示每个截面成员的观察时期总数,参数表示模型的常数项,表示对应于解释变量的k×1维系数向量,k表示解释变量个数。随机误差项相互独立,且满足零均值、同方差假设。采用F-test检验如下两个假设:
H1:个体变量系数相等;H2:截距项和个体变量系数都相等。
如果H2被接受,则属于个体影响的不变系数混合估计;如果H2被拒绝,则检验假设H1,如果H1被接受,则属于变截距,否则属于变系数。变系数、变截距和混合估计的残差平方和分别为S1、S2、S3,面板个体数量为N,面板时间跨度为T,根据Wald定理在H2假设条件下构建统计量F2项目管理论文,在H1假设条件下构建统计量F1,其中:
~F[(N-1)(K+1),N(T-K-1)]
~ F[(N-1)K,N(T-K-1)]
若计算得到的统计量F2的值不小于给定置信度下的相应临界值,则拒绝假设H2,继续检验假设H1。反之,则认为样本数据符合无个体影响的不变系数模型。若计算得到的统计量F1的值不小于给定置信度下的相应临界值,则拒绝假设H1,用变系数模型拟合,反之,则用变截距模型拟合。
三、东部和中部模型回归结果分析
利用东部十一省(市)和中部八省的相关数据,借助Eviews6.0,采用固定效应模型对七个环境污染指标分别进行回归。采用Pooled EGLS(Cross-section weights) 消除异方差,采用广义差分法消除自相关,回归后的残差是平稳序列。回归结果见表1-表8
(一)东部和中部地区FDI对工业废水、工业废气影响差异分析
表1 东部地区 LNFS、LNFQ模型参数估计结果
LnFS
LnFQ
变量
参数
固定效应
参数
固定效应
α
24.7998(1.8722***)
49.3840(4.0923*)
-3.6806(-1.4613***)
-13.1905(-3.2263*)
0.4188(1.4567***)
1.3574 (2.9634*)
-0.0158(-1.4541***)
-0.0440 (-2.5825*)
AR(1)
0.9958(42.3684*)
0.8089 (24.7612*)
海南--LNFDI
0.1027(1.2365)
-8.0449
0.1302 (0.9513)
-3.7321
河北--LNFDI
-0.0088(-0.1280)
3.8736
0.0835 (1.1098)
0.0014
上海--LNFDI
0.0259(1.0531)
-15.5458
-0.1318(-0.9580)
1.1533
浙江--LNFDI
-0.0384(-0.5847)
10.5687
0.0745 (1.3692)
-0.4913
辽宁--LNFDI
-0.0835(-1.6476***)
-5.4319
0.0426(0.3272)
0.1718
广东--LNFDI
-0.0392(-0.3555)
6.3472
-0.0459 (-0.3756)
0.9825
北京--LNFDI
0.0135(0.3381)
-21.1233
-0.0295(-0.4951)
-0.8745
天津--LNFDI
-0.0078(-0.1072)
-5.6961
-0.0204(-0.1636)
-1.0105
江苏--LNFDI
-0.0415(-0.7790)
7.6127
-0.1504(-2.2292**)
2.7120
福建--LNFDI
-0.0955(-0.7093)
12.4942
-0.0186 (-0.2712)
-0.2444
山东--LNFDI
-0.0727(-2.1787*)
11.0165
0.0366 (0.7316)
0.3737
R2
0.9996
0.9985
F
21721.19
5607.094
D-W
2.2587
1.8888
注:括号内为t值,*表示1%的显著水平项目管理论文,**表示5%的显著水平,***表示10%显著水平,表7-表8同。
东部工业废水与人均地区生产总值呈倒N型关系。海南、上海、北京的FDI对工业废水排放量产生正影响,但t统计量不显著。河北、浙江、辽宁、广东、天津、江苏、福建、山东的FDI对工业废水排放量产生负影响,辽宁在10%的水平下显著,其他省(市)的t统计量不显著。辽宁的FDI每增加1个百分点,工业废水排放量将减少0.0835个百分点。
东部工业废气与人均地区生产总值呈倒N型关系。海南、河北、浙江、辽宁、山东的FDI对工业废气排放量产生正影响,但t统计量不显著。上海、广东、北京、天津、江苏、福建、山东的FDI对工业废气排放量产生负影响,江苏在5%的水平下显著。其他省(市)的t统计量不显著。江苏的FDI每增加1个百分点,工业废气排放量将减少0.1504个百分点。
表2 中部地区LNFS、LNFQ模型参数估计结果
LNFS
LNFQ
变量
参数
固定效应
参数
固定效应
α
16.6018(7.9671*)
11.6524(3.9031*)
-1.1320(-2.3466*)
-1.2244(-1.8624**)
0.0587(2.1385**)
0.0967(2.6877*)
AR(1)
0.7772(15.2270*)
0.8699(24.1079*)
湖南--LNFDI
-0.0333(-1.0065)
0.8689
0.0030(0.0929)
0.0309
山西--LNFDI
5.29E-05(0.0022)
-0.5998
-0.0116(-0.5248)
0.9869
吉林--LNFDI
0.0224(1.3361)
-0.8116
-0.0138(-0.8731)
-0.1019
安徽--LNFDI
0.0068(0.3212)
-0.1071
0.0848(2.0050**)
-0.5360
黑龙江--LNFDI
-0.0691(-1.3522)
0.4276
0.0047(0.1391)
-0.1447
河南--LNFDI
0.0396(1.6098***)
-0.0902
0.0587(1.1488)
-0.1023
江西--LNFDI
0.0148(0.4637)
-0.3718
0.0410(0.9293)
-0.7326
湖北--LNFDI
-0.0348(-0.7651)
0.8336
-0.0194(-0.4111)
0.6340
R2
0.9992
0.9985
F
11085.59
6243.136
D-W
1.6877
1.6591
中部地区工业废水与人均地区生产总值呈正U型关系。山西、吉林、安徽、河南、江西的FDI对工业废水排放量产生正影响,山西、安徽在5%的水平下显著,河南和江西在1%的水平下显著,吉林的t统计量不显著,影响最大的河南为0.1444项目管理论文,其次是江西。湖南、黑龙江、湖北的FDI对工业废水排放量产生负影响,黑龙江在1%的水平下显著,湖南和湖北的t统计量不显著。黑龙江的FDI每增加1%,工业废水排放量将减少0.1025%。
中部地区工业废气与人均地区生产总值呈正U型关系。湖南、山西、安徽、河南、江西、湖北的FDI对工业废气排放量产生正影响,湖南的t统计量不显著,湖北在5%的水平下显著,其他省都在1%的水平下显著。影响最大的河南为0.0819,其次是安徽。吉林、黑龙江的FDI对工业废气排放量产生负影响,且都在1%的水平下显著。影响最大的黑龙江为-0.1521,即FDI每增加1个百分点,工业废气排放量将减少0.1521个百分点,其次是吉林。
(二)东部和中部地区FDI对工业烟尘、工业粉尘影响差异分析
表3 东部地区LNGYYC、LNGYFC模型参数估计结果
LNGYYC
LNGYFC
变量
参数
固定效应
参数
固定效应
α
32.7262(2.8164*)
52.9893(3.8847*)
-10.5024(-2.6944*)
-18.5026(-4.0342*)
1.2657(2.9653*)
2.2848(4.5435*)
-0.0505(-3.2386*)
-0.0927(-5.0305*)
AR(1)
0.4000(6.1657*)
0.3097(4.5813*)
海南--LNFDI
0.0477(0.3532)
-4.19200
-0.2814(-1.2742)
-0.4495
河北--LNFDI
-0.0335(-0.3842)
0.5242
0.0267(0.2515)
-0.0456
上海--LNFDI
-0.1521(-2.7826*)
0.5767
-0.2069(-2.4847*)
0.3125
浙江--LNFDI
-0.0627(-0.8102)
-0.0833
-0.0941(-0.9720)
0.6786
辽宁--LNFDI
-0.0934(-1.0676)
1.3496
-0.0855(-0.9936)
0.9432
广东--LNFDI
0.0402(0.4283)
