美章网 精品范文 人工智能论文范文

人工智能论文范文

前言:我们精心挑选了数篇优质人工智能论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

人工智能论文

第1篇

截至目前,古典控制方法一直都无法被人工智能控制技术所取代。但是随着时代的进步和发展,现代控制理论也日臻完善,人工智能软件技术(包括遗传算法、模糊神经网络、模糊控制以及人工神经网络等)逐渐取代了传统的控制器设计常规技术。这些方法有着许多的共同之处:都要具备不同类型和数量的描述特性和系统的“apriori”技术。这些方法都有着显著的优势,所以工业界都做出了不断的尝试,旨在进一步开发和使用这类方法,但是工业界又急于开发该系统,从而使其性能更加优异,系统更加简单、易操作。直流传动的控制程序较为简单,在过去得到了较为广泛的应用。但是不可忽视的是,它们有着难以克服的限制性因素,而且随着DSP技术的不断进步和发展,直流传动的优势逐渐隐没,性能更高的交流传动逐渐取代了直流传动。但近几年,部分厂商逐渐改良工艺,更高性能的直流驱动产品涌入市场,但是人工智能技术却鲜少提及。在未来几年,使用人工智能的直流传动技术将在更大范围内得到推广和普及。

交流传动瞬态转矩具备较高的使用性能,它有着较强的控制性,仅次于直流电机。目前,直接转矩控制(DTC)和矢量控制(VC)是比较常见的高性能交流传动控制方法。当前,不少厂商都顺应市场形势,相继推出了矢量控制交流传动产品,而且无速度传感器的矢量控制产品也大量上市。在性能较高的驱动产品中广泛使用AI技术,将会进一步提高产品的使用性能,截至目前,仅有两个厂家在其生产的产品中运用人工智能(AI)控制器。而在十五年前,日本和德国的研究人员提出了直接转矩控制这一概念,经过了十年的发展演变过程,ABB公司面向市场,将直接转矩控制的传动产品引入市场,让人们能够直接感受直接转矩控制的优势,从而开展相关的研究。可以预见,人工智能技术将会运用到直接转矩控制中,常规的电机数学模型将会被替代,从而退出市场。

人工智能控制器主要分三种类型,即:增强学习型、非监督型和监督型。当前,常规的监督学习型神经网络控制器的学习算法和拓扑结构已基本成型,这在一定程度上限制了此种结构控制器的生产和使用,导致计算机计算时间增长,而且常规非人工智能学习算法在具体应用上效果不明显。而要克服这些困难,最好的办法就是采用试探法和适应神经网络。常规模糊控制器的模糊规则表和规则初值是“a-priori”型,这加剧了调整难度。假若该系统无有效的“a-priori”信息作为支撑,那么将导致系统陷入瘫痪。而要有效克服此类缺陷和困难,就可以运用自适应模糊神经控制器,保证系统的正常运转。

二、电力系统中的智能控制

当前,世界各地的专家和学者都将眼光聚焦于智能控制理论的研究,研究表明,只要合理运用智能系统,就能在很大程度上提高电力系统控制水平,推动我国电力传动系统步入新的阶段。市面上广泛使用的交直流传动系统在控制技术和手段上已日臻成熟,闭环控制、矢量控制都有着较好的运用前景。PID控制法作为最新的控制方法,能较好地完成数学建模需承担的控制任务,但是在具体实践中,电力传动系统表现出较强的不稳定性,随工作状态的变化,电机参数也不断变化着,这加剧了传统建模控制的难度。

第2篇

概述制造业是国家的经济命脉,而汽车制造又是战略性支柱产业,它包括了整车、各种零配件厂等生产商,也包括了各地经销企业和销售企业。近年来,我国汽车行业面临着前所未有的挑战,原材料、生产、物流成本上涨、利润下降,以及国际经济形势的影响。因此,汽车企业可以运用具有智能分析功能的商务智能系统,通过分析历史数据快捷、及时地输出各类报告,预测未来的客户需求和销售趋势,在宏观上为企业管理人员提供决策依据。计算机人工智能技术发展到了今天,已经开始使用庞大的知识库来有效地取代人类器官或机构的记忆方法,近些年来很多的专家决策系统在考虑一定规则的基础上对人类的诊断和经验上的分析都能够做出很好的判断,甚至处于主导地位。这个系统可以很好地利用知识库,并从中挖掘出我们想要的问题答案、成功地寻找到其中的关联性,并提取相应的模式等。而实际上,这样的专家系统已经在很多领域都有了非常不错的应用,帮助很多企业在很短的时间内就做出相应的生产计划、调度计划、运输计划等,非常有效率,而且可以大大地增加收益,并很好地控制企业的人力成本。我国工业机器人是从20世纪80年代开始起步。经过二十年余年的努力已经形成了一些具有竞争力的工业机器人研究机构和企业。先后研发出弧焊、点焊、装配、搬运、注塑、冲压、喷漆等工业机器人。近几年,我国工业机器人及含工业机器人的自动化生产线相关产品的年产销额已突破十亿元。目前国内市场年需求量在3000台左右,年销售额在20亿元以上。统计数据显示中国市场上工业机器人总共拥有量近万台,占全球总量的0.56%,其中完全国产工业机器人行业内规模比较大的前三家工业机器人企业,行业集中度占30%左右。其余都是从日本、美国、瑞典、德国、意大利等20多个国家引进的。国产工业机器人目前主要以国内市场应用为主,年出口量为100台左右,年出口额为0.2亿以上。多年来我国汽车零部件生产一直是手工焊、专机焊占据焊接生产的主导地位、劳动强度大、作业环境恶劣、焊接质量不易保证,而且生产的柔性也很差,无法适应现代汽车生产的需要。

1.1搬运机器人在汽车制造业中应用

汽车桥箱类零件具有精度高、加工工序多、形状复杂、重量重的特点。为提高其加工精度及生产效率,各重型汽车生产厂家纷纷采用数控加工中心来加工此类零部件。而在使用数控加工中心加工工件时,要求工件在工作台上具有非常高的定位精度,且需要保证每次上料的一致性。由于人工上料此类的工件具有劳动强度高、上料精度不好控制等缺点现在正逐步被工业机器人或专机进行上下料所取代。工业机器人具有重复定位精度高、可靠性高、生产柔性化、自动化程度高等、突出的优势,与人工相比,能够大幅度提高生产效率和产品质量,与专机相比具有可实现生产的柔性化、投资规模小等特点。机器人智能化自动搬运系统作为减速器壳体加工的重要生产环节,虽然已经在国内重型汽车厂内取得成功的应用,但依然尚未普及。在国家经济建设飞速发展的进程中,重型载重汽车的生产能力及生产力水平亟待有一个质的飞跃,而工业机器人即是提升生产力水平的强力推进器。

1.2焊接机器人在汽车制造业中的应用

汽车行业的发展水平,代表了一个国家的综合技术水平,汽车工业的发展将会带动其他行业的发展。各厂商为了在日渐激烈的竞争中立于不败之地,必须率先实现焊接自动化。因此,今后除了如汽车、摩托车这样的大批量生产行业。一些产品多样化的企业,为了提高焊接质量,也将会考虑使用焊接机器人,如钢结构等行业,与此同时,对焊接机器人的要求也必然会逐步提高,如说对焊道的自动跟踪系统的需求会逐步加大等。作为焊接机器人和焊接机的专业生产厂家,OTC公司将继续为提高中国的高速、高效、自动化焊机做出自己的贡献。对于在汽车工业中的点焊应用来说,目前已广泛采用电驱动的伺服焊枪。日本丰田公司已决定将这种技术作为标准来装备其日本国内和海外的所有点焊机器人。

1.3装配机器人在汽车制造业中的应用

在国内外各大汽车公司装配生产线上被广泛采用的装配机器人。一方面使汽车装配自动化水平大大提高,目前,国外某些大批量生产的轿车的装配自动化程度已达50%~65%。另一方面,有效地减轻了工人的劳动强度,提高了装配质量并明显地提高了生产率。在汽车整车装配中,机器人不仅用于挡风玻璃的密封济涂覆、安装和车轮备胎、仪表盘总成、后悬梁、车门、蓄电池等部件的安装。

1.4喷涂机器人在汽车制造业中的应用

喷涂机器人在汽车制造业中可喷涂形态复杂的汽车工件而且生产效率和很高。多用于汽车车体的喷涂作业,如喷漆、喷釉等。除了上述机器人以外,汽车制造业中应用的机器人还有用于特殊加工的激光加工机器人用于部件形状测量、装配检查和产品缺陷检查的检测机器人,抑制尘埃粒子大小及数量的水切割机器人和净化机器人等。

2人工智能在汽车制造业中的进展分析

随着中国汽车工业的迅猛发展,机器人在先进汽车制造中的重要性也越来越凸显。机器人的产品应用广泛,覆盖焊接、物料搬运、装配、喷涂、精加工、拾料、包装、货盘堆垛、机械管理等领域。在汽车行业的应用主要分为以下五大部分。车身系统中,采用虚拟仿真等手段,主要针对车身覆盖件不断开发出新的标准化、模块化解决方案,动力总成系统中,提供了涵盖汽车传动系统核心部件,发动机、变速箱和传动轴的全套装配测试系统。在冲压自动化系统方面从卷材与堆垛到零件的码垛,从提供控制系统到企业ERP,从设计到生产支持与效率优化,拥有全面的工程能力,涂装自动化系统方面,以高柔性高精度的喷涂机器人来帮助客户提升涂装质量,减少生产废料,而在焊接自动化系统中,机器人比较典型的应用是电阻点焊、电弧焊,其最新一代机器人配套提供一系列高度人性化的软件工具。汽车工业的最大特点是产量大,生产节拍快,产品一致化程度高。消费者对汽车质量要求越来越高,是促使机器人应用越来越普遍的一个重要原因。机器人本身只是集装箱里的一个货物,随机器人的设备功能越来越精细,客户的思维在这时候逐渐走向成熟,在采购时不再单单考虑某生产工位的瓶颈,而更多地考虑到长期战略因素,如维护成本加入的高低,长期投资回报是否划算,服务涵盖地域是否广泛,响应是否及时,全球技术支持能力有多强,中期后期不同阶段解决问题的能力有多大等等。这时,产品本身的价格和意义相对弱化而长期的价值越发凸显。

3结束语

第3篇

顾名思义,人工智能就是研究怎样利用机器模仿人脑进行推理、设计、思考和学习等思维方式和活动,帮助人们解决一些需要专家才能解决的问题,通俗一点说,就是借助计算机来执行人类的智能活动,最终实现利用各种自动化机器或是智能机器,模仿和完成人的智能活动,实现某些“机器思维”或是脑力自动化。但从学术的角度说,人工智能包含的范围非常广,与人工智能相联系的不下几十门学科,所涉及的理论领域和应用的领域几乎涉及人类的所有活动,人类任何工作离不开智能,因此,任何领域都是人工智能的潜在应用领域。例如,应用人工智能的方法和技术,设计和研制各种计算机的“机器专家”系统,可以模仿各行各业的专家去从事医疗诊断、质谱分析、矿床探查、数学证明、家务管理、运筹决策等脑力劳动工作,以完成某些需要人的智能、运用专门知识和经验技巧的任务等等。在信息社会的构建中,网络的应用正在深远的影响着人们的工作和生活方式,计算机网络技术的发展正处在日新月异、交融更替之际,信息安全的保证将成为公众的需求和时代的责任,在这个方面,人工智能技术是一种模仿高级智能的推理和运算技术,在很多实际的控制和管理问题上都显示出具有很强优势,如果能把人工智能科学中的一些算法与思想应用到计算机网络中,将会大大提高计算机网络的性能,不断提高信息的安全性。

2信息安全与人类生活的关系

信息安全包含的范围很广,大到国家军事机密,小到如何防范商业秘密和人身秘密。在目前的网络信息社会中,信息安全的实质就是要保护信息系统或信息网络中的信息资源免受各种类型的威胁、干扰和破坏,但是在我们的日常生活中,这种事情还是屡有发生。

