前言:我们精心挑选了数篇优质焊接工艺论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
1.1焊接接头的型式及特征柔板尺寸为(11000×1200×22)mm,最大变形挠度为800mm。由于柔板主体既要有较高的强度又要有足够的韧性,故材料选用抗拉强度大于800MPa的T-1钢;由于铸钢件力学性能的各向异性并不显著,且此部位需要流线型造型,因此与柔板连接的底座选择铸钢件,为满足强度要求选用14mm厚的ZG310-570;采用T型接头、单V型坡口、金属焊接位置为平角焊的接头形式。
1.2基材的焊接性分析T-1钢是一种低合金高强钢,其抗拉强度大于800MPa,并含有一定量的合金元素及微合金化元素。其焊接性不同于碳钢,主要体现在热影响区组织与性能的变化对焊接热输入比较敏感和淬硬倾向大,易产生冷裂纹。ZG310-570是一种中碳钢,淬硬倾向较大,在热影响区容易产生低塑性的马氏体组织,当焊件刚性较大或焊接材料、工艺参数选择不当时,容易产生冷裂纹。根据国际焊接学会推荐的碳当量CE(IIW)计算公式和日本JIS标准(适用规定:低碳调质低合金高强钢)T-1钢的碳当量计算公式,计算得出ZG310-570铸钢的碳当量为0.81,T-1钢的碳当量为0.53。这说明这两种钢材焊接时易于淬硬,若焊接工艺选用不当,热影响区易形成硬而脆的马氏体组织,使接头的塑韧性下降,耐应力腐蚀性能恶化,产生冷裂纹的倾向增加。因此需预热,且需采用较小的热输入。
1.3焊丝和焊接方法的选择T-1和ZG310-570组织分类都属于珠光体钢,它们的热物理性能没有很大差别,仅是合金化程度不同。为获得优质的焊接接头,一般按照异种钢合金化程度较高的钢来选择金属焊接方法和制定焊接工艺。碳(或碳当量)是决定珠光体钢在焊接时淬火倾向的主要因素,一般应按异种钢中碳(或碳当量)最少的钢来选择金属焊接材料。其焊前预热或焊后热处理的工艺参数按异种钢合金化程度较高者选用。由于低碳调质钢焊后一般不进行热处理,故选择焊接材料时要求焊缝金属在焊态下具有接近母材的力学性能。但在特殊情况下,如结构刚度或拘束度很大、冷裂纹难以避免时,必须选择熔敷金属强度比母材稍低的金属焊接材料作填充金属。综上所述,焊丝选用ER50-6,因T-1钢为调质状态,只要加热温度超过回火温度,其性能就会发生变化。因此焊接时因热作用使热影响区的局部强度和韧性下降是不可避免的。强度级别越高,这个问题越突出,所以对焊后不再进行调质处理的柔板应选择能量密度较大的焊接方法,如熔化极气体保护焊。
1.4T-1钢的抗裂试验、预热温度和层间温度的确定因T-1钢的合金化程度较高,所以抗裂试验、预热温度和层间温度的确定由T-1钢决定。又因T-1钢易出现冷裂纹,因此采用“斜Y型坡口焊接裂纹试验方法”测试T-1钢最低预热温度和最高层间温度。将T-1板加工至选用厚度,焊丝选用ER50-6,直径为Φ1.2mm,保护气体为CO2,电流为240A,电压为32V,焊接速度为28cm/min。试验选取预热温度为120℃,未出现裂纹。实际工作中采用预热温度>130℃。为防止组织发生变化,预热温度不得大于220℃,层间温度也应控制在<220℃。施焊过程中未发现裂纹。