-1.1402
-0.0525(-0.4761)
0.6557
北京--LNFDI
-0.2631(-2.2266**)
1.3044
0.1188(0.2863)
-2.7899
天津--LNFDI
0.0139(0.1345)
-1.7711
-0.2062(-3.3778*)
-0.2964
江苏--LNFDI
-0.1082(-2.3398**)
1.4371
-0.0810(-1.0884)
0.7549
福建--LNFDI
-0.0546(-0.6975)
-0.9522
-0.0017(-0.0179)
-0.8758
山东--LNFDI
-0.1649(-2.4789*)
2.2796
-0.0876(-1.2915)
1.1267
R2
0.9829
0.9773
F
487.359
326.259
D-W
2.0287
2.1269
东部地区工业烟尘与人均地区生产总值呈倒N型关系。海南、广东、天津的FDI对工业烟尘排放量产生正影响,但t统计量不显著。河北、上海、浙江、辽宁、北京、江苏、福建、山东的FDI对工业烟尘排放量产生负影响,上海、山东在1%的水平下显著项目管理论文,北京和江苏在5%的水平下显著,其他省(市)的t统计量不显著。影响最大的北京为-0.2631,即FDI每增加1个百分点,工业烟尘排放量将减少0.2631个百分点。
东部地区工业粉尘与人均地区生产总值呈倒N型关系。河北、北京的FDI对工业粉尘排放量产生正影响,但不显著。海南、上海、浙江、辽宁、广东、天津、江苏、福建、山东的FDI对工业废气排放量产生负影响,上海、天津在1%的水平下显著,其他省(市)t统计量不显著。影响最大的上海为-0.2069,即FDI每增加1%,工业粉尘排放量将减少0.2069%。
表4 中部地区LNGYYC、LNGYFC模型参数估计结果
LNGYYC
LNGYFC
变量
参数
固定效应
参数
固定效应
α
42.0185(1.8447**)
89.1652(3.1244*)
-13.5462(-1.6467***)
-32.1750(-3.1544*)
1.6143(1.6440***)
3.9980(3.3162*)
-0.0636(-1.6339***)
-0.1632(-3.4480*)
AR(1)
0.3172(4.1467*)
0.4488(6.0984*)
湖南--LNFDI
-0.0019(-0.0419)
-0.8825
0.0495(0.6818)
-0.8836
山西--LNFDI
-0.0189(-0.3482)
-0.0711
0.0357(0.7816)
-0.8062
吉林--LNFDI
-0.1284(-3.0416*)
0.3904
-0.1267(-3.4817*)
-0.4546
安徽--LNFDI
-0.0772(-1.4121)
-0.3836
-0.0923(-1.5097)
0.1776
黑龙江--LNFDI
-0.2387(-3.8292*)
2.0898
-0.2454(-3.2349*)
1.0407
河南--LNFDI
0.0198(0.3755)
-0.5630
-0.0493(-0.7333)
0.2108
江西--LNFDI
-0.0365(-0.7702)
-1.0183
-0.0689(-1.2353)
-0.1311
湖北--LNFDI
-0.1321(-2.4864*)
0.3379
-0.1383(-2.3095*)
0.7561
R2
0.9486
0.8592
F
155.442
46.2631
D-W
1.9311
2.1184
中部地区工业烟尘与人均地区生产总值呈倒N型关系。中部8省FDI对工业烟尘排放量产生负影响,湖南、山西和河南的t统计量不显著,吉林、安徽、黑龙江、江西、湖北都在1%的水平下显著。影响最大的黑龙江为-0.2609,即FDI每增加1个百分点,工业烟尘排放量将减少0.2609个百分点,其次是吉林项目管理论文,再其次是湖北。
中部工业粉尘与人均地区生产总值呈倒N型关系。中部8省的FDI对工业粉尘排放量都产生负影响,湖南、山西、河南、江西的t统计量不显著,吉林、安徽、黑龙江、湖北的t统计量在1%的水平下显著。影响最大的黑龙江为-0.3797,即FDI每增加1个百分点,工业粉尘排放量将减少0.3797个百分点,其次是吉林,再其次是湖北。
(三)东部和中部地区FDI对工业固体废物产生量、工业固体废物排放量影响差异分析
表5 东部地区LNGTCS、LNGTPF模型参数估计结果
LNGTCS
LNGTPF
变量
参数
固定效应
参数
固定效应
α
63.4898(5.0320*)
8.7117(5.0309*)
-17.5778(-4.2654*)
-0.8248(-3.5953*)
1.7727(3.9784*)
-0.0581(-3.6181*)
AR(1)
0.8177(27.0287*)
0.5104(8.6360)
海南--LNFDI
0.2352(1.4884)
-4.4831
4.9656(3.7795*)
-49.2073
河北--LNFDI
0.2510(2.1371**)
-0.2996
0.2615(1.1668)
-0.3946
上海--LNFDI
-0.0111(-0.2948)
0.5235
2.3659(2.0572**)
-26.9802
浙江--LNFDI
0.1614(2.5550**)
-1.0426
-0.0413(-0.2534)
0.9621
辽宁--LNFDI
0.0401(0.6324)
1.9015
-0.6868(-1.5997***)
11.0885
广东--LNFDI
-0.0459(-0.3341)
1.7425
0.2184(0.6742)
-0.9511
北京--LNFDI
0.05877(1.4172***)
-0.7293
-0.7027(-2.0111**)
10.3680
天津--LNFDI
0.1134(1.4843***)
-1.7596
0.2503(0.4228)
-2.4523
江苏--LNFDI
0.0285(0.5063)
1.2896
0.3357(0.4981)
-2.2678
福建--LNFDI
0.0139(0.1094)
0.9179
-0.1359(-0.5610)
2.9014
山东--LNFDI
0.0754(0.5823)
1.2289
-0.7350(-3.1354*)
8.6788
R2
0.9988
0.8743
F
7269.704
53.5716
D-W
2.0843
1.8612
东部地区工业固体废物产生量与人均地区生产总值呈倒N型关系。海南、河北、浙江、辽宁、北京、天津、江苏、福建、山东的FDI对工业固体废物产生量产生正影响,河北和浙江在5%的水平下显著,北京和天津在10%的水平下显著,其他省(市)的t统计量不显著。影响最大的河北为0.2510,其次是浙江,再其次天津。上海、广东的FDI对工业固体废物产生量产生负影响,但都不显著。
东部地区工业固体废物排放量与人均地区生产总值呈递减型关系。海南、上海、广东、天津、江苏的FDI对工业固体废物排放量产生正影响,海南在1%的水平下显著项目管理论文,上海在5%的水平下显著,与其他省(市)相比回归结果反差很大,其他省(市)t统计量不显著。浙江、辽宁、北京、福建、山东的FDI对工业固体废物排放量产生负影响。辽宁在10%的水平下显著,北京在5%的水平下显著,山东都在1%的水平下显著,其他省(市)t统计量不显著。影响最大的山东为-0.7350,即FDI每增加1%,工业固体废物排放量将减少-0.7650%。
表6 中部地区LNGTCS、LNGTPF模型参数估计结果
LNGTCS
LNGTPF
变量
参数
固定效应
参数
固定效应
α
41.3077(3.8757*)
1991.625(1.8463*)
-11.3227(-2.9668*)
-941.7224(-1.8373**)
1.2302(2.7211*)
166.8861(1.8333**)
-0.0421(-2.3692*)
-13.0867(-1.8269**)
0.3829(1.8173**)
AR(1)
0.4372(6.4688*)
0.5462(7.7679*)
湖南--LNFDI
-0.0192(-0.6301)
-0.1254
0.1453(0.7240)
-3.5711
山西--LNFDI
0.0619(3.2135*)
-0.0267
0.1310(0.7933)
-1.5068
吉林--LNFDI
-0.0386(-2.2811**)
-0.3432
-0.1869(-1.3899)
-2.2181
安徽--LNFDI
0.0208(1.1657)