2.1信息安全对人们生活的影响

(1)对信息服务的破坏。

一是信息的泄露,被某个未被授权的实体或者是个人获得用于不法目的,而且在这个过程中,可能导致信息被非法转让、删减或者是破坏,让原来信息拥有者的信息失去真正的意义;二是被拒绝服务,这是对信息或者是相关资源的合法访问被无条件阻止。

(2)非法使用对合法权的破坏。

这主要是某一资源被某个非授权的人,或以非授权的方式使用。一是窃听。用各种可能的合法或非法的手段窃取系统中的信息资源和敏感信息。例如对通信线路中传输的信号搭线监听,或者利用通信设备在工作过程中产生的电磁泄露截取有用信息等。通过对系统进行长期监听,利用统计分析方法对诸如通信频度、通信的信息流向、通信总量的变化等参数进行研究,从中发现有价值的信息和规律。二是假冒。通过欺骗通信系统(或用户)达到非法用户冒充成为合法用户,或者特权小的用户冒充成为特权大的用户的目的。黑客大多是采用假冒攻击。攻击者利用系统的安全缺陷或安全性上的脆弱之处获得非授权的权利或特权。例如,攻击者通过各种攻击手段发现原本应保密,但是却又暴露出来的一些系统“特性”,利用这些“特性”,攻击者可以绕过防线守卫侵入系统的内部破坏

2.2信息安全受到威胁的分类

(1)授权侵犯

被授权以某一目的使用某一系统或资源的某个人,却将此权限用于其他非授权的目的,也称作“内部攻击”。在某个系统或某个部件中设置的“机关”,使得在特定的数据输入时,允许违反安全策略。

(2)木马攻击。

软件中含有一个觉察不出的有害的程序段,当它被执行时,会破坏用户的安全。这种应用程序称为特洛伊木马(TrojanHorse)。计算机病毒:一种在计算机系统运行过程中能够实现传染和侵害功能的程序。

(3)人为原因。

一个授权的人为了某种利益,或由于粗心,将信息泄露给一个非授权的人。信息被从废弃的磁碟或打印过的存储介质中获得。侵入者绕过物理控制而获得对系统的访问。重要的安全物品,如令牌或身份卡被盗。业务欺骗:某一伪系统或系统部件欺骗合法的用户或系统自愿地放弃敏感信息等等

3人工智能对信息安全的影响和未来发展趋势

随着人工智能的不断发展和应用方法的不断成熟,人工智能在信息安全保障的服务能力将更加强大,人工智能也将处于计算机网络发展的前沿,与计算机发展的轨迹同行。笔者仅就人工智能在信息安全的具体领域“数字水印”的研究展开论述,分析未来人工智能与信息安全的密切关系。

3.1数字水印的定义

数字水印技术的基本思想源于古代的密写术。古希腊的斯巴达人曾将军事情报刻在普通的木板上,用石蜡填平,收信的一方只要用火烤热木板,融化石蜡后,就可以看到密信。使用最广泛的密写方法恐怕要算化学密写了,牛奶、白矾、果汁等都曾充当过密写药水的角色。可以说,人类早期使用的保密通信手段大多数属于密写而不是密码。然而,与密码技术相比,密写术始终没有发展成为一门独立的学科,究其原因,主要是因为密写术缺乏必要的理论基础。

数字水印(DigitalWatermark)技术是指用信号处理的方法在数字化的多媒体数据中嵌入隐蔽的标记,这种标记通常是不可见的,只有通过专用的检测器或阅读器才能提取,因为当前的性信息安全技术都是以密码学为基础,计算机处理能力提高后,这种密保措施已经越来越不安全,因此数字水印就是人工智能跨速发展的结果,数字水印是信息隐藏技术的一个重要研究方向,这对于信息安全有着超强的保护能力。

3.2数字水印的特征

(1)隐蔽性:

在数字作品中嵌入数字水印不会引起明显的降质,并且不易被察觉。

(2)超强安全性:

水印信息隐藏于数据而非文件头中,文件格式的变换不应导致水印数据的丢失。

(3)不可丢失性:

是指在经历多种无意或有意的信号处理过程后,数字水印仍能保持完整性或仍能被准确鉴别。可能的信号处理过程包括信道噪声、滤波、数/模与模/数转换、重采样、剪切、位移、尺度变化以及有损压缩编码等。

3.3发展前景

(1)实现数字化作品产权信息保护。

计算机网络的发达,让数字作品(如电脑美术、扫描图像、数字音乐、视频、三维动画)的版权保护成为当前的热点问题。但是数字作品的拷贝、修改非常容易,而且可以做到与原作完全相同,“数字水印”利用数据隐藏原理使版权标志不可见或不可听,既不损害原作品,又达到了版权保护的目的。目前,用于版权保护的数字水印技术已经进入了初步实用化阶段,IBM公司在其“数字图书馆”软件中就提供了数字水印功能,Adobe公司也在其著名的Photoshop软件中集成了Digimarc公司的数字水印插件。

(2)商务票据信息安全保护。

随着高质量图像输入输出设备的发展,特别是精度超过1200dpi的彩色喷墨、激光打印机和高精度彩色复印机的出现,使得货币、支票以及其他票据的伪造变得更加容易。网络安全技术成熟以后,各种电子票据也还需要一些非密码的认证方式。数字水印技术可以为各种票据提供不可见的认证标志,从而大大增加了伪造的难度。

(3)重要声像数据信息安全保护。

数据的标识信息往往比数据本身更具有保密价值,如遥感图像的拍摄日期、经/纬度等。没有标识信息的数据有时甚至无法使用,但直接将这些重要信息标记在原始文件上又很危险。数字水印技术提供了一种隐藏标识的方法,标识信息在原始文件上是看不到的,只有通过特殊的阅读程序才可以读取。这种方法已经被国外一些公开的遥感图像数据库所采用。

第4篇

关键词:人工智能计算机技术

一、人工智能的定义

“人工智能”(ArtificialIntelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。

人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).

第5篇

一、问题的提出

随着计算机技术与网络技术的普及和发展,数字图书馆在我国高校、政府以及科研机构都得到了有效发展。数字图书馆来源于图书馆馆藏的数字化从而充分地高效地利用图书馆信息资源。现有的图书馆资料主要是书籍、杂志、报刊、技术报告等。人们希望利用因特网把所有的数字化的资源站点连接起来,这样要管理的信息除了图书馆中的文本信息外,还希望管理博物馆、展览馆、档案馆、学术组织以及其它Web站点上千差万别的信息。

面对浩瀚无边的数字化信息使得数字图书馆关键核心技术之一的文本分类成为一个日益重要的研究领域。文本分类技术是人工智能和信息获取技术的结合,是基于内容的自动信息管理的核心技术。

二、文本分类技术的基本原理

数字图书馆是一个巨大的知识宝库。数字图书馆的服务重点是以人为主,而不是以馆以书为主。数字图书馆的特点使得其服务要深入到知识的层次,通过对信息内容的组织和加工的自动化,把资源组织成一个知识系统。文本的自动分类是为提高信息内容服务的质量而产生的文本处理技术。它们的出现使得信息内容服务出现了新的局面。

文本分类是指根据文本的内容或属性,将大量的文本归到一个或多个类别的过程。文本分类算法是有监督学习的算法,它需要有一个己经手工分好类的训练文档集,文档的类别已标识,在这个训练集上构造分类器,然后对新的文档分类。如果训练集的类别未标识,就是无监督的学习算法,无监督学习算法从数据集中找出存在的类别或者聚集。

从数学角度来看文本分类是个映射程,它将未标明类别的文本映射到已有的类别中,用数学公式表示如下:

f:AB其中,A为待分类的文本集合,B为分类体系中的类别集合

文本分类的映射规则是系统根据已经掌握的每类若干样本的数据信息,总结出分类的规律性而建立的判别公式和判别规则。然后在遇到新文本时,根据总结出的判别规则,确定文本相关的类别。但是由于大量的文本信息是一维的线性字符流,因此文本自动分类首先要解决的问题就是文本信息的结构化。在模式识别领域里,把文本信息的结构化称为"特征提取"。在文本信息内容处理领域,这项工作被称为文本的"向量空间表示"。其基本流程如图1所示:

系统使用训练样本进行特征选择和分类器训练。系统根据选择的特征将待分类的输入样本形式化,然后输入到分类器进行类别判定,得到输入样本所属的类别。

三、文本分类技术在数字图书馆中的应用分析

为了提高数字图书馆中分类准确率,加快系统运行速度,需要对文本特征进行选择和提取。两者的差别在于,特征选择的结果是初始特征项集合的子集,而特征提取的结果不一定是初始特征项集合的子集(例如初始特征项集合是汉字,而结果可能是汉字组成的字符串)。特征选择、提取和赋权方法对分类结果都有明显影响。

(一)文本特征项

文本的特征项应该具有以下特点:特征项是能够对文本进行充分表示的语言单位;文本在特征项空间中的分布具有较为明显的统计规律;文本映射到特征项空间的计算复杂度不太大。对于计算机来说,文本就是由最基本的语言符号组成的字符串。西文文本是由字母和标点符号组成的字符串,中文文本就是由汉字和标点符号组成的字符串。

概念也可以作为特征项,"计算机"和"电脑"具有同义关系,在计算文档的相似度之前,应该将两个词映射到同一个概念类,可以增加匹配的准确率。但是概念的判断和处理相对复杂,自然语言中存在同义关系(如老鼠、耗子)、近义关系(如忧郁、忧愁)、从属关系(如房屋、房顶)和关联关系(如老师、学生)等各种关系。如何很好地划分概念特征项,确定概念类,以及概念类的数量都是需要反复尝试和改进的问题。

(二)特征项选择

不同的特征项对于文档的重要性和区分度是不同的,通常高频特征项在多个类中出现,并且分布较为均匀,因此区分度较小;而低频特征项由于对文档向量的贡献较小,因此重要性较低。

文档频次就是文档集合中出现某个特征项的文档数目在特征项选择中计算每个特征项在训练集合中出现的频次,根据预先设定的闽值去除那些文档频次特别低和特别高的特征项。

信息增益方法是机器学习的常用方法,在分类问题中用于度量特征项在某种分类下表示信息量多少,通过计算信息增益得到那些在正例样本中出现频率高而在反例样本中出现频率低的特征项,以及那些在反例样本中出现频率高而在正例样本中出现频率低的特征项。

(三)特征值的提取

在文本分类中,我们称用来表示文档内容的基本单元为特征,特征可以是词、短语。目前,大多数有关文本分类的文献基本上采用词的集合来表示文档的内容。采用短语来表示文档存在两个缺点:第一短语的提取较困难,特别是准确的提取,需要较多的自然语言处理技术,而这些技术还不够成熟;第二采用词组表示文档在信息检索和文本分类中的效果并不比基于词的效果好,有时反而更差。

第6篇

关键词:人工智能;智能家居;智能音箱

一、相关概念

(一)人工智能。人工智能是一门研究、理解和模拟人类智能,并且发现其内在规律的学科。它是计算机科学的一个分支,试图发现智能的实质,并创造出一种以人类思考的方式做出相似反映的智能机器。同时,它又是计算机知识、心理学知识和哲学知识的集合,模拟人的意识和思维过程,让机器能够做到只有人类智慧才能做到的复杂的事项。

(二)智能家居。智能家居是嵌入式技术、通信技术和网络技术的集合,通过系统将各种家居与人们的居家生活紧密结合,以提高人们生活的舒适感和安全感。随着人工智能的迅猛发展,智能家居正与人工智能紧密结合,让消费者享受到更人性化的居家体验。

二、文献综述

欧阳婷梓研究了人工智能对智能家居的影响,认为人工智能应用的落地将会使智能家居产业升级,同时还指出Al技术还有待突破,市场决定人工智能能否再次爆发。荣华英和兼国恩研究了人工智能发展背景下国际智能家居行业贸易发展前景,认为国际智能家居行业贸易将朝智能产品设计、智能生产制造、智能高效物流和智能商业服务方向发展。吴斌在研究我国智能家居系统发展存在的问题时,指出要制定行业标准体系,降低系统成本并完善售后服务。

观察现有研究,发现有关人工智能时代下智能家居行业发展的研究仍相对较少,本文指出Al对智能家居行业发展的影响,指出未来发展机遇,并预测未来该行业的发展趋势,对行业发展具有指导意义。