1.5T-1与ZG310-570异种钢的焊接工艺焊前采用火焰预热,预热温度最小为100℃,金属焊接时层间温度控制在最大200℃,采用纯度大于99%的CO2混合气体保护焊焊接,流量为15L/min~20L/min。焊丝为ER50-6,金属焊接的打底电流为120A~150A,电压为18V~20V,焊接速度为10cm/min~15cm/min;填充盖面电流为240A~270A,电压为25V~27V,焊接速度为30cm/min~50cm/min。采用多层多道焊。
2T-1与ZG310-570异种金属焊接接头的性能分析
T-1与ZG310-570异种金属焊接接头熔敷金属的化学成分,与焊丝的化学成分相比,熔敷金属的化学成分并未出现明显的变化,且熔敷金属中C、P和S的含量较低。表5为熔敷金属的力学性能,从表中可以看出熔敷金属的各项力学性能符合实际生产中的使用要求。
3结论
可以将汽车后桥采用冲压方式的焊接工艺。相比较两种汽车后桥材料SAPH441与Q235两种板材,适合的将SAPH441板材作为汽车后桥材料。这种板材力学性能相当好,是由低碳合金钢来打造的,相比较Q235后桥板材的强度,SAPH441的强度大概高出Q235约百分之二十五左右。除此之外,SAPH441在焊接性能上也高于Q235。但是在SAPH441焊接过程中,容易因为板材构成中包含了碳锰两种元素而出现淬硬性,这就容易造成焊接过程中有缺陷,这样就会降低SAPH441的焊接性。因此,在进行SAPH441的焊接时,一定要采取相应的措施对这种缺陷进行补救。除了汽车后桥材料的选择,还有一个极为重要的后桥零部件,它负责传递力及力矩,是后桥连接的一个部件,这个部件就是变形轴管。考虑到变形轴管的功能与起到的作用,一定要选择汽车后桥所规定的力学性能材料。除此之外,汽车轴管承受了后桥大部分的受力,因此容易出现变形,在进行材料的选择时,一定还要考虑到材料的可塑及可焊性。考虑到成本的问题,在进行材料的选择时,要采用材料使用要求合格的,相对的又能节省成本的。
2后桥壳类别及焊接工艺设计
第一类:桥壳为三段式桥壳,即主体部分为桥壳法兰盘、变形轴管、桥壳中段(桥壳中段上下半壳、加强圈、帽壳)。优点:产品焊缝较少,焊接应力小、密封性好,焊接工艺简单。缺点:成本较高。焊接工艺为:(1)点定、焊接桥壳中段上下半壳与加强圈;(2)桥壳与加强圈焊接完毕后与帽壳焊接;(3)桥壳中段与变形轴管使用专机自动焊接环焊缝;(4)桥壳中段与变形管焊接后机加工变形管两端;(5)使用压装专机将桥壳法兰盘压入变形管两端并在压装专机上使用二氧化碳保护焊点定;(6)将压装点定后的桥壳法兰盘使用专机自动焊接环焊缝。(7)根据桥壳设计情况使用专用支架工装点定焊接各油管支架及钢板弹簧支座。
第二类:桥壳为上下半壳扣合焊接结构。此种结构中有两种结构:结构1型:上下半壳扣合无镶块结构。结构2型:上下半壳扣合有镶块结构。两种结构的主要区别在冲压上下半壳扣合焊接有无三角镶块。产品主体结构为:桥壳法兰盘,上、下半壳,加强圈、帽壳。结构1型优点:主体为冲压成型成本较低。缺点:焊缝较第一类结构长、焊接变形量大。结构2型优点:上下半壳、镶块均为冲压焊接结构、板材利用率高,成本最少。缺点:三角镶块为焊接应力集中区,易出现焊缝开裂等问题。对焊接质量要求较高,一般要求熔深达到60%以上,应力集中点要求90%或更高。焊接工艺:(1)点定上下半壳、加强圈、桥壳法兰盘;(2)(结构2)点定四块三角镶块(结构1无此工艺步骤);(3)使用专机焊接上下半壳直缝焊道;(4)手工或使用专机焊接三角镶块焊道(结构1无此工艺步骤);(5)使用专机自动焊接加强圈环焊缝;(6)使用专机定位压紧帽壳并自动焊接帽壳环焊缝;(7)使用专机自动焊接桥壳法兰盘环焊缝;(8)根据桥壳设计情况使用专用支架工装点定焊接各油管支架及钢板弹簧支座。