-0.2012
-1.0940(-3.7083*)
5.2815
黑龙江--LNFDI
-0.1889(-6.3619*)
1.8097
-0.9583(-1.7057***)
4.9852
河南--LNFDI
0.0880(4.0322*)
-0.9111
-0.3186(-1.6994***)
-0.2906
江西--LNFDI
0.0263(1.0920)
0.0630
-0.1247(-0.6319)
-1.8346
湖北--LNFDI
-0.0037(-0.2067)
-0.2943
-0.2196(-0.9938)
-0.5911
R2
0.9988
0.9100
F
7004.577
75.3401
D-W
1.8913
2.1274
中部地区工业固体废物产生量与人均地区生产总值呈倒N型关系。山西、安徽、河南、江西的FDI对工业固体废物产生量产生正影响,安徽和江西的t统计量不显著,山西和河南在1%的水平下显著,影响最大的山西为0.0698,其次是河南。 湖南、吉林、黑龙江、湖北的FDI对工业固体废物产生量产生负影响,湖北的t统计量不显著,湖南、吉林、黑龙江在1%的水平下显著。影响最大的黑龙江为-0.2256项目管理论文,即FDI每增加1个百分点,工业固体废物产生量将减少0.2256个百分点,其次是吉林。
中部工业固体废物排放量与人均地区生产总值呈四次曲线关系。湖南、山西的FDI对工业固体废物排放量产生正影响,湖南的t统计量不显著,山西在10%的水平下显著。吉林、安徽、黑龙江、河南、江西、湖北的FDI对工业固体废物排放量产生负影响,河南、江西在5%的水平下显著,湖北在10%的水平下显著,吉林、安徽、黑龙江在1%的水平下显著。影响最大的黑龙江为-1.4849,即FDI每增加1%,工业固体废物排放量将减少1.4849%,其次是安徽,就FDI对工业固体排放量的影响来说,两省与其他省形成很大反差。
(四)东部和中部地区FDI对工业二氧化硫排放量影响差异分析
表7 东部地区LNSO2模型参数估计结果
LnSO2
变量
参数
固定效应
α
1.7784(10.4264*)
0.2475(7.8184*)
AR(1)
0.3621(5.9372*)
海南--LNFDI
0.3036(4.0824*)
-6.565940
河北--LNFDI
-0.0529(-2.2161**)
1.448053
上海--LNFDI
-0.1001(-3.0210*)
0.746609
浙江--LNFDI
-0.0234(-0.8374)
0.436150
辽宁--LNFDI
-0.0544(-0.9538)
1.100451
广东--LNFDI
0.1235(2.4580*)
-1.469815
北京--LNFDI
-0.2192(-3.0616*)
1.380896
天津--LNFDI
-0.0549(-0.8785)
-0.400097
江苏--LNFDI
-0.0603(-2.5470*)
1.401587
福建--LNFDI
0.0628(1.1849)
-1.772079
山东--LNFDI
-0.1212(-3.8939*)
2.635766
R2
0.9960
F
2306.281
D-W
2.1367
东部地区工业二氧化硫排放量与人均地区生产总值呈递增型关系。海南、广东、福建的FDI对工业二氧化硫的排放量产生正影响,海南和广东在1%的水平下显著项目管理论文,福建的t统计量不显著。影响最大的海南为0.3036,其次是广东。河北、上海、浙江、辽宁、北京、天津、江苏、山东的FDI对工业二氧化硫排放量产生负影响,河北在5%的水平下显著,上海、北京、江苏和山东在1%的水平下显著,浙江、辽宁、天津和福建的t统计量不显著。影响最大的北京为-0.2192,即FDI每增加1个百分点,工业二氧化硫排放量将减少0.2192个百分点,其次是山东,再其次是上海。
表8 中部地区LNSO2模型参数估计结果
LNSO2
变量
参数
固定效应
α
49.7283(2.7411*)
-16.4410(-2.5267*)
1.9236(2.4931*)
-0.0729(-2.3995*)
AR(1)
0.4471(6.3202*)
湖南--LNFDI
-0.0502(-1.6367***)
0.5336
山西--LNFDI
-0.0027(-0.0862)
0.3643
吉林--LNFDI
-0.0347(-1.1924)
-0.6959
安徽--LNFDI
-0.0331(-1.0058)
-0.1321
黑龙江--LNFDI
-0.0817(-1.8392**)
-0.0178
河南--LNFDI
0.0577(1.3970)
-0.4663
江西--LNFDI
-0.0021(-0.0525)
-0.5978
湖北--LNFDI
-0.1256(-3.4697*)
1.1308
R2
0.9859
F
591.498
D-W
2.0540
中部地区工业二氧化硫排放量与人均地区生产总值呈倒N型关系。山西、河南的FDI对工业二氧化硫的排放量产生正影响,但t统计量不显著。湖南、吉林、安徽、黑龙江、江西、湖北的FDI对工业二氧化硫排放量产生负影响,湖南、安徽、江西在5%的水平下显著,吉林、黑龙江、湖北在1%的水平下显著。影响最大的湖北为-0.1255,即FDI每增加1个百分点,工业二氧化硫排放量将减少0.1255个百分点项目管理论文,其次是黑龙江,再其次是吉林。
从以上回归结果分析显示,东部十一省(市)的污染指标与人均地区生产总值大多呈现倒N型关系。相对来说,上海、北京、山东、江苏、天津和辽宁的FDI是“清洁”的。东部多数省(市)的FDI对工业废水、工业废气、工业粉尘、工业烟尘、工业二氧化硫产生负向影响,而多数省(市)的FDI对工业固体废物的排放量和工业固体废物产生量产生正向影响。中部八省的污染指标与人均地区生产总值呈现正U型和倒N型关系,工业固体废物排放量出现四次曲线关系。中部地区FDI相对较“清洁”的是黑龙江、吉林和湖北。中部八省只有部分省的FDI对工业废水、工业废气、工业固体废物、工业二氧化硫排放量和工业固体废物产生量产生负向影响,即有利于环境改善,大部分省的FDI对工业废水、工业废气产生正影响。
四、结论
东部地区的辽宁、山东的FDI对工业废水排放量产生显著的负影响;中部地区只有河南的FDI对工业废水排放量产生显著的正影响。东部地区江苏的FDI对工业废气排放量产生显著的负影响;中部地区安徽的FDI对工业废气排放量产生显著的正影响。东部地区的上海、北京、江苏、山东的FDI对工业烟尘的排放量产生显著的负影响;中部地区的吉林、黑龙江、湖北的FDI对工业烟尘的排放量产生显著的负影响。上海、天津的FDI对工业粉尘的排放量产生显著的负影响;中部地区的吉林、黑龙江、湖北的FDI对工业粉尘的排放量产生显著的负影响。东部地区的河北、浙江、北京天津的FDI对工业固体产生量产生显著的正影响;中部的地区的吉林、黑龙江的FDI对工业固体产生量产生显著的负影响,山西的FDI对工业固体产生量产生显著的正影响。东部地区的辽宁、北京、山东的FDI对工业固体排放量产生显著的负影响,海南和上海的FDI对工业固体排放量产生显著的正影响;中部地区的安徽、黑龙江、河南的FDI对工业固体排放量产生显著的负影响。东部地区的河北、上海、北京、江苏、山东的FDI对工业二氧化硫排放量产生显著的负影响,海南、广东的FDI对工业二氧化硫排放量产生显著的正影响;中部地区的湖南、黑龙江、湖北的FDI对工业二氧化硫排放量产生显著的负影响。东部地区FDI最“清洁”的是北京,其次是上海;中部地区FDI最“清洁”是黑龙江,其次是吉林。需进一步研究北京的FDI产业分布,借鉴经验调整中国FDI的区位和产业分布。东部和中部省(市)的FDI对污染指标的影响存在较大差异,总的来说,东部地区的FDI比中部地区的更清洁,这可能是因为中国的FDI主要集中于东部地区,因而存在有结构效应和规模效应。宽松的环境管制是吸引外商直接投资进入的一个重要因素,具有一定的“污染避难所”效应特征,但中国并未成为一个世界的“污染避难所”。
参考文献
[1]Grossman G,Krueger A.Environment Impactsof The North American Free Trade Agreement.NBER, [R] Working Paper,No3914,1991
[2]Eskeland,G.S.and Harrison,A.E.“Moving to Greener Pasture? Multinationalsand the Pollution Haven Hypothesis,”Journalof Development Economics. 2003,70 (1):1- 23.