三、智能家居行业发展现状

(一)国际智能家居行业发展现状。美国的Amazon Echo、Google Home和Apple HomeKit占据了国外的智能家居语音控制平台市场,Contro14 利用Zigbee技术可以与世界知名品牌的家电产品连接,控制各种设备和系统;英国的Laing Homt公司早在2000年建立了“智能家居”示范街,给每栋房子都装上了智能管理系统,近年也在国内建立起了一些智能家居体验式展厅;日本软银生产的Pepper人形情感机器人能够读懂人类的情感,并做出相应的反映,在各种场合为人们服务,松下于2017年“Panasonic Home+全屋智能”战略,让全屋各个部分的功能都智能化;德国的Apartimentum未来型公寓将物联网应用和先进科技结合起来让住户的生活更加简洁舒适。据中国报告大厅的《2016-2021年中国智能家居产业市场运行暨产业发展趋势研究报告》数据显示智能家居市场规模逐年上涨,但增长速度开始放缓,随着人工智能的发展,行业开始进入技术融合,技术沉淀打造更加智能的家居用品的阶段,2016~2018年全球智能家居市场规模变化如图1所示。

(二)国内智能家居行业发展现状。2012年智能家居行业进入快速发展期,深受大众追捧,但进入2015年,销售增速开始放缓,随着政策的扶持,2016年市场规模增速开始上涨。工信部数据显示,我国物联网产业规模发展迅速,2010年规模超过2,600亿元,2015年达到7,500亿元,2020年产业规模将突破15,000亿元,物联网在智能家居、智能社区和智慧城市等领域发展愈发强劲。面对如此红利,相关企业加快布局,海尔建立U-home平台、美的建立M-Smart平台、阿里巴巴建立人工智能实验室并了智能音箱等产品。据中国报告大厅的《2016-2021年中国智能家居产业市场运行暨产业发展趋势研究报告》数据显示,未来几年智能家居市场规模持续上涨,市场前景看好,市场规模增长情况如图2所示。

智能家居产业错综复杂,涉及众多产品,根据目前各企业涉及的领域,大致分为六个流派:以海尔、美的为代表的传统家电企业,通过将原有的产品智能化提高销售;以阿里巴巴和京东为代表的互联网企业,通过自产智能硬件或与传统家电企业建立合作涉足智能家居行业;以华为和小米为代表的手机硬件企业,通过研发软件、生产硬件和建立智能家居生态系统进军智能家居行业;以Honeywell、Bosch和松下为代表的安防企业,在本身安防设备的基础上智能化,占据智能家居安防市场;以Amazon Echo和Google Home为代表的国外智能家居企业,通过语音识别和人工智能技术进军国内市场;以及一些提供云平台服务和小型硬件的供应商。

四、当前智能家居行业面临的问题

(一)缺乏规范统一的标准。在整个智能家居产业中,至今还没有制定统一的标准,导致各大公司各行其道,各自开发自己的系统,与其他厂商开发出来的系统并不兼容,目前具有代表性的是谷歌、苹果、微软加入了高通主导的AllSeen联盟,英特尔、三星、戴尔等公司组成了智能家居设备标准联盟OIC。之后,谷歌在收购Nest之后力推Thread,苹果自家提出Homekit。一方面用户的智能体验降低;另一方面加重了用户的转换成本。而人工智能是一项复杂的产业,它不是一两家公司就能经营好的,它需要各领域的公司参与进来研发技术、搭建平台、生产终端,各司其职,并用统一的标准将各个环节连接起来。

(二)缺乏人性化的伪智能。目前,智能家居产品大多通过手机来实现,但有些厂商以“智能”为噱头,将原本简单的操作强加到手机上,使得手机承担较多的功能。然而,除了年轻人对智能手机的操作较为熟悉,其他用户面对复杂的“智能”操作只能望而却步,严重缺乏人性化设计。

(三)需求低且价格高。一方面智能家居概念映入人们眼帘的时间较短,人们对智能家居还不太了解;另一方面智能家居智能化水平不高,操作复杂,运行过程中经常出错,严重打击了消费者的体验。同时,目前的技术水平有限,技术和产品的研发需要较高的研发费用,加上日常的维护费用,导致智能家居的消费价格偏高,打击了消费者的购买欲望。

(四)信息安全存在隐患。物联网信息传输过程中,个人信息极易被黑客窃取,不法分子通过这些个人信息进一步窃取用户的财产,会造成巨大的社会不稳定,对智能家居未来发展构成巨大威胁。如果智能家居产业在未来想占据较大一部分家居市场,就必须克服信息安全问题,加大信息的监管力度。

五、Al助力智能家居行业发展

(一)AI与智能家居结合进入最终状态。经过几十年的发展,智能家居经过了用App远程控制家电的单品智能化和多个电器间相互感应的智能互动两个阶段,以上两个阶段均为弱智能阶段,得通过手机来操作。而第三阶段是家居产品与人工智能的深入结合,赋予家居产品人性化,摆脱手机的操控,通过自主学习、主动记忆、自主决策为用户提供舒适的生活。

(二)提升全新的交互体验。语音交流以其与人交流的亲和感,成为当今最流行的人机交互方式。人类通过语音给机器下达指令,机器通过语音识别执行指令。近几年,语音识别技术取得重大突破,语音识别准确率达到97%以上。而智能音箱具有语音交互、提供音乐和有声读物等媒体内容、提供多种互联网服务以及可以对智能家居进行控制等功能,深受大众追捧,因而被称为智能家居的入口。为抢占智能家居的入口,互联网各大巨头纷纷加紧研究抢占市场。2014年11月,亚马逊推出智能音箱Echo,至今已有几千万的销量,随后谷歌推出GoogleHome,微软推出Cortana,紧接着国内的京东推出叮咚音箱,阿里巴巴也推出了“天猫精灵”,小米推出“小爱同学”。

(三)提供更安全、可控的应用环境。传统的密码输入和保护方式已经不再满足人们对操作便捷性和安全性的要求,于是推动了人们对生物识别技术的开发。生物识别是指通过计算机与生物传感器等高科技结合,提取人固有的生理特征和行为特征,以鉴定个人身份。目前人脸识别、指纹识别和虹膜识别已经得到广泛的应用。为达到更高的安全水准,通过红外线照射获取手指静脉图像的指静脉技术也在紧密研究当中,极大地迎合了人们对智慧生活的追求。

六、我国智能家居发展的机遇

(一)我国加速进入老龄化社会,智能家居需求增大。因为工作关系很多子女与父母在异地生活,难以妥善地照顾好父母的生活,而智能家居可以方便老人们的日常生活,提高老年人的生活质量,加上多年财富的积累,老年人的经济实力比年轻人要高,随着老龄化进程的加快,老年人人口的比例将加重,多重原因结合起来支撑起了未来潜在的市场需求。

(二)“智能家居”概念将越来越普及。通过前些年“智能家居”概念的炒作,各大新闻客户端、网站的转载宣传,让越来越多的人认识了解到智能家居的相关概念。近些年各大浏览器对“智能家居”关键词的搜索数量大幅度增长,随着科学技术的发展,人们对智能家居产品的信赖感也在增强。如今人们购买家具,对房屋进行装修也会考虑适当引进智能家居的相关元素进入日常的起居中。

(三)居民收入增多,消费价格将降低。随着经济的不断发展,人们的收入也在逐年上涨,到2020年我国将全面建成小康社会,届时人们的收入水平将会大幅增长,相比2010年翻一番。经济增长的同时,科技也在飞速发展,技术水平的不断完善降低了智能家居产品的成本,同时电信运营商的网络费用也在下调,日常的运营维护成本也在下降,消费者的消费成本将会大幅下降,市场需求将会激增,市场规模将会扩大。

(四)政策扶持,发展道路顺畅。智能家居产业发展被写入政府工作报告,政府相继出台《“互联网+”人工智能三年行动实施方案》、《智能制造工程实施指南(2016-2020年)》、《促进新一代人工智能产业发展三年行动计划(2018-2020年)》等指导性文件,促进智能家居、智能机器人、智能制造装备等领域产业发展。并成立“中国人工智能产业创新联盟”和“人工智能产业技术创新战略联盟”,把涉及人工智能领域的所有环节全面整合,扫除阻碍人工智能发展的一切障碍。

七、我国智能家居行业未来发展趋势

(一)标准日趋统一。当智能家居行业依旧遵循现在的发展方式,各企业各行其道,系统间互不兼容,消费者将会对该行业产生疲倦,未来市场规模可能难以扩大。除非出现一家领导性标杆企业,拥有自己的系统,能够生产出所有类别的智能家居产品,用户对该企业提供的方方面面都很满意,进而垄断了整个智能家居市场。很显然,出现这种情况的概率很小,没有一家企业可以力挽狂澜,所以市场逼着企业间建立起统一的标准,为用户提供便捷舒适的生活体验。

(二)AI与智能家居的完美融合。人工智能在智能家居领域的广泛应用已是大势所趋,只有智能家居与人工智能的完美结合才会让人们的生活更加便捷。未来智能家居将会更加智能化、人性化,能够准确抓住用户的喜好提供相应的服务,根据用户的工作安排相应的行程。一整套智能家居系统犹如一个智能管家,在最优的时间提供最优的服务。

(三)个人信息更加安全。个人信息的安全是制约智能家居市场规模扩大的又一要素,因此行业内将建立起一套世界领先的信息安全标准,并且该标准能够和各地的法律法规衔接好,收集到的数据能够安全地储存好,能够记录数据的产生时间地点等情况,以便需要的时候能够查证。

八、结语

人工智能时代下智能家居行业仍将在相当的一段时间处于一个无统一标准、需求低、价格高的阶段,但随着老龄化进程的加快,智能家居概念的逐渐普及、居民收入不断增加、产品价格的不断下降,智能家居产品的市场需求将会逐渐增长,将促使企业间制定规范统一的标准,人工智能将会与智能家居完美结合,为用户提供更加舒适便捷的生活。

(来源:合作经济与科技 文/陈功正 王腾 陆畅 王蕴鑫 陈黎阳 编选:电子商务研究中心)

主要参考文献

[1]陈晋.人工智能技术发展的伦理困境研究[D].吉林大学,2016.

[2]邓中祚.智能家居控制系统设计与实现[D].哈尔滨工业大学,2015.

[3]欧阳婷梓.人工智能能否成为智能家居的强心剂[J].通信企业管理,2018.1.

第7篇

2017年7月,国务院印发《新一代人工智能发展规划》,不仅对人工智能的发展做出了战略性部署,还确立了“三步走”的政策目标,力争到2030年将我国建设成为世界主要的人工智能创新中心。[1]值得注意的是,此次规划不仅仅只是技术或产业发展规划,还同时包括了社会建设、制度重构、全球治理等方方面面的内容。之所以如此,是由于人工智能技术本身具有通用性和基础性。换句话说,为助推人工智能时代的崛起,我们面对的任务不是实现某一个专业领域或产业领域内的颠覆性技术突破,而是大力推动源于技术发展而引发的综合性变革。

也正因为如此,人工智能发展进程中所面临的挑战才不仅仅局限于技术或产业领域,而更多体现在经济、社会、政治领域的公共政策选择上。首先,普遍建立在科层制基础上的公共事务治理结构,是否能够适应技术发展和应用过程中所大规模激发的不确定性和不可预知性?再者,长久以来围绕人类行为的规制制度,是否同样能够适应以数据、算法为主体的应用环境?最后,如何构建新的治理体系和治理工具来应对伴随人工智能发展而兴起的新的经济、社会、政治问题?