3焊丝选型及工艺参数设定
焊丝选型:根据板材的性能查找《焊接手册》中表2-1-1常见结构钢力学性能及匹配焊接材料选用焊丝型号。如选用Q235板材的C、D级需要使用焊丝型号ER50-6。选型原则为:焊丝性能大于板材性能。工艺参数设定:皮卡车型的后桥壳板材厚度一般为5mm左右,焊丝一般选用直径为1.2mm,焊接过程采用短路过渡,电流设定范围为180-240A,电压设定值为参考值(上下浮动为2V),计算公式为:200A以下,U=0.04I+16,200A以上,U=0.04I+20。
4后桥壳焊接密封性检验及焊接强度检验
由于后桥壳为驱动桥对桥壳的密封性要求较高,所以焊接完成后必须100%进行密封检验。现一般均采用高压充气后浸水试漏检验,如出现焊接不良导致的密封不良,可采用补焊焊接。如需补焊的焊道较长大于50mm需要断续焊接避免补焊量过大导致的桥壳整体出现弯曲变形,导致产品报废。焊接强度检验:采用剖切试验。第一步采用火焰切割将焊道剖开,第二步使用铣床将焊道铣出光亮面,第三步使用200目金相砂纸打磨光亮面,对焊道剖切面抛光,第四步使用4%的硝酸酒精浸泡。第五步对焊道熔深测量计算熔深并出具检验报告。
5结束语
1.1焊接变形原因
焊接的热过程是导致残余应力和塑性应变的根源。在焊接过程中,焊接热过程对焊接质量和焊接效率的影响,主要来自以下几个方面的深层次原因:(1)在焊接件上,熔池的形状和尺寸直接影响焊接质量,而熔池大小与尺寸作用到焊接件上的热量分布和大小息息相关;(2)焊接的热过程包含加热和冷却两个过程,这两个过程中的加热和冷却参数会直接影响熔池的相变过程,对金属的凝固产生重要的影响,对热影响区的金属组织产生一定的破坏;(3)焊接中的热过程直接决定热量的输入过程和热量的传递效率,这直接导致焊接的母材的熔化速度;(4)焊接的热过程如果不均匀,会对金属构件各部分产生不同的热响应,导致出现不同的应力,产生应力形变。从以上理论探讨,我们可知在金属构件焊接过程中出现变形,主要是由于焊接热源是处于局部加热,使得铝合金构件上的热量分布存在差异,在构件与母材之间的焊缝区域附近热量吸收的较多,引起周围铝合金材料和母材都出现一定程度的受热膨胀,而远离焊缝区域的铝合金材料和母材材料由于吸收到的热量相对较少,发生的体积膨胀相对较小甚至不发生体积膨胀,使得焊缝区域的体积膨胀过程受到一定的抑制,导致焊接过程中,焊接构件和母材之间出现瞬间的热变形,但是当铝合金构件在焊接过程中产生的内应力超过了自身材料的弹性极限后,会出现一定的塑性应变,当焊接过程结束之后,焊接件又逐步冷却而产生残余变形。
1.2焊接变形分类
从机械领域考虑整个焊接过程,可以将焊接过程中出现的变形分为瞬间变形和残余变形。其中,焊接过程瞬间热变形分为三种,依次是面内位移、面外位移和相变组织形变。焊后残余变形分为面内变形和面外变形两大类,面内变形又分为焊缝纵向收缩、焊缝横向收缩、回转变形;面外变形又分为角变形、弯曲变形、扭曲变形。