关键词:工业废水 有机污染物 监测方法
一、工业废水中有机污染物的危害分析
1.工业废水的分类
所谓的工业废水是工业企业在生产过程中排除的废水的统称,其中主要包括三种废水,即生产废水、生活废水和冷却水。对工业废水的分类有很多种方法,比较常见的是按照水体中污染物的性质和成分进行分类。
1.1按照污染物的性质分类
水体中含无机污染物为主的称之为无机废水,如电镀和矿物加工过程中产生的废水;水体中含有机污染物为主的称之为有机废水,如食品或是石油加工过程中产生的废水。用该方法对工业废水进行分类比较简单易行,并且能够为废水处理方法的选择提供参考依据,如对于容易生物降解的有机废水可采用生物处理法进行处置,而对于无机废水则可以采用物理和化学法进行处理。此外,还有一种情况,在某些工业生产过程中,一种废水不仅含无机物,而且还含有机物。
1.2按照污染物的主要成分分类
无论是有机废水还是无机废水或是两者兼有的废水,其中污染物的主要成分都是一定的,按照废水中污染物的成分进行分类其优势在于突出了废水中的主要污染成分,这样便可以有针对性地选择处理方法或是对其进行回收再利用。
2.工业废水对环境的污染和危害
通常情况下,所有的物质排入到水中都有可能引起水体污染,虽然各类物质的污染程度有所差别,但是当某些浓度超过限定时均会产生危害。
2.1含无毒物质废水的危害
在众多污染物中有很大一部分本身没有任何毒性,但若是量大或是浓度过高时便会对水体有害。如排入水体中的有机物超过限定量时,会使水体出现厌氧腐败现象,若是大量无机物流入到水体当中时,会导致水中的盐类浓度增高,从而引起渗透改变,这样会对动植物和微生物造成不良的影响。
2.2含有毒物质废水的危害
如含氰、酚等急性有毒物质和重金属等慢性有毒物质造成的污染,其主要致毒方式有接触性中毒、食物中毒以及糜烂性毒害等等。
2.3含油废水的危害
当油漂浮在水面时会散发出难闻的气味,同时燃点较低的油类还有可能引起火灾、爆炸等危险,而动植物油脂由于具有极强的腐败性,会过度消耗水体当中的溶解氧。
2.4酸碱性废水的危害
此类废水除了会危害生物之外,还会造成仪器设备腐蚀损坏。
5.含氮、磷废水的危害
当含氮、磷的废水流入到封闭性水域后,会使藻类及其它一些水生物繁殖异常,从而导致水体产生富营养化。
二、工业废水中有机污染物的监测方法
目前,工业废水对环境的污染及其危害受到人们越来越多的关注,这使得对工业废水中有机污染物的监测越来越重要,准确确定出污染物的种类和来源,有助于采取相应的方法进行处理。比较常用的水体有机污染物的监测方法有以下几种:
1.溶剂萃取法
该方法常被用于分离水不溶性和微溶于水的有机化合,其优点是简单方便,缺点是样品转移过程中有机物容易挥发。该方法成败的关键在于溶剂的选取,萃取条件是较为重要的实验参数,如pH值、离子强度等,萃取液的浓缩技术则是影响重现性和回收率的关键性因素。溶剂萃取法的基本技术原理如下:
1.1升温与增压
通过升高温度不但能够进一步克服基体效应,而且还能起到强化解析动力、降低溶剂粘度、加快溶剂分子向基体中扩散的速度等作用,这有助于提高萃取效率;而增加压力除了能够提高萃取效率之外,还能增强系统的安全性。这是因为液体的沸点会随着压力不断增大而升高,增压可以使溶剂在高温状态下仍然保持液态,从而快速充满萃取池。
1.2多次循环
按照少量多次的萃取原则,在进行萃取的过程中,通过新鲜溶剂的多次静态循环,能够最大程度的接近动态循环,这样便可以有效提高萃取效率。一般的常规萃取只需要采用2-3个循环便能够达到较为理想的萃取效果。
Grabiec R.E.等人采用溶剂萃取与GC-MSD联合的方法对多环芳烃进行检测,他们认为这是一种全新的有机污染物检测技术;Notar M.等人采用ASE-SFE萃取与GC-MS联合的方式对水体沉积物中的PAHs进行检测,结果显示,2-3环、4、5、6环多环芳烃的回收率分别为77%、85%、88%和97%。
2.树脂富集提取法
所谓的树脂富集提取实质上是一种以芳香族高聚物为主的离子交换树脂,其现已被广泛应用于水环境中有机物的固-液萃取。目前,已有多种系列的离子交换树脂被应用于水环境当中,较具代表性的有Amberlite XAD和国产的GXD系列等等。离子交换树脂具有可再生、污染低、吸附力强、富集倍数较高等优点,能够富集水环境当中的痕量有机物,回收率最高可达100%。应用离子交换树脂的技术环节大体上包括树脂纯化、装柱、有机物过柱、洗脱、浓缩以及树脂再生等,该方法的萃取工艺如下:
2.1树脂选择
在具体应用中,可以采用不同的树脂进行混合或是吸附柱串联的方式来获取更多的有机物,这样能够防止少部分物质流失的情况发生,同时还能显著提高吸附效率。
2.2树脂纯化
主要是为了进一步提高试剂的纯度,并减少杂质污染,在进行纯化之前应当分别对选用的试剂进行重新蒸馏处理,蒸馏器及试剂瓶的处理程序如下:先用去污剂清洗干净,并用自来水进行冲洗2-3遍,随后以5%稀盐酸浸泡一夜,再用自来水冲洗2-3遍,可自然晾干也可烘干,干燥后用清洁液侵泡6h左右,并将清洁液冲洗干净,待干燥后便可进行装柱、过柱、洗脱干燥、树脂再生和浓缩等流程。该方法对于提取水中浓度较低的有机化合物效果较好。
黄志丹等人采用大孔吸附树脂对自来水中的有机物进行富集,并进行GC-MS鉴定,结果显示,水体当中有机污染物共102种,主要包括的种类有多环芳烃、醛、高级碳烷烃、烷基苯、钛酸酯、醇等等。
3.吹脱捕集法
该方法具体是指将氮气、氦气通过吹脱管中的水体样本,使水体中的挥发性有机物不断转移至气相当中,并沿着气路被吸附到捕集管内,随后对捕集管进行较热处理,脱附被捕集到的有机物。在实际应用中,当水体样本中含有的挥发性有机物全都被吹脱捕集后,便可停止吹脱,然后立即对捕集管进行加热,此时有机物便会逐步被脱附并进入到气相色谱仪当中。气相色谱仪采用在线冷柱头进样,这样便可以使脱附出来的有机物在这一过程中被冷却浓缩,随后再进行快速加热便可以完成进样。该方法的优点是样品用量相对较少、组分损失小、操作简单方便、无溶剂污染等等,适合应用于微量分析,具有良好的重现性,富集倍数高,该方法唯一的不足之处就是价格过于昂贵,这在一定程度上限制了其大范围推广使用。
孙宗光等人采用吹扫捕集器与GC-MS联合的方法对河水当中含有的挥发性有机物进行检测,经水样分析结果显示,有8中化合物被检出,这表明该方法是检测水体中挥发性有机污染物的有效途径之一。
4.超临界流体萃取
超临界二氧化碳萃取技术在最近几年里获得了非常快速的发展,该方法的优点是萃取速度快、效率高、操作简单方便、萃取条件可控性高,是一种十分理想的样品前处理技术,现已受到各个领域专家和学者的重视。相关实验结果显示,在20MPa、60℃、40min的条件下进行超临界二氧化碳萃取时,萃取效率及溶剂萃取效率较高。
参考文献
[1]邹爱红.巢湖西半湖水体中有机污染物监测及污染现状的研究[D].合肥工业大学.2009(5).
[2]张敬东.杨娟.胡馨月.魏莉莉.有机污染物光化学降解的电分析监测研究[A].第十一届全国电分析化学会议论文集[C].2011(5).
[3]房贤文.液相微萃取技术在监测水中有机污染物的研究[D].中国海洋大学.2007(11).