应对上述挑战并不完全取决于技术发展或商业创新本身,而更多依赖于我们的公共政策选择。本文试图在分析人工智能发展逻辑及其所引发的风险挑战的基础上,对人工智能时代的公共政策选择做出分析,并讨论未来改革的可能路径,这也就构成了人工智能治理的三个基本问题。具体而言,人工智能本身成为治理对象,其发展与应用构成了治理挑战,而在此基础上如何做出公共政策选择便是未来治理变革的方向。

全文共分为四个部分:第一部分将探讨人工智能的概念及特征,并进而对其发展逻辑进行阐述。作为一项颠覆性技术创新,其本身的技术门槛对决策者而言构成了挑战,梳理并捋清人工智能的本质内涵因而成为制定相关公共政策的前提;第二部分将着重分析人工智能时代崛起所带来的治理挑战,主要包括三个方面,即传统科层治理结构应对人工智能新的生产模式的滞后性、建基于行为因果关系之上的传统治理逻辑应对人工智能新主体的不适用性,以及人工智能发展所引发的新议题的治理空白;面对上述挑战,各国都出台了相关政策,本文第三部分对此进行了综述性对比分析,并指出了其进步意义所在。需要指出的是,尽管各国的政策目标都试图追求人工智能发展与监管的二维平衡,但由于缺乏对人工智能内涵及其发展逻辑的完整认识,当前的公共政策选择有失综合性;本文第四部分将提出新的治理思路以及公共政策选择的其他可能路径,以推动围绕人工智能治理的相关公共政策议题的深入讨论。

一、人工智能的概念及技术发展逻辑:算法与数据

伴随着人工智能技术的快速发展,尤其是其近年来在棋类对弈、自动驾驶、人脸识别等领域的广泛应用,围绕人工智能所可能引发的社会变革产生了激烈争论。在一方面,以霍金[2]、马斯克[3]、比尔-盖茨[4]、赫拉利[5]为代表的诸多人士呼吁加强监管,警惕“人工智能成为人类文明史的终结”;在另一方面,包括奥巴马[6]在内的政治家、学者又认为应该放松监管,充分释放人工智能的技术潜力以造福社会。未来发展的不确定性固然是引发当前争论的重要原因之一,但围绕“人工智能”概念内涵理解的不同,以及对其发展逻辑认识的不清晰,可能也同样严重地加剧了人们的分歧。正因为此,廓清人工智能的概念内涵和发展逻辑不仅是回应争论的需要,也是进一步提出公共政策建议的前提。

就相关研究领域而言,人们对于“人工智能”这一概念的定义并未形成普遍共识。计算机领域的先驱阿兰-图灵曾在《计算机器与智能》一文中提出,重要的不是机器模仿人类思维过程的能力,而是机器重复人类思维外在表现行为的能力。[7]正是由此理解出发,著名的“图灵测试”方案被提出。但如同斯坦福大学计算机系教授约翰·麦卡锡所指出的,“图灵测试”仅仅只是“人工智能”概念的一部分,不模仿人类但同时也能完成相关行为的机器同样应被视为“智能”的。[8]事实上,约翰·麦卡锡正是现代人工智能概念的提出者。在他看来,“智能”关乎完成某种目标的行为“机制”,而机器既可以通过模仿人来实现行为机制,也可以自由地使用任何办法来创造行为机制。[9]由此,我们便得到了人工智能领域另一个非常重要的概念——“机器学习”。

人工智能研究的目标是使机器达到人类级别的智能能力,而其中最重要的便是学习能力。[10]因此,尽管“机器学习”是“人工智能”的子域,但很多时候我们都将这两个概念等同起来。[11]就实现过程而言,机器学习是指利用某些算法指导计算机利用已知数据得出适当模型,并利用此模型对新的情境给出判断,从而完成行为机制的过程。此处需要强调一下机器学习算法与传统算法的差异。算法本质上就是一系列指令,告诉计算机该做什么。对于传统算法而言,其往往事无巨细地规定好了机器在既定条件下的既定动作;机器学习算法却是通过对已有数据的“学习”,使机器能够在与历史数据不同的新情境下做出判断。以机器人行走的实现为例,传统算法下,程序员要仔细规定好机器人在既定环境下每一个动作的实现流程;而机器学习算法下,程序员要做的则是使计算机分析并模拟人类的行走动作,以使其即使在完全陌生的环境中也能实现行走。

由此,我们可以对“人工智能”设定一个“工作定义”以方便进一步的讨论:人工智能是建立在现代算法基础上,以历史数据为支撑,而形成的具有感知、推理、学习、决策等思维活动并能够按照一定目标完成相应行为的计算系统。这一概念尽管可能仍不完善,但它突出了人工智能技术发展和应用的两大基石——算法与数据,有助于讨论人工智能的治理问题。

首先,算法即是规则,它不仅确立了机器所试图实现的目标,同时也指出了实现目标的路径与方法。就人工智能当前的技术发展史而言,算法主要可被划分为五个类别:符号学派、联接学派、进化学派、类推学派和贝叶斯学派。[12]每个学派都遵循不同的逻辑、以不同的理念实现了人工智能(也即“机器学习”)的过程。举例而言,“符号学派”将所有的信息处理简化为对符号的操纵,由此学习过程被简化(抽象)为基于数据和假设的规则归纳过程。在数据(即历史事实)和已有知识(即预先设定的条件)的基础上,符号学派通过“提出假设-数据验证-进一步提出新假设-归纳新规则”的过程来训练机器的学习能力,并由此实现在新环境下的决策判断。

从对“符号学派”的描述中可以发现,机器学习模型成功的关键不仅是算法,还有数据。数据的缺失和预设条件的不合理将直接影响机器学习的输出(就符号学派而言,即决策规则的归纳)。最明显体现这一问题的例子便是罗素的“归纳主义者火鸡”问题:火鸡在观察10天(数据集不完整)之后得出结论(代表预设条件不合理,超过10个确认数据即接受规则),主人会在每天早上9点给它喂食;但接下来是平安夜的早餐,主人没有喂它而是宰了它。

所有算法类型尽管理念不同,但模型成功的关键都聚焦于“算法”和“数据”。事实上,如果跳出具体学派的思维束缚,每种机器学习算法都可被概括为“表示方法、评估、优化”这三个部分。[13]尽管机器可以不断的自我优化以提升学习能力,且原则上可以学习任何东西,但评估的方法和原则(算法)以及用以评估的数据(数据)都是人为决定的——而这也正是人工智能治理的关键所在。算法与数据不仅是人工智能发展逻辑的基石,其同样是治理的对象和关键。

总而言之,围绕“人工智能是否会取代人类”的争论事实上并无太大意义,更重要的反而是在廓清人工智能的内涵并理解其发展逻辑之后,回答“治理什么”和“如何治理”的问题。就此而言,明确治理对象为算法和数据无疑是重要的一步。但接下来的重要问题仍然在于,人工智能时代的崛起所带来的治理挑战究竟是什么?当前的制度设计是否能够对其做出有效应对?如果答案是否定的,我们又该如何重构治理体系以迎接人工智能时代的崛起?本文余下部分将对此做进一步的阐述。

二、人工智能时代崛起的治理挑战

不同于其他颠覆性技术,人工智能的发展并不局限于某一特定产业,而是能够支撑所有产业变革的通用型技术。也正因为此,其具有广泛的社会溢出效应,在政治、经济、社会等各个领域都会带来深刻变革,并将同时引发治理方面的挑战。具体而言,挑战主要体现在以下三个方面。

首先,治理结构的僵化性,即传统的科层制治理结构可能难以应对人工智能快速发展而形成的开放性和不确定性。之所以需要对人工智能加以监管,原因在于其可能成为公共危险的源头,例如当自动驾驶技术普及之后,一旦出现问题,便可能导致大规模的连续性伤害。但不同机、大型水坝、原子核科技等二十世纪的公共危险源,人工智能的发展具有极强的开放性,任何一个程序员或公司都可以毫无门槛的进行人工智能程序的开发与应用。这一方面是由于互联网时代的到来,使得基于代码的生产门槛被大大降低[14];另一方面,这也是人工智能本身发展规律的需要。正如前文所提到,唯有大规模的数据输入才可能得到较好的机器学习结果,因此将人工智能的平台(也即算法)以开源形式公开出来,以使更多的人在不同场景之下加以利用并由此吸收更多、更完备的数据以完善算法本身,就成为了大多数人工智能公司的必然选择。与此同时,人工智能生产模式的开放性也必然带来发展的不确定性,在缺乏有效约束或引导的情况下,人工智能的发展很可能走向歧途。面对这一新形势,传统的、基于科层制的治理结构显然难以做出有效应对。一方面,政府试图全范围覆盖的事前监管已经成为不可能,开放的人工智能生产网络使得监管机构几乎找不到监管对象;另一方面,由上至下的权威结构既不能传递给生产者,信息不对称问题的加剧还可能导致监管行为走向反面。调整治理结构与治理逻辑,并形成适应具有开放性、不确定性特征的人工智能生产模式,是当前面临的治理挑战之一。

再者,治理方法的滞后性,即长久以来建立在人类行为因果关系基础上的法律规制体系,可能难以适用于以算法、数据为主体的应用环境。人工智能的价值并不在于模仿人类行为,而是其具备自主的学习和决策能力;正因为如此,人工智能技术才不能简单地理解为其创造者(即人)意志的表达。程序员给出的只是学习规则,但真正做出决策的是基于大规模数据训练后的算法本身,而这一结果与程序员的意志并无直接因果关联。事实上也正由于这个特点,AlphaGo才可能连续击败围棋冠军,而其设计者却并非围棋顶尖大师。也正是在这个意义上,我们才回到了福柯所言的“技术的主体性”概念。在他看来,“技术并不仅仅是工具,或者不仅仅是达到目的的手段;相反,其是政治行动者,手段与目的密不可分”。[15]就此而言,长久以来通过探究行为与后果之因果关系来规范人的行为的法律规制体系,便可能遭遇窘境:如果将人工智能所造成的侵权行为归咎于其设计者,无疑不具有说服力;但如果要归咎于人工智能本身,我们又该如何问责一个机器呢?由此,如何应对以算法、数据为核心的技术主体所带来的公共责任分配问题,是当前面临的第二个治理挑战。

最后,治理范围的狭隘性,即对于受人工智能发展冲击而引发的新的社会议题,需要构建新的治理体系和发展新的治理工具。人工智能发展所引发的治理挑战不仅仅体现在现有体系的不适应上,同时还有新议题所面临的治理空白问题。具体而言,这又主要包括以下议题:算法是否能够享有言论自由的宪法保护,数据的权属关系究竟如何界定,如何缓解人工智能所可能加剧的不平等现象,以及如何平衡人工智能的发展与失业问题。在人工智能时代之前,上述问题并不存在,或者说并不突出;但伴随着人工智能的快速发展和应用普及,它们的重要性便日渐显著。以最为人所关注的失业问题为例,就技术可能性来说,人工智能和机器人的广泛应用代替人工劳动,已是一个不可否定的事实了。无论是新闻记者,还是股市分析员,甚至是法律工作者,其都有可能为机器所取代。在一个“充分自动化(Full Automation)”的世界中,如何重新认识劳动与福利保障的关系、重构劳动和福利保障制度,便成为最迫切需要解决的治理挑战之一。[16]

上述三方面共同构成了人工智能时代崛起所带来的治理挑战。面对这些挑战,各国也做出了相应的公共政策选择。本文第三部分将对各国人工智能的治理政策进行对比性分析。在此基础上,第四部分将提出本文的政策建议。

三、各国人工智能治理政策及监管路径综述

人工智能时代的崛起作为一种普遍现象,其所引发的治理挑战是各国面临的共同问题,各国也陆续出台了相关公共政策以试图推动并规范人工智能的快速发展。

美国于2016年同时颁布了《国家人工智能研究与发展战略规划》和《为人工智能的未来做好准备》两个国家级政策框架,前者侧重从技术角度指出美国人工智能战略的目的、愿景和重点方向,而后者则更多从治理角度探讨政府在促进创新、保障公共安全方面所应扮演的角色和作用。就具体的监管政策而言,《为人工智能的未来做好准备》提出了一般性的应对方法,强调基于风险评估和成本-收益考量的原则以决定是否对人工智能技术的研发与应用施以监管负担。[17]日本同样于2016年出台了《第五期(2016~2020年度)科学技术基本计划》,提出了“超智能社会5.0”的概念,强调通过推动数据标准化、建设社会服务平台、协调发展多领域智能系统等各方面工作促进人工智能的发展和应用。[18]