1.3铝合金的焊接性能分析
熟悉化学原理的人都清楚,各种铝合金的化学成分并不一致,导致不同铝合金的物理性能和化学性能存在一定的差异,但是,由相关研究试验并结合以上的焊接热理论和焊接应力应变理论分析可知,铝合金的焊接性能主要与铝合金中的含铝量和含镁量有关。随着含镁量的增高,铝合金强度增高,焊接性能改善;但是,当含镁量超过7%的极限值之后,铝合金容易出现应力集中,降低焊接性能。但是,铝合金与其他金属相比,由于在空气中或者是进行焊接时,比较容易与氧反应被氧化,生产的氧化铝薄膜由于熔点高,在焊接时会阻碍焊接过程;焊接过程中,在接头内容以出现一些焊接缺陷,因此,在焊接前需要进行表面处理后尽快进行焊接。此外,由于铝合金的其他物理化学性能如热导率、比热等比钢大,在焊接时容易造成较多的焊接热量的流失,因此,在焊接时需要采用高度集中的热源进行焊接,才能有效提升焊接质量,降低应力形变的出现。
1.4铝合金构件焊接变形控制措施
从上述对铝合金构件焊接性能和焊接热过程的分析,对于铝合金构件在焊接过程中出现的瞬间变形和焊接结束后出现的残余变形,需要采取一定的控制措施,减少变形甚至是消除变形,促进铝合金构件在装备整体结构中发挥应用的作用。在铝合金构件设计阶段结合整体装备,做好其结构设计并采取优质的焊接技术,能够显著减小焊接变形量。为此,我们可以从两个阶段进行铝合金焊接变形量的控制。一个阶段是设计阶段,另一个是制造阶段。在设计阶段,主要遵循如下几个原则即可实现在设计过程做好对铝合金焊接变形的有效控制:首先是要对焊接的工艺进行有效的设计与选择,一般在这个过程中,遵循的原则就是尽量选择那些实践反馈效果好应用成熟的焊接工艺;其次,对于焊接过程中,铝合金构件和主体装备结构之间焊接缝隙的尺寸、形状、布局以及位置都应进行有效的设计,尽量通过好的焊缝设计铝合金构件在主体结构上的位置,控制好焊缝的布局和位置,然后减少焊缝的数量,选择最优的焊缝尺寸,实现对焊接结束之后可能出现的残余形变;最后,在设计过程中,需要做好一系列的仿真实验和小比例模型的模拟实验,在实验检验的基础之上,确定最终的设计方案,以便正确指导铝合金的焊接,减小甚至防止铝合金构件的焊接变形。在制造阶段对铝合金构件焊接变形的控制,主要是指焊接准备过程、焊接过程和焊接结束之后的过程中进行控制。首先,在焊接准备过程中,需要对焊接工艺设计到的参数进行详细的熟记,并对相关的理论知识做到熟记于心。另外,在焊接准备过程中,需要预先对焊接构件进行一定的拉伸然后再采取刚性固定措施进行组装拼接,做好这些准备工作是控制变形的前提;其次,在焊接过程中,除了要严格按照设计的焊接工艺进行焊接之外,还应按照优秀的焊接工艺实现对瞬时变形的控制,例如,采取那些能量密度高的热源,对焊接过程中的焊接受热面积进行技术控制;最后,在焊接结束之后,应加强对铝合金构件焊接水平的检测,一旦发现存在着残余变形,及时采取加热矫正或者是利用机械外力作用进行矫正,达到对变形量的减小。
2铝合金构件焊接工艺优化