关键词:生物氮去除(BNR) 硝化 反硝化 两阶段污泥法
1 概述
各种各样人类活动产生大量氨氮废水:石化产品、化肥和食品工业、城市固体垃圾处理站点或者猪农场垃圾的沥出液。处理这类垃圾产生一系列环境问题,其中水生物是最大的受害者,因为溶解水里的自由氨。
BNR工艺是去除废水中低浓度氨氮最普遍的方法,但是不适用于处理高浓度氨氮废水,使用更频繁的物化法,比如吹脱。生物处理高浓度工业废水主要问题是高浓度氨氮或者亚硝酸盐抑制硝化反应。但是从环境和经济观点来看,BNR工艺处理高浓度氨氮废水是一个引人注意的方法。
在设计生物废水处理厂要求氮去除中硝化和反硝化速率是关键参数。考虑到这个原因,非常由必要通过实验确定最大硝化速率(MNR)和最大反硝化速率(MDR),实验条件按照工业比例与处理厂相似。
本研究的目的是去确定对氨氮浓度5000mgN-NH4+/L实际工业废水的生物法处理法。这个浓度高于所查找的参考资料的浓度。
为了减少法总体积同时保证两阶段污泥较适宜,BNR使用不同尺寸。本论文采用了两个独立阶段法中的一个;第一阶段是硝化活性污泥阶段和第二阶段是反硝化过程。每个阶段由一个反应池和沉淀池组成,产生两个不同微生物菌种生长:硝化微生物和反硝化微生物。
为了处理低COD/N比率工业废水,有必要增加外加有机碳源。在反硝化过程中使用不同标准选择特殊外加碳源。首先,有必要考虑碳化合物产生最高MDR。已出版的参考资料给出了一些对照数据。一席作者提出乙酸比葡萄糖、甲醇、乙醇取得更高的速率。然而,其它作者用甲醇取得了与使用乙酸相接近的结果。一些参考资料显示乙酸比甲醇达到更高的速率,尽管其它论文显示相反的结果。
也有必要考虑外加碳源的成本和有效性。如果碳源是化学混合物(乙醇、甲醇和乙酸),它能以一定市场价格得到。如果计划建工业规模处理厂,外加碳源应该是便宜的,并且能产生足够的数量保证污水处理厂连续运行。使用含碳副产品能满足这些要求,它们被由工厂普遍产生的,但不认为是废物产品。
本论文主要研究两阶段污泥法硝化和反硝化阶段,目的为了确定MNR和MDR.。另外,温度对反硝化过程的影响,和研究不同外加碳源对反硝化的影响。
2 材料和方法
2.1 废水说明
除了高浓度氨氮废水(N-废水),工艺还包括处理另一种工业废水,主要含有有机物(COD-废水),它有利于反硝化。然而,这种有机物不足够反硝化所有生成的硝酸盐。因此,要使用外加碳源。
表格2说明了两种实际工业废水基本组成。可以看到,在含氮废水中氨氮浓度范围为4000-6000mgNH4+/L,而含COD废水中COD浓度范围为1300-1500mgCOD/L。大多数这种有机物质是乙醇,因此很容易生物降解。含氮废水也包含了高浓度氯化物和硫酸盐阴离子。
2.2 外加碳源概述
两种外加碳源使用两工业加工副产品。第一种副产品是酒精饮料生产的混合废物。第二种副产品是化工厂的废物,甲醇、异丙基乙醇和丙酮构成。它主要成分是甲醇。表格3显示了两种副产品的成分。贯穿这篇论文,它们称为“乙醇混合物”(酒精饮料废物形成的)和“甲醇混合物”(化学废物形成的)。
处理厂每一个反应器都有在线传感器(溶解氧(DO)、pH、ORP、温度)连接到探测控制器上。所有控制器和水厂机械元件与一台PC相连接,尽管不同数据获取卡(先进技术PCL726、PCL813和PCLD885)。为了自动控制所有法,用C语言设计专门软件。根据以前软件设计,包括图形监控、数据备份、和关键工艺参数的控制(流量、pH、DO和温度)。pH控制根据ON/OFF法则扮演可靠的药剂师作用增加碳酸钠。DO控制根据计算机里设计的数值PID法则,它能修改空气流量,使用了一个大的流量计(Bronkhorst Hi-Tec,0-20Ln/min)。处理厂位于室内,通过加热、通风和空调来调节温度。
2.4 实验设置
实验工作在两级污泥中进行,处理厂分两个独立的阶段:硝化和反硝化。图1显示了处理平面图。含氮废水流进硝化活性污泥法,一个27L好氧反应池和一个沉淀池构成。好氧反应池自动控制pH在7.5。DO通过PID控制器保持在3mgO2/L。保持温度在20℃300天,然后改变温度在15℃30天,最害将温度控制在25℃。污泥停留时间(SRT)大约为25天。
硝化活性污泥法的流出量是反硝化活性污泥法的流进量1/3倍(图1)。其它两个是含COD 废水和外加碳源。反硝化阶段由一个27L缺氧反应池、一个15L曝气池和一个沉淀池构成。氮气在缺氧池生成,在曝气池中吹脱,因此有利于下一步沉淀。温度和好氧反应池相同。pH不用控制,它的值大约为8.0-9.0。SRT在15天左右。
氮负荷率(NLR),硝化和反硝化率定义为:的
HRT是水力停留时间,[VSS]reactor是生物量浓度,[N-NH4+]in是流进氨氮浓度,[N-NH4+]out是流出氨氮浓度,[N-NOX-]in是流进氮氧化物浓度以及[N-NOX-]out是流出氮氧化物浓度。
2.5 分析方法
总悬浮固体(TSS)、挥发性悬浮固体(VSS)、污泥体积指数(SVI)、碱度和氨氮按照APHA’S标准方法进行分析。氯化物(Cl-)、硫酸盐(SO42-)、亚硝酸盐(NO2-)、硝酸盐(NO3-)和氟化物(F-)用WATERS量子4000E CE根据毛细管电泳作用进行分析。分析条件为20℃温度,15千伏负电源,在254纳米间接用UV检测和5分钟分析。
3 结果和讨论
目前研究硝化和反硝化反应池生物接种来源改进Ludzack-Ettinger反应器的初步研究,该反应器已经处理工业废水由一年多了。法用相同微生物菌启动,然后朝着专业菌培养(由于特殊的实验条件)。两级污泥厂连续运行了450天,使用实际、高浓度工业废水。
3.1 硝化
3.1.1 pH控制
含氮废水含有碱度比硝化根据化学计量所需碱度药少。为了解决这个问题,一套自动控制法通过增加固体碳酸钠控制硝化反应池的pH。这个控制供应了必要的碱度,因此pH条件有利于反应。硝化反应最佳pH值范围为7.5-8.5。本实验选择7.5值,由于高的pH氨氮物会转化为氨,而氨会抑制反应。添加碳酸钠提供了硝化细菌适宜的条件,避免了使用它们培养基之一的物质无机碳,该物质会产生潜在抑制。
校正固体药剂师供给碳酸钠准确的数量(每剂量1.3gNa2CO3)。由于控制法记录每天总的剂量,可以计算出每天使用碳酸钠总量。在这个实验中,检验碳酸钠消耗量是否和碱度减少理论值相同,寻求硝化法适宜的设计值(每N-NH4+消耗7.1gCaCO3,或者4.26gCO32-/g N-NH4+)。所得实验值为消耗每gN-NH4+需要6.1±0.6g Na2CO3,与4.4±g CO32-/g N-NH4+(非常接近理论值)相一致。
在运行140天后,反硝化法部分水回流到硝化法。通过该污水回流重新获得了反硝化法产生的部分碱度,因此减少了碳酸盐添加量。
3.1.2 污泥培养
硝化反应池开始生物量浓度大约为4000mgVSS/L。图2显示该反应池的VSS和TSS浓度和它的SVI。在整个研究中VSS浓度保持在3500±700mgVSS/L。VSS/TSS比率为48±8%。但是,这个比率在200至250天时低于平均值;值降低是由于外加碱源引起的。最初碳酸钠改变为另一种便宜的碱源氢氧化钙;硝化反应池中添加钙离子引起硫酸盐和氯化沉淀。那些盐分增加了污泥无机成分,VSS/TSS比率减少到30-35%。为了解决该问题,碱源再用碳酸钠,VSS/TSS比率达到本研究的平均值。在整个研究中硝化污泥有好的沉淀性,VSI值低于50mL/g。
3.1.3 氮的去除
图3显示了在450天运行期间硝化法进水和出水所有氮化合物的浓度和氨氮去除百分比。有两个周期,一个没有碱回流,另一个有碱回流(反硝化法出水,如图1)。回流包括硝化法中稀释进水氨氮浓度,但没有降低NLR。表格4显示两个运行的操作参数。在两个运行平均硝化率非常高。在整个研究中氨氮去除率也非常高,范围为90%-100%。
比较进水氨氮浓度和出水氧化氮浓度(亚硝酸盐和硝酸盐),证实了氨氮去除是由于硝化发应,两个浓度相等。另外,碳酸盐消耗所得值和硝化化学计量值相等。那些结果否认了氨氮是通过吹脱或者其他微生物(如ANAMMOX处理)途径去除的。
3.1.4 最大硝化率
和那些工业规模处理厂相似的条件下进行实验确定MNR,连续等等。在进行那些实验遇到的问题是含氮废水中高浓度,因为如果NLR比MNR大,大量氨氮积累将会发生。积累抑制了反应,所观察到的硝化速率不是最大值。因此,实验逐渐地、控制 NLR增长的进行。紧紧当NLR稍微超过MNR时,法才有一些氨氮积累;但是,观察到硝化率依然时最大值。