尽管美国和日本的政策着力点不同,但其共有的特点是对人工智能的发展及其所引发的挑战持普遍的包容与开放态度。就当前的政策框架而言,美日两国的政策目标更倾斜于推动技术创新、保持其国家竞争力的优势地位;当涉及对人工智能所可能引发的公共问题施以监管时,其政策选择也更倾向于遵循“无需批准式(permissionless)”的监管逻辑,即强调除非有充分案例证明其危害性,新技术和新商业模式默认为都是被允许的。[19]至于人工智能的发展对个人数据隐私、社会公共安全的潜在威胁,尽管两国的政策框架都有所涉及,却并非其政策重心——相比之下,英国、法国则采取了不同的政策路径。

英国政府2016年了《人工智能:未来决策制定的机遇与影响》,对人工智能的变革性影响以及如何利用人工智能做出了阐述与规划,尤其关注到了人工智能发展所带来的法律和伦理风险。在该报告中,英国政府强调了机器学习与个人数据相结合而对个人自由及隐私等基本权利所带来的影响,明确了对使用人工智能所制定出的决策采用问责的概念和机制,并同时在算法透明度、算法一致性、风险分配等具体政策方面做出了规定。[20]与英国类似,法国在2017年的《人工智能战略》中延续了其在2006年通过的《信息社会法案》的立法精神,同样强调加强对新技术的“共同调控”,以在享有技术发展所带来的福利改进的同时,充分保护个人权利和公共利益。[21]与美日相比,英法的公共政策更偏向于“审慎监管(precautionary)”的政策逻辑,即强调新技术或新的商业模式只有在开发者证明其无害的前提下才被允许使用。[22]

在本文看来,无论是“无需批准式监管”还是“审慎监管”,在应对人工智能时代崛起所带来的治理挑战方面都有其可取之处:前者侧重于推动创新,而后者则因重视安全而更显稳健。但需要指出的是,这两种监管路径的不足却也十分明显。正如前文第二部分所指出,一方面,快速迭代的技术发展与商业模式创新必将引发新的社会议题,无论是算法是否受到言论自由的权利保护还是普遍失业对社会形成的挑战,它们都在客观上要求公共政策做出应对,而非片面的“无需批准式监管”能够处理。更重要的是,“无需批准式监管”的潜在假设是事后监管的有效性;然而,在事实上,正如2010年5月6日美国道琼斯工业指数“瞬间崩盘”事件所揭示的,即使单个电子交易程序合规运行,当各个系统行为聚合在一起时反而却造成了更大的危机。[23]在此种情形下,依赖于合规性判断的“事后监管”基本上难以有效实施。另一方面,人工智能本身的自主性和主体性使得建立在人类行为因果关系基础上的“审慎监管”逻辑存在天然缺陷:既然人类无法预知人工智能系统可能的行为或决策,开发者又如何证明人工智能系统的无害性?

正如本文所反复强调的,人工智能与其他革命性技术的不同之处,正是在于其所带来的社会冲击的综合性和基础性。人工智能并非单个领域、单个产业的技术突破,而是对于社会运行状态的根本性变革;人工智能时代的崛起也并非一夜之功,而是建立在计算机革命、互联网革命直至数字革命基础上的“奇点”变革。因此,面对人工智能时代崛起所带来的治理挑战,我们同样应该制定综合性的公共政策框架,而非仅仅沿袭传统治理逻辑,例如只是针对具体议题在“创新”与“安全”这个二元维度下进行艰难选择。本文在第四部分从承认技术的主体性、重构社会治理制度、推进人工智能全球治理这三方面提出了政策建议,并希望以此推动更深入地围绕人工智能时代公共政策选择的研究与讨论。

四、人工智能时代的公共政策选择

《新一代人工智能发展规划》明确提出了到2030年我国人工智能发展的“三步走”目标,而在每一个阶段,人工智能法律法规、伦理规范和政策体系的逐步建立与完善都是必不可少的重要内容。面对人工智能时代崛起的治理挑战,究竟应该如何重构治理体系、创新治理机制、发展治理工具,是摆在决策者面前的重要难题。本文基于对人工智能基本概念和发展逻辑的梳理分析,结合各国已有政策的对比分析,提出以下三方面的改革思路,以为人工智能时代的公共选择提供参考。

第一,人工智能发展的基石是算法与数据,建立并完善围绕算法和数据的治理体系与治理机制,是人工智能时代公共政策选择的首要命题,也是应对治理挑战、赋予算法和数据以主体性的必然要求。(1)就算法治理而言,涉及的核心议题是算法的制定权及相应的监督程序问题。算法作为人工智能时代的主要规则,究竟谁有权并通过何种程序来加以制定,谁来对其进行监督且又如何监督?长久以来公众针对社交媒体脸书(Facebook)的质疑正体现了这一问题的重要性:公众如何相信脸书向用户自动推荐的新闻内容不会掺杂特殊利益的取向?[24]当越来越多的人依赖定制化的新闻推送时,人工智能甚至会影响到总统选举。也正因为此,包括透明要求、开源要求在内的诸多治理原则,应当被纳入到算法治理相关议题的考虑之中。(2)就数据治理而言,伴随着人工智能越来越多地依赖于大规模数据的收集与利用,个人隐私的保护、数据价值的分配、数据安全等相关议题也必将成为公共政策的焦点。如何平衡不同价值需求、规范数据的分享与应用,也同样成为人工智能时代公共政策选择的另一重要抓手。

第二,创新社会治理制度,进一步完善社会保障体系,在最大程度上缓解人工智能发展所可能带来的不确定性冲击。与历史上的技术革命类似,人工智能的发展同样会导致利益的分化与重构,而如何保证技术革命成本的承受者得到最大限度的弥补并使所有人都享有技术发展的“获得感”,不仅是社会发展公平、正义的必然要求,也是促进技术革命更快完成的催化剂。就此而言,在人工智能相关公共政策的考量中,我们不仅应该关注产业和经济政策,同时也应该关注社会政策,因为只有后者的完善才能够控制工人或企业家所承担的风险,并帮助他们判断是否支持或抵制变革的发生。就具体的政策设计来说,为缓解人工智能所可能带来的失业潮,基本收入制度的普遍建立可能应该被提上讨论议程了。“基本收入”是指政治共同体(如国家)向所有成员不加任何限制条件地支付一定数额的收入,以满足其基本生活的需求。尽管存在“养懒汉”的质疑,但有研究者已指出,自18世纪就开始构想的基本收入制度很有可能反过来促进就业。[25]芬兰政府已经于2017年初开始了相关实验,美国的一些州、瑞士也做出了一定探索。在人工智能时代尚未完全展现其“狰容”之前,创新社会治理机制、完善社会保障体系,可能是平衡技术创新与社会风险的最佳路径。

第三,构建人工智能全球治理机制,以多种形式促进人工智能重大国际共性问题的解决,共同应对开放性人工智能生产模式的全球性挑战。人工智能的发展具有开放性和不确定性的特征,生产门槛的降低使得人工智能技术研发的跨国流动性很强,相关标准的制定、开放平台的搭建、共享合作框架的形成,无不要求构建相应的全球治理机制。另一方面,跨境数据流动在广度和深度上的快速发展成为了人工智能技术进步的直接推动力,但各国数据规制制度的巨大差异在制约跨境数据流动进一步发展的同时,也将影响人工智能时代的全面到来。[26]故此,创新全球治理机制,在承认各国制度差异的前提下寻找合作共享的可能性,便成为人工智能时代公共政策选择的重要考量之一。就具体的机制设计而言,可以在人工智能全球治理机制的构建中引入多利益相关模式;另一方面,为防止巨头垄断的形成,充分发挥主权国家作用的多边主义模式同样不可忽视。作为影响深远的基础性技术变革,互联网全球治理机制的经验和教训值得人工智能发展所借鉴。

上述三方面从整体上对人工智能时代的公共政策框架做出了阐述。与传统政策局限于“创新”与“安全”之间做出二维选择不同,本文以更综合的视角提出了未来公共政策选择的可能路径。就其内在联系来讲,建立并完善围绕算法和数据的治理体系是起点,其将重构人工智能时代的规则与制度;创新社会治理机制并完善社会保障体系是底线,其将缓解人工智能所带来的影响与波动;构建全球治理机制则成为了制度性的基础设施,推动各国在此之上共同走向人工智能时代的“人类命运共同体”。

五、结语

在经历了60余年的发展之后,人工智能终于在互联网、大数据、机器学习等诸多技术取得突破的基础上实现了腾飞。在未来的人类生活中,人工智能也必将扮演越来越重要的角色。对于这样的图景,我们自不必惊慌,但却也不可掉以轻心。对于人工智能的治理,找到正确的方向并采取合理的措施,正是当下所应该重视的政策议题。而本文的主旨也正在于此:打破长久以来人们对于人工智能的“笼统”式担忧,指出人工智能技术发展的技术逻辑及其所引发的治理挑战,并在此基础上提出相应的政策选择。人工智能治理的这三个基本问题,是重构治理体系、创新治理机制、发展治理工具所必须思考的前提。伴随着我国国家层面战略规划的出台,我国人工智能的发展也必将跃上新台阶。在此背景下,深入探讨人工智能治理的相关公共政策议题,对于助推一个人工智能时代的崛起而言,既有其必要性,也有其迫切性。(来源:中国行政管理 文/贾开 蒋余浩 编选:中国电子商务研究中心)

[参考文献]

[1]国务院关于印发新一代人工智能发展规划的通知[EB/OL]. http://gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

[2]霍金. AI可能成就或者终结人类文明[EB/OL].http://raincent.com/content-10-7672-1.html.

[3] Elon Musk. Artificial Intelligence is Our Biggest Existential Threat. https://theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat.

[4] Microsoft's Bill Gates Insists AI is A Threat. http://bbc.com/news/31047780. 2017-8-14.

[5] [以]赫拉利.人类简史[M].北京:中信出版社,2014.

[6] The President in Conversation With MIT’s Joi Ito and WIRED’s Scott Dadich. https://wired.com/2016/10/president-obama-mit-joi-ito-interview/. 2017-8-14.

[7] Turing,A. M. Computing Machinery and Intelligence. Mind,1950,59(236).

[8] [9][10] McCarthy,J.What is Artificial Intelligence. URL:http://www-formal.stanford.edu/jmc/whatisai/whatisai.html.

[11] [12][13] [美]佩德罗-多明戈斯.终极算法:机器学习和人工智能如何重塑世界[M].黄芳萍译.北京:中信出版社,2016.

[14] Benkler,Y. The Wealth of Networks:How Social Production Transforms Markets and Freedom. Yale University Press,2006.

[15] Foucoult,M. Discipline and Punish. A. Sheridan,Tr.,Paris,FR,Gallimard,1975.

[16] Srnicek,N.,& Williams,A. The Future isn't Working. Juncture,2015,22(3):243-247.

[17] Preparing for the Future of Artificial Intelligence. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. 2017-8-14.

[18]薛亮.“日本推动实现超智能社会‘社会5.0’”[EB/OL]. http://istis.sh.cn/list/list.aspx?id=10535.

[19] Thierer,A. Permissionless Innovation:The Continuing Case for Comprehensive Technological Freedom. Mercatus Center at George Mason University,2016.

[20] Artificial Intelligence:Opportunities and Implications for the Future of Decision Making.https://gov.uk/government/uploads/system/uploads/attachment_data/file/566075/gs-16-19-artificial-intelligence-ai-report.pdf.

[21]周衍冰.大数据产业在法国的发展及应用[N].学习时报,2014-11-03.

[22] Thierer,A. D.,& Watney,C. J. Comment on the Federal Automated Vehicles Policy,2016.

[23] [美]杰瑞·卡普兰.人工智能时代:人机共生下财富、工作与思维的大未来[M].杭州浙江人民出版社,2016.

[24] Marcel Rosenbach. How Google and Facebook Can Reshape Elections.http://spiegel.de/international/germany/google-and-facebook-could-help-decide-2017-german-election-a-1120156.html.

[25] Van Parijs,P. Basic Income:A Simple and Powerful Idea for the Twenty-first Century. Politics & Society,2004,32(1).