对于铝合金构件在焊接过程中出现的焊接变形,可采取多种手段进行。如在结构设计阶段,可通过相关的应力形变实验,分析应力出现的大小,结合设计的允许值,调节焊缝的尺寸,尽量降低焊缝的数量,对焊接后出现的残余变形进行控制;在焊接过程中,采取一定的反变形或者是刚性固定组装的方法在焊前进行预防;焊接结束之后,为了减小已经出现的残余变形,可以采取加热矫正或者是利用机械外力进行矫正的方法。当然,最为有效的方法还是在相关变形研究理论的基础之上,结合焊接试验,对焊接工艺进行一定的优化,结合实际的铝合金构件进行参数的设定,科学控制铝合金构件的焊接应力变形,最终生产出符合设计要求的产品。对于铝合金构件的焊接,在焊接过程中,焊丝直径、成分和表面质量关系到焊缝金属及热影响区的力学性能,尤其是焊接变形。因此,选取合理的焊丝直径,选择表面质量上等和化学成分达标的焊丝就是优化焊接工艺的主要步骤之一。在通常的情况下,为了保证焊接的质量,主要选择焊丝直径大的焊丝。不过,由于焊丝直径选择太大,对于薄板铝合金构件的焊接并不利。因此,在现有实践的基础之上,对于焊丝直径的选择一般是随着铝合金构件厚度的增加而逐步增加。此外,在进行平焊时,焊丝直径应相对选大一点;立焊或横仰焊时,则选择较小直径的焊丝。焊接电源作为焊接过程中的主要能量来源,为了使焊接质量达标,在选择电源种类与极性时,需要选取那些既能够满足焊接工艺需求,又能够符合用户物质、经济和技术等条件的电源。
一般,由于直流电源的电弧具有较好的稳定性、焊接质量优和飞溅少等特点,在铝合金构件的焊接时是作为首选的。选择直流反接电源进行焊接,能够借助焊件金属为负极的电弧产生的阴极雾化效果,对铝合金构件表面致密的氧化铝薄膜产生快速熔化,而且在焊接过程中,能够避免产生大量的焊渣和污染性气体,不仅方便了焊工对反应熔池的观察,及时调整焊接的速度和角度,而且还能对焊工的职业健康危害程度有所下降。例如,在焊接6毫米的铝合金薄板构件时,一般主要采用直流反接电源进行焊接。对焊接工艺进行优化,目的就是为了使铝合金构件焊接的质量和焊接形变在允许的范围之内。由以上对铝合金焊接热过程和变形理论的分析和探讨之后,我们发现选择适宜的焊接电流,是优化焊接的重要考虑方向。在焊接过程中,焊接电流是指流经焊接回路的电流,这个电流的大小对焊接生产效率和焊接质量有着直接的影响。一般为了提高焊接生产效率,在质量保证前提下,选择尽可能大的焊接电流,以达到提高焊接效率的目的。不过,由于电流过大,引起热量输入过大和较大的电弧力存在而导致的焊缝熔深和余高增大,而且还会使热影响区的晶粒变得粗大,出现应力集中区,使接头的强度和承载能力下降。同时,由于电流锅小,电弧燃烧不充分不稳定,容易形成气孔和夹渣等焊接缺陷,使得焊接接头的冲击韧性降低,不利于焊接质量的提升,因此,在焊接电流选择上,还是需要通过实践选取适宜的电流。由于电弧长短对焊接质量也有显著影响,而电弧电压决定电弧长短,因此,在焊接时,依据焊接试验,需要控制好电弧电压,产生适宜长度的电弧长度进行焊接。例如,对于6mm厚度的铝合金板材进行焊接时,焊接电流定义为170A,焊接电弧电压为25V,通过实验论证,焊接接头强度可以达到良好的效果。由焊接热过程分析得到,在铝合金构件焊接过程中,为了实现对焊接变形量的控制与减小,一般应采用能量密度高的焊接热源,同时,对焊接速度进行优化,保证焊接速度既不会过快也不会过慢。例如,从相关实践表明,对于6mm厚度的铝合金板材进行焊接时,焊接电流定义为170A,焊接电弧电压为25V,通过此实验论证,焊接接头强度可以达到良好的效果。
3总结