三个实验分别在15℃、20℃和25℃进行。图4(a)显示第一个实验在温度15℃时的结果。实验开始时NLR为0.06gN-NH4+/gVSS-1d-1,没有发生氨氮积累。在NLR增加到0.13mgN-NH4+/(gVSS.d)时,NLR明显高于MNR,产生了150mg N-NH4+/L积累。测量了三个水力停留时间5-16天时段,可以知道计算除出作为平均值的MNR,其值为0.10±0.01g N-NH4+/(gVSS.d)。图4(b)和图4(c)分别显示了第二个和第三个实验结果。两个实验的MNR计算和第一个实验相同,第二个实验(T=20℃)MNR的计算利用了测量了二个水力停留时间13-20天时段,其值为0.21±0.01g N-NH4+/(gVSS.d)。第三个实验(T=25℃)MNR的计算利用了测量了二个水力停留时间12-20天时段,其值为0.37±0.03g N-NH4+/(gVSS.d)。那些数值说明了温度对硝化率的影响。温度系数是θ=1.14±0.03,调节那些速率适应于方程()。
图5将本实验25℃时MNR值与不同处理高浓度、氨氮废水法已出版的数据相比较。由于大多数早期数据在25℃取得的,因此MNR也选择该温度。本实验MNR明显高于BNR一级污泥法MNR见表。这是合乎逻辑的结果,由于在一级污泥法进水COD/N比率对可完成的MNR的不良影响。
更具体来说,进水COD/N比率3.4,MNR硝化系统获得了0.37gN-NH4+/(gVSS.d),是一级污泥系统处理相同废水的12倍,其硝化-反硝化速率为0.03 gN-NH4+/(gVSS.d)。为了使本研究MNR与生物膜硝化速率对比,硝化速率采用容积负荷而不是质量负荷。在25℃做实验,MNR容积负荷为1.3gNm-3d-1。本研究实验数据与固定硝化生物膜系统比较,提供了十分不一致的结果。不同结果的原因也许是工业废水不同成分。尽管它们都能用于高浓度氨氮废水处理,但它们彼此有自己的特性,影响了生物处理过程。工业废水研究包括高浓度氨氮、高浓度硫酸盐、氯化物和一定浓度氟化物(见表2)。那些成分会影响生物处理;例如,高浓度氯化物或者氟化物会抑制硝化处理。
3.1.5 基质对硝化的抑
在第一次运行所取得的结果证实进水氨氮浓度5000mgN-NH4+L-1处理困难,由于小的去除百分比下降导致硝化反应器500 mgN-NH4+L-1积累。去除百分比下降的原因是NLR的增加超过了系统反硝化速率的直接结果。在500mgN-NH4+L-1,20℃和pH=7.5时,自由氨浓度大约7.7 mgN-NH4+L-1。自由氨引起氨氮氧化和亚硝酸氧化菌的抑制。抑制也导致1500N-NO2-L-1的积累和硝化速率从0.15下降到0.10 mgN-NH4+VSS-1d-1。为了减轻这个抑制,当硝化反应器中氨氮浓度接近300mg N-NH4+L-1数值时,NLR开始下降了。
3.2 反硝化
在不同阶段硝化系统的出水在反硝化系统中处理,利用两种不同外加碳源。为了研究两种外加碳源对反硝化速率的影响,在稳定状态,系统的MDR被评价。
3.2.1 乙醇混合物作为碳源的反硝化
乙醇混合物作为第一种外加碳源用来做实验。外加碳源作为COD-废水主要含有相同有机物,工业产生的。进水和出水氮浓度(硝酸盐加上亚硝酸盐,尽管亚硝酸盐的作用几乎忽略)见图5(a)。
温度保持20℃,外加碳源流量被调节保持COD/N比率为5gN-1,以确保系统不被有机物抑制。200天外加碳源研究分成6个运行阶段。表6概括了运行参数的数值和给出了每个运行阶段的氮和生物浓度平均值,采用了标准偏差。反硝化速率的误差根据消耗量来计算,误差与每个浓度标准偏差。
在运行1和2里,系统受硝化系统供应大量的氮抑制。为了使运行加快,在运行3-6固体硝酸钠添加一定数量到反硝化反应器里。
在运行3和4系统一直受到基质的抑制,由于出水氮浓度在0和30mgN-NOx-L-1之间浮动。在运行4反应器中生物浓度增加到平均值9700mgVSSL-1。高浓度生物量产生了大量氮气,引起了沉淀池上浮问题。在运行5这个问题被克服了,通过减少系统里生物浓度到平均值3600mgVSSL-1。在这个运行里,反硝化不再受基质抑制,由于出水氮浓度一直超过60mgN-NOx-L-1。在那些条件下取得反硝化速率是MDR:0.64±0.10g N-NOx-gVSS-1d-1。这个速率保持了21天,因此它被认为稳定状态被取得了。在如此高的速率运行导致操作问题,由于大量氮气产生。由于这个原因,进水浓度降低了。在新的反应条件下反硝化速率下降到0.22±0.07 N-NOx-gVSS-1d-1,该数值保持了55天高性能水平,没有引起任何大的操作困难。最后运行说明了本系统可以在高反硝化速率运行比较长的阶段。在反硝化阶段使用乙醇混合物消耗的COD/N比值是4.3±0.4gCODgN-1。
表7对本研究取得的MDR和几个已经出版的论文进行了比较。可以看到本研究MDR高于一级污泥系统(硝化-反硝化)所取得的MDR。原因是在本系统没有通氧气到缺氧池,因此没有好氧硝化有机物质。在本系统产生了高百分比反硝化菌。但是,在序批式反应器里纯培养反硝化细菌,其MDR大于本研究的MDR.
3.2.2 甲醇作为外加碳源的反硝化
运行200天后,外加碳源改变为甲醇混合物。用自来水稀释,为了维持与乙醇有相同HRTs。图5(b)显示了甲醇作为外加碳源时反硝化系统进水和出水氮浓度(硝酸盐加上亚硝酸盐,尽管亚硝酸盐作用可以忽略)。
温度保持在25℃,进水COD/N比值为5gCODgN-1,为了确保本系统不会受有机物限制。以这种外加碳源运行了140天,分成了三个阶段。表8概括了每个阶段运行参数和显示了氮平均值和生物浓度,和标准偏差。反硝化速率误差计算采取误差与每个浓度有一定的关系为标准误差。用这种碳源,没有显示氮受限制的迹象,因此没有必要添加固体硝酸氮取得MDR。
在80天内反硝化速率从0.04±0.03gN-NOx-gVSS-1d-1增加到0.17±0.06 gN-NOx-gVSS-1d-1。这个增加是由于反硝化生物适应甲醇混合物需要一段时间。有报道说适应甲醇的时间在50和100天。利用甲醇混合物做碳源时COD/N比值是3.9±0.5gCODgN-1。
表9对比了利用甲醇混合物为碳源取得的MDR和不同已经出版了用纯甲醇为碳源的研究。一级污泥硝化和反硝化系统的反硝化速率是很大的,有比本研究更高和更低值。反硝化污泥系统和纯培养的结果比所有目前研究都要高。更低速率是由于碳源使用在本目前研究,纯的甲醇不能利用。
3.2.3 比较最大反硝化速率
为了比较使用两种碳源所取得的MDR,有必要修正甲醇混合物的MDR,由于该速率是在25℃测得而乙醇是在20℃测得的。相同微生物通过实验确定温度系数是1.10。通过修正后,甲醇混合物在20℃的MDR大约为0.11gN-NOx-gVSS-1d-1,然而乙醇混合物是0.64 gN-NOx-gVSS-1d-1。因此使用乙醇混合物的MDR大约是使用甲醇混合物的MDR的6倍。这个比率高于其他参考资料数值,使用乙醇的MDR大约是使用甲醇的MDR1.5-3.5倍。这个不同是由于乙醇混合物使用组分,它包括了丙酮(10%)和异丙基乙醇(10%)。
4 结论
本论文的结果说明了含有氨氮浓度高达5000mgN-NH4+L-1、高浓度硫酸盐和氯化物的工业废水可以使用生物。两级污泥硝化-反硝化系统去除。
关键词:生物法;工业废水;研究
中图分类号:S141文献标识码: A
引言
近年来,随着我国经济的高速增长,城市化水平的不断提高,水污染问题日趋严重。由于长期依赖于粗放型的经济增长方式,我国经济发展与资源环境之间的矛盾日趋尖锐,严重的环境污染正吞噬着我们赖以生存的自然环境,导致大气质量下降、水质恶化,生态破坏严重,不仅大大降低了经济发展的质量,而且也对国人健康安全直接构成了越来越大的威胁。近几年来,中国政府已经意识到环境形势的严峻性,制定了一系列环境经济措施来推进环境污染治理,并将节能减排作为转变经济发展方式的重要抓手,环境保护已成为“十一五”时期的重要目标。因此,改善我国水环境被污染和继续恶化的状况,保护我国紧缺的水资源已经刻不容缓。
一、工业废水处理行业现状
(一)我国工业废水排放及工业废水处理情况
我国工业废水污染现象严重,目前全国500多条主要河流中,有80%以上受到不同程度的污染,这主要是由于工业废水的排放造成的。流经全国 40多个大城市的河流,有 90%以上受到污染,状况堪忧。