第8篇

“人工智能”一词最早是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能其英文全称为ArtificialIntelligence,缩写为人所共知的AI,它主要是对用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统等进行研究讨论。对于人工智能的定义义众说不一,一般有两种说法:一种是人工智能是关于知识的学科,即怎样对知识进行表示以及怎样获取知识并对知识进行使用的科学;另一种是人工智能研究的是如何实现让计算机做过去只有人才能够做的智能工作。但是不管是哪一种,它都是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能的定义可以分为两部分,即“人工”和“智能”。对于“人工”,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。诞生对于“智能”,则存在着很大的争议。因为这涉及到了诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人类唯一能够了解的智能就是人类本身的智能。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。人工智能的实现方式有2种方法。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(Engineeringapproach),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(Modelingapproach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。

2人工智能的发展

对于人工智能的研究一共可以分为五个阶段。第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP表处理语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入了低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:问题求解的方法过度重视,却忽视知识重要性。第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。同时国际人工智能联合会于1969年成立。第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学但是的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。第五个阶段是20世纪90年代后。网络技术的出现于发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向到基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅只对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3对人工智能的思考

3.1人工智能与人的智能

从哲学上的量变引起质变的角度来讲,人工智能在不断的发展过程中一定会产生质的飞跃。在最初,人工智能只具有简单的模拟功能,但是发展到现在已经具备了思考的能力(逻辑推理分析),这已经表明人工智能在不断量变的过程中已经发生了质变。有人认为有人会说人工智能不会超过人类的智能,理由是人工智能是人类创造出来的。但是现实中很多人类创造出来的东西已经在某一些方面超过了人类本身的能力,例如起重机的力气超过人类很多;汽车速度也远超过人类的速度。人类之所以会制造出各种各样的工具,其目的就是希望自身的能力能通过这些工具进行延伸和突破。人类研究人工智能就是希望人工智能帮助人类实现人类某些无法实现的东西。还有人认为人工智能是人类创造出来的,所以它一定存在着致命的弱点,也因此人的智能优于人工智能。但是殊不知人类与机器相比也有着十分明显的弱点,例如人类所需要的生存条件比机器更加的严格,人类思维会受到人的情绪所影响,而机器只是受到程序的影响,它们没有情绪的起伏。就目前的人工智能而言,它们在某一些领域比人类更强。但是目前我们必须正视人工智能的一些还没有办法改变的缺陷,那就是人工智能的学习能力与创新能力。人工智能的知识获取大部门都是人为的进行灌输,而无法像人类自身那样进行主动的学习。同时人工智能只能够利用已有的知识去解决一些问题,但是却还不能够创造性的提出一些新的东西。

3.2对机器人三大定律的困惑

美国最著名的科普作家艾萨克.阿西莫夫提出过比较著名的机器人三大定律:第一定律,机器人不得伤害人,或任人受到伤害而无所作为;第二定律,机器人应服从人的一切命令,但命令与第一定律相抵触时例外;第三定律,机器人必须保护自身的安全,但不得与第一、第二定律相抵触。虽然这只是科幻作家所提出的一家之言,但是也代表了人类对与人工智能发展的一种期望与担心。人们害怕自己所创造出来的人工智能会伤害人类自己。但是阿西莫夫所提出三大定律都是以人类为中心的,而忽视了人工智能本身。或许这是人类的一种天性,世间所有的事物都应该围绕人类自身来定义、发展。就好像人类自以为掌控了能够改变大自然的力量,最终却被大自然反噬一样。同时,随着科学技术的发展,人工智能已经不单单需要逻辑思维与模仿,同时还应该将情感赋予人工智能。因为随着科学家对人类大脑和精神系统的研究的深入,已经愈来愈肯定情感是智能的一部分。如果人工智能具有了情感之后,人类的自我中心又是否会伤害到人类自己创造出来的人工智能。

3.3对人工智能未来的思考

人工智能有着十分巨大的发展潜力,对于人工智能的研究虽然经过了很多年,但是这也仅仅是刚刚开始而已,继续研究下去在很多方面都会有重大的突破。自动推理是人工智能最经典的一个研究分支,它的基本理论是人工智能其它分支的共同基础。一直以来人工智能最热门的研究内容里面就有自动推理,同时在该知识系统中的动态演化特征及可行性推理的研究是一个十分热门的研究内容,很有可能取得大的突破。机器学习一直在致力于研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。在过去的很长的一段时间内都没有取得十分显著的成果。但是许多新的学习方法相继问世,并且已经有了实际的应用,这充分的说明在这方面的研究已经有了很大的进步。自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。在经过人工智能研究人员的艰苦努力之后,在该领域中已取得了大量令人瞩目的理论与实际应用成果,许多产品已经进人了众多领域。智能信息检索技术在Internet技术的影响下,近年来发展势头十分迅猛,而且已经成为了人工智能的一个独立研究分支。

第9篇

人工智能是一门综合了生理学、语言学、计算机科学等的学科,具有综合性、挑战性等特点,其主要目的便是赋予机器人工智能的功能,使其能够替代人去完成一些危险性与复杂性较高的工作,进而确保人们的安全,促进工作效率的提高[1]。因此,人工智能也被称为机器智能。相比于自然智能与人类智能而言,人工智能属于一项全新智能,其通过将设备、系统等来模拟人类各项智能活动,从而完成命令。作为一项结合多门学科的应用技术,人工智能的发展与其组建学科的关系十分紧密,特别是计算机技术的发展方向,其对人工智能的应用具有决定性作用。此外,人工智能技术也极大程度上促进了计算机网络技术的发展,计算机为从单纯数据计算转变为知识处理,就离不开人工智能技术的支持。人工智能的作用与优势具体如下:其一,可处理不确定信息,实时了解系统资源表现出来的局部及全局状态,并对状态变化情况进行追踪,通过技术处理获取的信息,从而为用户实时提供所需信息护具。其二,具有较高的写作能力,可科学、有效整合获得的资源,进而将各用户之间的资源进行传输与共享,通过有机结合网络管理与众多写作分布式人工智能的思想,可充分促进网络管理相关工作效率及效益的提高。其三,其在网络智能化护理中具有显著优势,主要表现在其学习、推理能力方面。在网络管理工作中应用人工智能,可将信息处理的准确性及效率进行提升,同时,通过利用人工智能技术的记忆功能,可在存储信息过程中建立完善的信息库,并将其作为综合、解释、总结信息的平台,在产生出更为准确及科学的高级信息的基础上,实现网络管理水平的全面提升。

2计算机网络技术的问题

目前,随着计算机技术的广泛应用,人们愈发重视有关网络信息安全问题。在网络管理系统的应用过程中,用户最为关注的功能便是网络监视与网络控制,其中,为正常发挥网络监视及网络控制这两大功能,就需要对信息急性及时获取与准确处理。网络传输的数据通常是不连续、不规则的,而在早期阶段,计算机只具备逻辑化分析及处理数据的功能,难以准确判断出数据的真实性,因此,为从大量繁复的信息中,挑选出有效的信息,实现计算机网络技术的智能化具有非常重要的意义[2]。计算机的应用日益广泛与深入,这使得用户需要通过网络安全管理来为其信息安全提供保障,而网络犯罪现象的增多,使得计算机必须具备灵敏的观察能力及迅速的反应能力否则便难以对侵犯用户信息的各种违法犯罪行为进行有效遏制。为促进网络安全管理的实现,就需要将以人工智能技术为基础而建立起来的智能化管理系统作为有效手段,自动收集信息数据,及时诊断运行故障,并在线分析趋势及性能等,从而确保计算机发生网络故障时,可做出快速、准确的反应,并采取有效措施来恢复计算机的网络系统。由此可知,针对计算机网络中存在的问题,就需要应用人工智能技术,在其内部建立完善的网络管理及防御系统,从而为用户信息安全提供充分保障。

3计算机网络技术中人工智能的应用分析

在计算机网络技术中应用人工智能,可极大程度满足人们对计算机提供人性化及智能化服务的需求。其中,计算机网络技术智能化服务主要指的是智能化的人机界面、信息服务、系统开发及支撑的环境这几个方面,与此同时,这些需求进一步促进了人工智能在计算机网络技术,尤其是在智能人机界面、网络安全及系统管理评价等方面的应用进程。

3.1人工智能在计算机网络安全管理中的应用。在计算机网络技术中,人工智能得到了极为广泛的应用。在计算机网络安全管理中,人工智能的应用主要表现在智能防火墙、入侵检测、智能型反垃圾邮件系统这三个方面。相比于其他防御系统,智能防火墙系统采用的是智能化识别技术,例如,通过概率、统计、记忆、决策等方法,来识别并处理有关信息数据,不但有效减少了计算机匹配检查过程中的庞大计算,而且大大提高了发现网络有害行为的效率,从而实现了限制访问及拦截有害信息的功能;此外,与传统防御软件相比,智能防火墙系统具有更高的安检效率,从而将拒绝服务共计这一普通防御软件普遍发生的问题进行有效解决,实现了高级应用的入侵及病毒传播的有效遏制[3]。作为计算机网络技术安全管理的一项重要环节,入侵检测起着保证网络安全的关键作用,同时也是防火墙技术的核心部分。计算机系统资源的保密性、完整性、安全性等均与网络系统入侵检测功能的有效发挥有着紧密联系。入侵检测技术通过采集、筛选、分类、处理信息数据,在形成最终报告的基础上,将当前计算机网络系统的安全状态及时反映给用户。现阶段,人工智能在模糊识别、专家及人工神经网络等系统入侵检测中,得到了非常广泛的应用。计算机网络安全管理中的智能型反垃圾邮件系统,是一项以人工智能技术为基础而研发出来的防护技术,其针对的对象为垃圾邮件。此项技术可在不对用户信息安全造成影响的前提下,有效监测用户的邮件,并在完成邮箱内垃圾邮件的开启式扫面后,将垃圾邮件分类信息提供给用户,提醒其对可能对自身不利或对系统造成危害的信息进行尽早处理,进而确保整个邮箱的安全性,

3.2人工智能在计算机网络系统管理及评价中的应用。计算机网络管理的智能化发展,离不开人工智能技术及电信技术的发展。除了应用在计算机网络安全管理中,人工智能技术中的问题求解技术及专家知识库等,均可促进计算机网络综合管理的实现。由于网络具有瞬变性及动态性的特点,因而给计算机网络管理工作增加了一定的难度,这同时也使得现代化网络管理工作朝着智能化的方向发展。其中,以人工智能理论为发展基础的专家级决策及支持方法,在信息系统的管理工作中得到了广泛应用。作为一项智能计算机程序,专家系统可累积尽可能多的专家经验与知识,并通过进行归纳与总结,在形成资源录入系统的基础上,利用这一汇集了多位特定领域中的专家经验的系统,对此领域中相似的其他问题进行解决。因此,对于计算机网络管理及其系统评价,可通过众多专家系统来开展计算机网络管理及系统评价等大量工作。

4结数语

第10篇

关键词:老年大鼠;术后认知功能障碍;胆碱乙酰转移酶;海马;石杉碱甲

术后认知功能障碍(POCD)现在临床上广泛关注,老年人由于机体退行性变导致术后早期POCD的发生率大大增加,但其发生机制不甚清楚。脑内胆碱能系统在高级动物的学习记忆中起着重要作用〔1〕,但在POCD发生机制中的作用并不清楚。我们选择反应胆碱能神经的胆碱乙酰转移酶(ChAT)作为观察指标,旨在研究其与POCD发生发展的关系,探讨POCD的发生机制。另一方面,目前对POCD预防和治疗的有效性研究较少,为探讨对POCD的治疗策略,我们对脾切除术后大鼠POCD进行药物干预研究。以往研究表明石杉碱甲(HuperzineA,HupA)具有很好的抗衰老和改善学习记忆功能作用〔2〕,本文从神经生理学和组织细胞学两方面研究该药对大鼠脾切除POCD的影响。

1材料与方法

1.1药物与试剂石杉碱甲(河南竹林众生制药公司),氯胺酮(福建古田药业公司),山羊抗ChAT多克隆抗体(Cemicon)。

1.2动物分组及模型制备20月龄雄性Wistar大鼠(甘肃中医学院实验动物中心提供)经筛选剔除体重过大或过轻及在水中不游动的,共选出动物32只,体重500~550g。按体重分级,随机分成4组:对照组,麻醉组,手术组,石杉碱甲组(n=8)。其中石杉碱甲组给石杉碱甲灌胃,0.15mg·kg-1·d-1,溶于生理盐水中,连续灌3w,对照组、麻醉组、手术组均按体重给与同容量的生理盐水灌胃3w,3w后手术组和石杉碱甲组在氯胺酮腹腔注射(25mg/kg)麻醉下行脾切除手术;麻醉组仅给与氯胺酮麻醉,不行手术;对照组仅腹腔注射同容量的生理盐水。