我国流域水资源基本分为长江、黄河、海河、松花江、淮河、珠江和辽河七大水系,其沿岸汇集了全国80%以上的城市及乡镇,是全国流域污染治理最重要的区域。
(二)管理人员和施工人员水平低
污水处理是一项非常专业并且复杂的技术,当前我国多数污水处理厂都存在着管理人员和施工人员水平偏低,很多学习污水处理专业的大学毕业生不愿意去偏远地区的污水处理厂工作,而现有的污水厂员工又不能适应污水处理厂正常运转等最基本的工作,这些都制约了我国污水处理事业的正常发展。
(三)对污水处理设施的资金投入不足
目前制约我国污水处理发展的最大问题就是资金。相比西方发达国家,我国尽管整体的经济水平很强大,但基础比较薄弱,人均水平还比较落后,能够划拨到污水处理建设上的资金严重不足。
行管理,各种运行费用来源也要依靠政府拨款,这样很容易产生下拨资金不能很现在污水处理厂建设很多都需要政府筹措资金,建成后又要委托给水厂等机构进好的用在污水处理厂的建设上,致使工业污水处理厂的资金链出现恶性循环的苦果。
(四)污水处理设施陈旧,污水处理技术落后
目前我国污水处理厂的配套设施严重不足,管网收集系统的铺设滞后,致使大量的污水处理设施很难发挥其应有的效果。而且我国很多污水处理厂还在使用西方发达国家淘汰的污水处理技术,造成污水处理效率低、能耗高、机械化程度低,以及设备返修率高的局面。
二、生物法处理工业废水
废水较其他工业排放废水而言在处理上具有较高的难度,这是由于其所产生的废水中含有大量难以降解的纤维性物质和污染度较高的色素物质,因此,给废水处理带来了极大的困难。。因此,采取有效的技术和方法来实现对废水的处理具有十分重大的社会意义。下文将列举一些常见的废水处理方法以供参考。
(一)活性污泥法。
活性污泥法是应用最为广泛的废水生物处理技术。它是利用悬浮生长的微生物絮体吸附、吸收、氧化和降解废水中的有机污染物,使之转化为无害的物质,从而使废水得以净化的一种好氧生物处理法。活性污泥法主要降低废水的BOD值,但传统活性污泥法会排放出大量剩余污泥,这些污泥中饱含着各种污染物,所以处理和处置这些污泥也是一大难题,现在的活性污泥法发展趋势是污泥减量化和与厌氧法组合处理工艺。
1.序批式活性污泥法(SBR)。序批式活性污泥法(SBR)是一种间歇运行的废水处理工艺,它是在一个反应器内按时间顺序先后完成普通连续流活性污泥法中多个处理单元所进行的工艺环节。SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。利用SBR工艺对废水进行处理,COD去除率可达82.5%,且运行比较稳定,处理效果良好,出水水质达到国家规定的造纸行业废水排放标准。
2.AB工艺法
AB工艺法又名吸附生物降解法,适用于处理难于降解的工业废水与浓度较高的工业污水,同普通的活性污泥法处理相比,有很大的优越性与特殊的净化机制。AB工艺的不同于传统的活性污泥法的部分,在于将曝气池的分段分为A和B段两段,其中A段部分对于有机物质的吸附、吸收与氧化的三种方式而言,吸附与吸收起到主要作用,而对于B段而言,吸收与氧化起到主要作用,尤其是氧化作用部分占据主要地位。
3.A-O工艺法
A-O工艺法,也叫厌氧好氧工艺法,主要用于水处理方面 A就是厌氧段,主要用于脱氮除磷;O就是好氧段,主要用于去除水中的有机物。它除了可去除废水中的有机污染物外,还可同时去除氮、磷,对于高浓度有机废水及难降解废水,在好氧段前设置水解酸化段,可显著提高废水可生化性。
(二)厌氧生物处理
1.上流式厌氧污泥床(UASB)
上流式厌氧污泥床(Up-flowAnaerobic Sludge Blanket,UASB)反应器作为第二代厌氧反应器,将微生物固定化原理引入厌氧处理反应器,是一项污水厌氧生物处理高效技术。UASB 工艺是目前研究最多、应用最广泛的新型污水厌氧生物处理工艺。其核心是三相分离器,合理地将固液气分隔开,达到分离污泥、收集气体、处理污水的目的。
UASB 具有其他厌氧工艺难以比拟的优点,首次实现污泥的颗粒化,使其固体停留时间长达100 d;气、固、液的分离实现了一体化,因而UASB 具有很高的处理能力和处理效率,尤其适用于各种高浓度有机废水的处理。在实际工程应用中UASB 很少单独使用,通常与其他工艺相结合,为后续处理减轻负担,使出水水质到达更好的处理效果。如W.Parawira等对UASB 处理啤酒废水研究表明,UASB 处理后为城市污水处理厂的处理减轻了负担和处理费用。
目前UASB 在高浓度有机废水处理上已经得到了广泛的研究和应用,研究主要集中在对于工艺的优化上以及UASB 的组合工艺上,以获取更高的去除效率。今后的研究热点可能是将厌氧氨氧化技术引入使UASB 达到脱氮的效果,并且通过特种微生物的强化和条件的控制达到脱氮除磷的效果。
2.膨胀颗粒污泥床(EGSB)
膨胀颗粒污泥床(ExpandedGranular Sludge Bed,EGSB) 综合了流化床(FB)和UASB 的优点。EGSB 反应器废水由底部的布水器进入反应器,通过富含厌氧菌的污泥区,在厌氧菌的作用下,COD 大量去除,同时产生大量沼气,在反应器的顶部通过三相分离器的作用,气体和出水分别排出,污泥则沉降回污泥区。
虽然我国的学者在近几年对EGSB 工艺进行了较深入的研究,但与国外相比尚有一定差距,还应加强对EGSB 工艺在工程应用上的探索与实践,并力求能在EGSB 的基础上开发出有我国自主知识产权新型厌氧反应器。
3.内循环厌氧反应器(IC)
内循环(Internal circulating,IC) 反应器组成类似两个上下串联在一起的UASB 反应器,一个是下部的高负荷部分,一个是上部的低负荷部分。IC 反应器与UASB 的最大不同之处是,底部的厌氧反应室产生大量沼气被收集的同时,大量沼气携带泥水混合物沿着提升管上升至上部反应室的气液分离器,被分离的泥水混合物沿着回流管返回到底部厌氧反应室底部,实现了内部循环。由此引起的强烈的搅拌作用和快速的上流速度,极大地改善了污染物从液相到颗粒污泥的传质过程,因此有极高的净化效率。
目前已经有较多关于IC 反应器处理各种不同中高浓度废水的研究,具有占地面积小、投资少、容积负荷高、运行稳定等特点,在有机废水处理和资源化利用方面越来越广泛地应用,具有广阔的应用前景,值得进一步研究开发和推广。今后的研究重点:(1) 颗粒污泥的培养和IC 反应器的快速启动;(2)反应器的结构优化与自动控制的研究。
结束语
工业废水的处理在很大程度上同国民经济的发展状况相关,此外工业固定资产波动也会对工业废水处理造成影响,工业投资规模越大工业废水处理状态越佳。国民经济发展的状态不同,即在不同的时期,国家会针对实际的状况提出调整政策,这种宏观政策会对工业治理行业的调整产生英系那个。虽然当前我国对于环保的重视程度较高,因而工业废水总量虽然有所减少,但是现代社会对于环保的要求不断的提高,由于近年来我国一直在控制污水排放总量,依照当前我国的政策规律,对于工业废水的控制只会越来越严格,因而在污水处理技术设备以及投资运营等方面发展空间较大。因此工业废水处理产业属于朝阳产业,并且会随着国民经济的不断发展而发展。
参考文献:
[1]李芸.浅谈工业废水的处理方法[J].科技致富向导,2012,35:276.
[2]张晓娟,王梅,张鑫.工业废水的处理新技术与新设备[A].中国环境科学学会.中国环境科学学会2009年学术年会论文集(第二卷)[C].中国环境科学学会:,2009:3.
【关键词】膜分离法,污水处理,技术的发展
中图分类号:U664.9+2 文献标识码:A 文章编号:
一,前言
膜分离技术是非常接近我们的日常生活的。比如水,果汁,牛奶,保健品,中国传统医药,茶叶,食品,饮料,调味品,都会使用膜分离技术。随着国民经济的快速发展,膜分离技术的应用领域将不仅是越来越广泛,而且被越来越多的人认识和接受。据初步统计,2001年全球销售膜和膜组接近80十亿美元。
二.发膜分离技术的发展历史
1.模拟合而成的历史,是一个漫长而曲折的过程。膜科学与技术在中国的发展,是从1958年开始研究离子交换膜开始。 20世纪60年代为创业阶段。创办于1965年的反渗透勘探的国家海水淡化战斗的开始于1967年,在20世纪70年代,进入开发阶段。这一时期,微滤,电渗析,反渗透膜和超滤膜和组设备得到研究和发展,20世纪80年代到应用阶段.