1.3学习、记忆功能的行为学测试通过Morris水迷宫测试,将圆池内壁和平台漆成黑色,将其分为4个象限,平台置于第4象限没入水下约2cm,选择一个象限的固定位置作为大鼠入水点,通过自动图像拍摄系统记录游泳轨迹,入水至找到平台为潜伏期,其总行程为游泳距离〔3〕。术前学习5d,每天测试4次,取其平均值,术后1、3、7d分别进行测试,并于术后7d撤掉平台,记录60s内大鼠在每个象限的停滞时间和在每个象限游泳的距离。

1.4免疫组化染色

1.4.1灌注和切片大鼠行为学观察结束后,氯胺酮(25mg/kg)腹腔麻醉动物,暴露心脏,以0.9%生理盐水经升主动脉灌注冲洗后,灌注4%多聚甲醛(pH7.4)900ml,持续2h后取脑,将脑置于20%蔗糖的PBS溶液中浸置24~48h(4℃),冰冻冠状连续切片(厚度30μm),海马组织每5张取1张。

1.4.2免疫组化染色步骤切片置于0.3%Triton中浸30min,PBS液洗3次,每次15min;在稀释浓度为1∶2000的山羊抗ChAT多克隆抗体中孵育72h(4℃);PBS液漂洗后在生物素标记二抗(1∶100)中,室温下孵育1h;辣根过氧化物酶标记链霉卵白素(1∶100)中,室温下孵育1h;二氨基联苯氨(DAB)反应液中成色,室温下10~20min;常规明胶裱片、脱水、DPX封片。为了计算ChAT细胞数目,采用标准网格的技术方法,在100倍的光镜下做ChAT细胞计数,以“500×400μm”为单位,结果取3个视野的平均值。

1.5统计学方法计量资料以x±s表示,用SPSS12.0统计软件,组间比较采用单因素方差分析。

2结果

2.1水迷宫测试结果术后1d麻醉组、手术组的逃避潜伏期和游泳距离延长,与对照组相比均有统计学意义(P<0.05);术后3d仅手术组,石杉碱甲组与对照组比较有统计学意义(P<0.05),且数值达高峰;术后7d手术组与对照组比较有差异(P<0.05),但差距已明显缩小;术后石杉碱甲组与手术组比较均有差异(P<0.05)。石杉碱甲组术前的逃避潜伏期和游泳路程较对照组有明显差异(P<0.05),见表1。与对照组(26.5%)、麻醉组(26.3%)、石杉碱甲组(26.5%)比较,术后7d在60s内手术组(24.1%)的平台象限停滞时间百分比减小(P<0.05),与对照组(24.5%)、麻醉组(24.2%)、石杉碱甲组(24.7%)比较,术后7d在60s内手术组(22.8%)的平台象限游泳距离占总游泳距离百分比减小(P<0.05)。这些结果说明脾切除术后大鼠在水迷宫测试中的空间认知能力受到损害,单次使用氯胺酮仅引起极短期的认知减退,而石杉碱甲组减弱了脾切除术后大鼠在水迷宫测试中学习记忆能力的损害。表1各组大鼠的逃避潜伏时间、游泳路程1)与对照组比较,2)与手术组比较:P<0.05

2.2免疫组织化学结果术后7d水迷宫测试后,海马CA1区ChAT免疫反应阳性神经元在对照组、手术组和石杉碱甲组的表达率分别是(68.17±3.02)、(80.15±2.18)和(70.31±2.56),手术组海马CA1区ChAT阳性细胞数较对照组、麻醉组(69.04±2.37)和石杉碱甲组都增多(P<0.05),而对照组、麻醉组和石杉碱甲组的ChAT阳性细胞数相当,见图1。

3讨论

Moller对1218例60岁以上的老年患者进行了POCD的调查研究〔4〕,发现25.8%的患者在术后1w出现了POCD,术后3个月9.9%的患者出现POCD,而相近年龄对照组患者的发生率分别为3.4%和2.8%,POCD对大多数患者来说是可逆的,但仍有少数患者存在长期甚至永久的认知功能障碍〔5〕。

脾切除手术对大鼠的机体影响较小,术后大鼠可以如期进行水迷宫测试。术前水迷宫测试成绩石杉碱甲组明显好于其他组,说明石杉碱甲可以改善大鼠的认知功能,与以往的文献报道相符〔4〕。术后1d,麻醉组、手术组空间记忆力低于对照组,石杉碱甲组不低于对照组,但呈下降趋势,表明手术组学习记忆功能下降;术后3d,麻醉组记忆力恢复,手术组、石杉碱甲组进一步减退,石杉碱甲组也低于对照组,但石杉碱甲组与手术组有统计学差异,提示石杉碱甲具有改善POCD模型大鼠学习记忆的功能;术后7d,仅手术组与对照组的差异明显缩小,提示老年大鼠的学习记忆能力正在恢复。麻醉组单纯应用氯胺酮,记忆力仅术后一天较低,以后恢复。文献报道反复应用小剂量氯胺酮可引起认知功能障碍〔5〕,单次使用可能仅引起极短期的认知减退。

研究表明中枢胆碱能神经系统在学习和记忆功能中起主要作用,分布于海马结构中的胆碱能纤维与学习和记忆密切相关〔6〕,许多年龄相关的认知障碍都有海马胆碱能系统活力下降,ChAT是中枢神经系统合成Ach过程中重要的酶,研究中采用免疫组化技术观测了海马CA1区ChAT的变化,结果发现POCD模型大鼠海马CA1区ChAT阳性细胞数目增多,而研究表明海马ChAT阳性神经元减少与大鼠痴呆发生密切相关〔7〕。造成此结果有两种可能因素,一是由于机体为防止轻度认知功能障碍加重并转化为永久性痴呆而导致海马CA1区ChAT活性上调〔8〕。另一种因素,可能是POCD大鼠的胆碱能神经进行了代偿性机能上调,但这种变化与认知功能的具体关系机制还有待进一步研究。

石杉碱甲生物碱是从蛇足石杉中分离得到的一种新生物碱,是一种高效可逆的胆碱酯酶抑制剂,其改善、促进学习、记忆过程的作用已有定论〔2〕。研究〔9〕表明,石杉碱甲对成年、老年啮齿类动物及老年猴有促智作用,石杉碱甲改善学习、记忆的作用呈典型的钟形量效关系,剂量过大则损害记忆功能。给予石杉碱甲0.01~0.50mg·kg-1·d-1,均能明显增强实验动物的学习、记忆功能。因此选择石杉碱甲灌胃,0.15mg·kg-1·d-1,为确保疗效连续用药3w〔10〕。超级秘书网

乙酰胆碱是脑内广泛分布的重要神经递质,主要参与记忆与认知功能。老年大鼠的皮层胆碱能神经网络密度降低,在非病理性老化中都不同程度存在脑中乙酰胆碱生成和释放的减少,因此全麻手术后早期谵妄好发于老年大鼠。本实验结果提示石杉碱甲的干预稳定了海马胆碱能系统,改善了POCD模型大鼠的学习记忆的功能。

综上所述,老年大鼠脾切除手术后早期可发生认知功能障碍,并在术后3d左右达高峰,以后逐渐恢复,单次使用氯胺酮仅引起极短期的认知减退,预先给予石杉碱甲能够减轻大鼠学习记忆能力的损害。

【参考文献】

1SchmidtRH,ScholtenKJ,〔J〕.Neurotrauma,1999;16:113947.

第11篇

1.1依托当地企业做好调研工作

高校培养人才的目的是为社会输送人才,尤其是为当地社会输送人才,服务于当地经济的建设,因此做好调研工作,必须依托于当地企业。调研工作不能流于表面,要发动整个教学团队的力量。首先,从专业层面应该有整体规划,确定调研的时间段、调研哪些企业,到具体实施阶段,老师下去调研的时候不能仅仅是盖个章回来就了事,应该提供现场调研的图片、个人小结等资料,另外为了调动老师的积极性,专业层面可以发放调研津贴。材料收集好之后,要依据材料进行细致的分析、总结工作,提炼出对制订人才培养方案有用的信息,尤其是企业需要什么样的综合人才、岗位能力分析、职业资格证书的获取情况等。

1.2充分发挥校企合作委员会的作用

每个专业都有自己的专业指导委员会或是校企合作委员会,要充分发挥其作用。首先在人选是一定要经过筛选,务必选择一个对整个专业发展能够提供指导性意见的人,这就需要他有在这个行业多年的工作经验,另外需要热爱教育事业,不能只是来挂个名,开个会,还需要在平时的各项工作中直到作用。

2.做好课程体系建设

2.1根据专业情况重新整合课程体系

每个专业发展的沿革不一样,所以制订课程体系时绝不能照抄照搬别人的。尤其是楼宇智能化工程技术专业,很多课程的开设是需要硬件支撑的,因此有些课程其他学校能开,本校可能开不了。另外,要充分考虑到师资情况,校内教师上不了的课程,要请企业老师来上课,如果连企业老师也找不到合适的,就得考虑这门课程是否能开设。

2.2注重实践课程的教学设计

高职高专的学生,人才培养的目标并不是研究型人才,而是技术型人才,因此要充分做好实践课程体系的建设。首先,理实一体课程要采用一体化的教学模式。教学决不能只在黑板上写写划划了,现如今90后的学生,接受信息的渠道很多,老师一定要充分备课。师生双方应该在实验实训室边教、边学、边做、边评定,把理论与实践教学紧密地联系在一起。其次,做好学期实训课程的教学设计。每个学期的实训内容可以是基于某门课程的也可以是基于多门课程的,以楼宇智能化工程技术专业来说,可以基于电工电子技术进行维修电工的实训,也可以综合楼宇智能化工程技术、安防技术、消防技术等进行智能管理系统综合实训。这种生产性的实训课程要尽量聘请资深的企业人员参加,这样对于教师和学生提高专业技能都有帮助。另外,做好顶岗实习和毕业项目设计。教师在给学生顶岗实习成绩评定时要有充分的依据,不能依照个人的喜好,这就需要专业层面制订合理的规章制度。最后,做好职业认证工作。要为学生制订弹性的证书获取机制,每个学期的实训课程尽量为学生提供考证的机会,告诉学生哪个证是必考的,哪些证书是选考的。这样学生可以根据自己的需求选考合适的证书。

2.3改革创新考核方式和评价模式

考核的目的是对学生的知识和技能掌握程度的评价,也是对教学效果的一种评估。在改革创新考核形式上,可以根据课程性质的不同采用多种多样的考核形式,可以积极推进过程考核,让学生付出的每一份努力都能够得到回报。总之,真实、客观的评价对于促进学生的学习是非常有帮助的,不仅能提升学生学习的动力,还能让其明白处于集体中的责任。

2.4注重综合素质的培养

人才培养方案制订过程中要充分注重对于学生综合素质的培养。尤其是楼宇智能化工程技术这种偏理工科的专业,要让学生明白一个人以后想在社会上立足并且过得幸福,这跟人的综合素质是分不开的,并不完全依赖于个人的技能。因此在开设课程时要充分考虑到上述能力的培养,可以开设大学生就业创业、法律法规常识、大学生心理健康教育等公共基础课,也可以开设电影艺术欣赏、围棋、书法等素质拓展课。另外,可以在以专业为单位积极鼓励学生创办或参加社团,这对于学生综合能力的培养非常有帮助,让他们提前了解和融入社会。