2.半个世纪以来,随着膜科学与技术在中国的发展,膜分离完成了从实验室到大规模工业应用的过渡.自1925年以来,几乎每10年有一个新的膜法处理工艺的工业应用产生。
3。膜分离技术具有优越的性能,膜分离过程一直被世界广泛关注。由于能源危机,资源短缺。在21世纪的工业转型的产业和技术领域中膜法处理工艺是极为重要的。曾有专家指出:谁掌握了膜技术,谁就掌握了化学工业的明天。
4.我们的膜分离技术现在进入应用阶段,在此期间,膜技术在食品加工,海水淡化,纯水,超纯水,医药,生物科技,环保等领域的开始大规模发展和应用。而且,在此期间,国家重点科技攻关项目和国家自然科学基金也有膜分离技术主题。目前,潜力巨大的新兴产业正在蓬勃发展的激情挑战市场,为众多企业带来了显着的经济,社会和环境效益。虽然膜分离技术的巨大进步,但它仍处于发展的上升阶段,有大量的工作需要做。膜科学技术21世纪将进一步提高,需要在改善现有的膜过程中,不断探索和开发新的工艺和材料,并扩大膜技术的应用领域。
三,膜分离过程中的基本特征。
膜分离技术,其节能效果显着,设备简单,操作方便,易于控制,受到了广大用户的普遍欢迎。膜分离方法的基本特征是传质机制一般被认为是在溶剂通过膜材料扩散之间的压力驱动力的水溶剂中的滞留物,盐作为溶质,和类型的膜是一种非对称膜或复合膜反渗透又称浸润逆透镜(R0),该溶液中的溶剂是足够的压力(通常为水)通过反渗透膜(半透膜)分离,违反自然渗透的方向,因此称为反渗透。根据各种不同的材料通过压力逆的,它是以大于渗透压的反渗透的方法来实现分离,提取,纯化和浓缩的目的。在反渗透装置前,提供原水的分析报告,公司的设计师,为用户确定的治疗方案,根据水质。合理的选择,反渗透设备,并确保反渗透长期,稳定的正常运行。
四.膜分离技术在废水处理中的作用
1.在20世纪60年代开始的市政污水处理和回用。大型集中的城市污水的水质更稳定,是一种潜在的水资源。城市污水处理通常是发射两个或三个液体污水到处理厂,再去除痕量有机物和重金属离子,使水质达到饮用水标准。但由于一些主观原因,是这些污水经常注入到地下含水层或淡水水库,造成污染,但是经处理后可用于工业循环冷却水,锅炉用水和其他非饮用水。
2.由于工业的发展,大量的工业废水排入水体,这些工业废水,量大面广,危害深,大多含有不同浓度的化学物质,其中有些具有很高的经济价值,而另一些是有毒的。为了保护环境不受污染,回收有用物质,必须进行对排放工业废水的净化处理,膜分离技术能有效净化工业废水,而且可以重复使用有用的物质,而且还可以节省能源。膜技术已被广泛应用在所有五个类别的主要工业废水处理电镀废水,造纸废水,重金属废水,含油废水和印染废水。
3.随着人们的生活标准的提高,对水质量的饮用的水的要求也越来越高‘而且传统工艺有严重缺点,如加氯会作出一定的有机的化合物,氯和水反应生成一个新的三造成极大的伤害(致癌,致突变,造成失真)的化合物。饮用水处理的膜技术是一项重大突破。能净化水和纯化从除去悬浮固体,细菌,病毒,无机物质,杀虫剂,有机和溶解在水中的气体,并在这方面,膜分离技术方面发挥了其独特的作用。微滤,超滤和纳滤膜分离组成的水,微米的颗粒的去除是优于传统的水处理技术的过滤能力,除去过滤器不具有在纳米级的颗粒,悬浮固体,细菌,可有效去除病毒,无机物质,农药,有机和溶解的气体和其它杂质。使饮用水的质量,满足日益增长的需求。
4,我们是水资源贫穷国家。海水作为水资源的重要组成部分,能有效地解决中国水危机的重要措施之一。如膜技术海水淡化反渗透,电渗(ED)和膜蒸馏(MD)。 现在2000吨的反渗透海水淡化及其组技术产业化示范工程项目已被列入国家高技术产业发展项目。反渗透技术的出现和发展,大大降低了反渗透海水淡化的成本,已成为饮用水的海水淡化系统最经济的手段。电渗析技术,可直接淡化为饮用水,但不带电荷的物质,如有机物,胶体,细菌,悬浮物等没有去除能力.因此,由于反渗透海水淡化技术的出现,电渗析脱盐的比例逐渐减少。膜蒸馏技术的具有高脱盐率99.7%以上的可以取得的,小脱盐离子,胶体,大分子如非挥发性组分,不能扩散到组件的拒绝可能是渗透膜100%,且具有设备简单,操作方便,膜寿命长,能耗低的优点。
5.中国的西部省份存在严重的水资源短缺的问题,在缺水的国家和苦咸水淡化是一种有效的方法来解决水资源短缺。对于苦咸水淡化膜技术:电渗析,反渗透技术,纳滤技术。但是电渗析不能去除有机物和细菌的水,能源消耗设备的运行,使得它被限制在苦咸水淡化工程中的应用。咸淡水的装置也可被使用的反渗透脱盐得到的饮用水。反渗透海水淡化,苦咸水,其水质优于生活饮用水卫生标准。含高氟,低矿化度的苦咸水反渗透海水淡化,污水可以达到我们的生活饮用水卫生标准。反渗透较低的生产成本比电解法,无污染,苦咸水淡化相比是最经济的方法。
五,结束语
虽然膜分离技术的广泛成熟应用在许多方面离产业化要求还有很长的距离,但是随着新型膜材的不断开发、高效的强化膜过程分离技术研究的不断深入,膜分离技术应将得到更加广泛的应用。膜分离技术近年来发展迅速已广泛用于分离的膜分离过程中,分离效率高,是一个重要的技术能解决当代能源,资源和环境污染的问题,与传统的方法相比,在许多领域,中国节能膜技术在该领域与世界先进水平的污水水深度处理中的应用仍有较大的差距。应努力开发和生产高强度,长寿命,耐污染,高通量膜材料。不同的膜技术和配套技术,对不同来源的污染作用不同。
参考文献:
[1]石永军 浅谈铁膜分离技术在废水处理中的作用 [期刊论文] 《技术与市场》 -2012年6期
[2]刘向东 膜分离技术在废水处理中的作用 [期刊论文] 《膜分离技术在废水处理中的作用标准设计》 ISTIC PKU -2012年4期
论文关键词:高浓度印染废水,生物接触氧化,强化混凝
前言
印染废水组分复杂,色度高,是当前国内公认的较难处理的工业废水之一。本工程结合印染行业废水处理特点,论述超高浓度印染废水处理。无锡某集团有限公司主要生产纺织品,直接排放势必对环境造成严重污染,采用该方案经处理后的废水可达到《污水综合排放标准》(GB8978-1996)一级排放标准。现将工程有关的设计和运行情况介绍如下。
1工程概况
无锡某集团有限公司主要生产纺织品。排放量7000m/d,其生产废水主要来源:纱线染色废水、退浆废水、丝光废水、漂白废水及整理废水,另外还有少量的上浆脚水和生活污水。废水水质及排放标准具体见表1
表1废水水质及排放标准
Table1,waterqualityandwastewaterdischargestandards
项目
pH
CODcr
BOD
色度
SS悬浮物
废水水质
8~12
800~15000mg/l
150~250mg/l
800~1000倍
1000(mg/l)
排放标准
6~9
≤50mg/1
≤100mg/1
论文关键词:缺氧/二级生物接触氧化法,食品加工废水,过滤消毒
生物接触氧化法是一种介于活性污泥法与生物滤池之间的生物膜法,它具有有机负荷高、耐冲击负荷强、处理效率高、能脱氮除磷、结构简单、运行灵活、能克服污泥膨胀问题、剩余污泥量少、操作管理简单、经济性好等优点,目前,该技术广泛地用于石油化工、农药、棉纺印染、轻工造纸、食品加工、发酵酿造
等工业废水处理中【1-3】。缺氧/二级生物接触氧化法工艺(A/BCO)[4-5]是根据太
原市双合成食品厂废水的特点,经过小试最后确定的生产性工艺。该工艺处理效率高,操作管理方便,出水能达到《污水综合排放标准》中的一级标准,出水经过过滤消毒还可以回用于该厂的厕所冲洗和绿化等日常杂用水。
1 水质,水量及排放标准
太原双合成食品有限公司是一家以生产月饼糕点为主的食品加工企业,其研发中心和基地的污水水源主要为生产车间废水和生活废水,有机物污染浓度较高,CODcr和BOD5含量都比较高,其需要处理的污水是经厂家化粪池的出水,因此污水水质有所降解,经检测该废水的BOD5 / CODcr 在0.6左右,可生化性好,该厂家产品种类多,产品受市场和季节影响大杂志铺,因此废水排放不均,根据厂区现状确定处理站的一期工程设计为150m3/d,出水水质要求达到污水综合排放标准(GB8987――1996)的一级排放标准。污水水质及经处理后的水质见表1。
表1 污水水水质和排放标准
Table 1 Wastewater qualilyand discharging standards
项 目
COD
SS
BOD5
NH3-N
(mg/l)
(mg/l)
(mg/l)
(mg/l)
污水井水水质
900
600
600
45
污水综合排放标准
50
70
30
15
杂用水水质标准
50
15