3.建立动态评价、调整机制

第12篇

关键词:人工智能 科学技术 伦理问题

一.人工智能的背景

人工智能是计算机科学的分支,它企图了解智能的实质,并研制出一种新型的以人类思维相似的方式做出相应反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能的思想萌芽最早可以追溯到十七世纪的巴斯卡和莱布尼茨。十九世纪,英国数学家布尔和摩尔根提出了“思维定律”,这些可谓是人工智能的开端。(1)50年代至70年代,人工智能相继出现了一批显著的成果,这一阶段的特点是重视问题求解的方法,忽视知识重要性。(2)随着第五代计算机的研制进入了80年代,人工智能得到迅猛发展。它的研制形成了一股研究人工智能的热潮。(3)90年代,由于国际互连网的技术发展,将人工智能更面向实用。研究人工智能出现新的。

二.人工智能的发展给人类带来伦理问题

(1)人工智能的情感问题。情感问题是千百年来人们一直在谈论的话题。明斯基认为,通过把我们的身体部分看做是大脑可以使用的资源,就可以改变它们的精神状态。因此,现在人工智能界的一种观点认为情感是一种特别的思维方式,我们可以利用它来增加我们的机智。智能机器人毕竟是一个赋予一种人类情感程序的机器,实质上还是没有人类的意识,只有固定的程序。

(2)人工智能机器的责任问题。人类不断向前发展,社会不断进步,人类把人工智能机器研制出来,赋予一定的程序,帮助老人,照顾小孩等;爱,不仅是男女之间的爱,也有父母对子女,这种爱是相互的。人们要面对智能机器的情感控制,我们不能把它视为一台机器,应该视为人类其中的一员,他们是一个种族,我们要对研制出来的人工智能机器负责。智能机器赋予人类的情感,我们也要给予同等的情感。我们不仅要研制智能机器,我们也要爱护和保护他们。

三.人工智能的问题对策

(1)人工智能情感问题研究。我们可以看出人工智能的机器情感是一个极其复杂的问题,这不仅涉及到人工智能的技术层面,同时情感是一种特殊的思维方式,机器是同样可以具有情感的。人类可能赋予人工智能一定的情感程序,我们要把人工智能的看成一类种族,让人工智能与我们共同创建美好的大家庭。

(2)人工智能的责任问题研究。随着人类社会的不断发展和进步,人工智能技术研究将成为人类不可避免,人类研究人工智能不仅会给人类带来帮助,也会给人们的带来一些困惑。我们在研究人工智能机器要考虑到,智能机器发展到一定程度的时,智能机器可以自己转变程序,人类要研究一种机器人的法律规范,也要赋予研究机器人的科学家一定的法律法规。

四.人工智能的影响

(1)人工智能带来负面影响。随着现代科学技术的发展,人工智能给人类带来帮助,也给人们带来了一些问题,像气候变暖,生物物种的灭绝,新型细菌的出现等。

(2)研究人工智能涉及的学科领域。人工智能是研究使计算机来模拟人的某些思维过程的智能行为学科,主要包括如下领域:专家系统、机器学习能力、模式识别、人工神经网络。在智能领域里最关键的问题之一,就是机器学习的问题。一旦机器有了学习能力,人类的未来发展难以预料!

(3)人工智能的积极影响及美好前景。人工智能的发展还没有到达一定水平,人工智能机器就可以和人做朋友,可以作为家里的一份子出现,进入人们的生活。我们在未来要研究人工智能的发展,也要研究人工智能出现以后所带来的问题,把人工智能的优势发挥的更好,给人类带来更美好的未来。

结束语:

第13篇

对于中国而言,人工智能的发展更是一个历史性的战略机遇,对于缓解未来人口老龄化压力、应对可持续发展挑战、以及促进经济结构转型升级至关重要。

那么目前,人工智能在中国的发展条件如何,中国距离成为真正的人工智能强国还有多远?7月13日,《中国人工智能发展报告2018》在清华大学主楼接待厅。

报 告中称,目前中国人工智能的发展已经具备非常优越的条件,然而要成为真正的人工智能强国,中国还任重道远。中国在论文总量和高被引论文数量上都排在世界第 一,但中国在人才总量,以及杰出人才占比偏低。在产业上,中国的人工智能企业数量排在全球第二,不过,中国人工智能领域的投融资占到了全球的60%,成为全球最“吸金”的国家。

报 告指出,中国必须加强基础研究,优化科研环境,培养和吸引顶尖的人才,在人工智能的新基础领域实现突破,保证人工智能发展的根基稳固。同时,要大力鼓励产 学研合作,让企业成为人工智能创新的主导力量。积极参与到人工智能全球治理机制的构建中,在人工智能未来的技术发展、风险防范、道理伦理规范制定等领域发 挥中国独特的作用。

这份报告由清华大学中国科技政策研究中心、清华公共管理学院政府文献中心、北京赛时科技有限公司、科睿唯安、中国信息通信研究院和北京字节跳动科技有限公司联合。

论文总量世界第一,杰出人才占比偏低

报告中称,在论文产出上,中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从1997年4.26%增长至2017年的27.68%,遥遥领先其他国家。

高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现十分出众。

不仅如此,中国的高被引论文呈现出快速增长的趋势,并在2013年超过美国成为世界第一。

但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球20。

从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文中国通过国际合作而发表的占比高达42.64%。

专利申请上中国专利数量略微领先美国和日本。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,三国占全球总体专利公开数量的74%。

全球专利申请主要集中在语音识别、图像识别、机器人、以及机器学习等细分方向。中国人工智能专利持有数量前30名的机构中,科研院所与大学和企业的表现相当,技术发明数量分别占比52%和48%。

企业中的主要专利权人表现差异巨大,但中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。

中国的专利技术领域集中在数据处理系统和数字信息传输等,其中图像处理分析的相关专利占总发明件数的16%。电力工程也已成为中国人工智能专利布局的重要领域。

虽然在论文总量和高被引用论文数量上中国排名领先,但在人才投入上,中国表现并不突出。

根据该报告,截至2017年,中国的人工智能人才拥有量达到18232人,占世界总量8.9%,仅次于美国(13.9%)。高校和科研机构是人工智能人才的主要载体,清华大学和中国科学院系统成为全球国际人工智能人才投入量最大的机构。

然而,按高H因子衡量的中国杰出人才只有977人,不及美国的五分之一,排名世界第六。企业人才投入量相对较少,高强度人才投入的企业集中在美国,中国仅有华为">华为一家企业进入全球前20。

中国人工智能人才集中在东部和中部,但个别西部城市如西安和成都也表现十分突出。国际人工智能人才集中在机器学习、数据挖掘和模式识别等领域,而中国的人工智能人才研究领域比较分散。

中国人工智能企业数量全球第二,但投融资规模最大

报告称,中国人工智能企业数量从2012年开始迅速增长,截至2018年6月,中国人工智能企业数量已达到1011家,位列世界第二,但与美国的差距还非常明显(2028家)。

中国人工智能企业高度集中在北京、上海和广东。在全球人工智能企业最多的20个城市中,北京以395家企业位列第一,上海、深圳和杭州也名列其中。中国人工智能企业应用技术分布主要集中在语音、视觉和自然语言处理这三个技术,而基础硬件的占比很小。

风险投资上,从2013到2018年第一季,中国人工智能领域的投融资占到全球的60%,成为全球最“吸金”的国家。但从投融资笔数来看,美国仍是人工智能领域创投最为活跃的国家。

在国内,北京的融资金额和融资笔数都遥遥领先其他地区,上海和广东的人工智能投资也很活跃。从2014年开始,国内人工智能投融资活动的早期投资的占比逐渐下降,投资活动日趋理性,但A轮融资还是占主导地位。

中 国人工智能市场增长迅速,计算机视觉市场规模最大。2017年中国人工智能市场规模达到237亿元,同比增长67%。计算机视觉、语音、自然语言处理的市 场规模分别占34.9%、24.8%、21%,而硬件和算法的市场规模合计不足20%。预计2018年中国人工智能市场增速将达到75%。

第14篇

>> 研究生人工智能系列课程教学改革 研究生人工智能课程教学探索 研究生“人工智能”课程教学改革探索 人工智能实验课教学改革研究 人工智能课程全英文教学改革 创新型人工智能教学改革与实践 《人工智能》硕士课程教学改革的研究与实践 落实科学发展观,深化“人工智能”课程的教学改革 面向人工智能的信息管理与信息系统专业教学改革 人工智能课程教学方法研究 人工智能的应用研究 日本巨资扶持人工智能研究 人工智能系列课程研究 高中人工智能教学初探 《人工智能》双语教学初索 人工智能双语教学建设 人工智能实验教学探讨 “人工智能”之父 人工智能 AI人工智能 常见问题解答 当前所在位置:l(美国人工智能协会)、caiac.ca/(加拿大人工智能协会)等,它们包括了学科前沿动态、讨论交流及大量的代码资源等。通过使用这些资源,学员可及时了解人工智能最新发展动态,进行人工智能程序设计的交流及对一些问题进行较为深入的探讨。

2教学方法研究

研究生教学应更突出学生的主体地位,注重发挥其学习的主动性和自觉性,为此,课程组结合课程特点,在教学方法进行了如下探索。

2.1加强教学设计

教学设计就是对教学活动进行系统计划的过程, 是教什么(课程内容)及怎么教(组织、方法、策略、手段及其他传媒工具的使用等)的过程[2]。在教学过程中,每节课授课前,坚持集体备课的原则,由课程组集体讨论选定授课内容,补充阅读文献,根据授课对象与课程内容特点,确定课堂组织方式,采用的授课方式以研讨式教学为主,给合讲授、实验、自学等。

2.2抓好课堂教学环节

教学方法与教学手段是保证课堂教学效果的关键。本课程授课对象主要为硕士研究生,他们的接受能力较强,有一定的求知欲。由于学员人数较少,授课方式可灵活组织。教室有完备的多媒体设备,基本的软件实验环境,教学过程可采用灵活教学方法、多种教学手段,提高教学效率,保证授课质量。

1) 以研讨式为主的教学方式。研究生教学应坚持学术研究为导向,发挥学员在学习过程中的主动性和自觉性。由于研究生学员有一定的学习基础与自学能力,教员可以在课前给学员布置预习内容,学员通过查阅资料、分析整理进而形成自己的观点,使在课堂教学中师生互动交流成为可能,改变传统的教员讲,学员听的灌输式教学方式。研讨式教学也有力于培养学员积极思考、创新思维的习惯与能力。

2) 教学手段的信息化。人工智能原理教学一个突出矛盾是知识点多、内容抽象、理论性强,但学时较少,因此,必须发挥现代教学手段的作用,提高教学效率。为此,课程组对每节课都精心设计了教学课件,课堂教学中以课件为主,辅以板书,充分利用多媒体信息量大、直观等优点,改善教学效果;引入教学声像资料,便于学员课下学习;设计演示程序,使部分比较抽象、不易于理解的内容,如子句归结、搜索策略更形象直观,易于学习和掌握。

3注重培养学员学术研究能力

学术能力是指专门对某一学问进行系统的哲理或理论研究的能力,它不仅包括思辨的方面,还包括实践及感性的敏感力等方面。研究生阶段学习的一个突出特点是要求学习的主体――研究生必须具备研究的能力[3]。论文写作是培养、锻炼、提高研究生的学术能力的重要途径,在教学实施过程中,要求每个专题学习结束后,都要提交一份格式符合期刊发表要求的总结报告,题目可自行选定,也可由教员指定;内容既可以是人工智能该专题某一算法的实现,也可以是对某一问题的进一步研究,或者是对该专题最新研究进展的综述。教员重点在以下几个方面予以指导。

1) 选题准确。要求选题不能过于宏大,应以小题目反映大问题,具有一定的可研究性为宜。

2) 研究内容。研究目标明确,方法恰当,能够提出自己的见解,所提观点正确。

3) 论文结构。结构清晰、完整,论述严谨,表达规范。

4) 占有文献丰富。撰写过程中要有意识培养学员查阅科技文献的能力,要求查阅反映最新研究成果的权威文献。

4加强实验环节教学

人工智能教学在进行各种理论知识讲授的同时,还应重视实践教学,把抽象的知识转化为形象、直观的实验,让学员真正理解人工智能的概念、本质、研究目标,从而提高学员多角度思维的能力和逻辑推理能力,进一步了解信息技术、计算机技术发展的前沿,培养他们对人工智能研究的兴趣,激发对人工智能技术未来的追求。为此,课程组借鉴国内外知名大学人工智能实验教学经验,编写了《人工智能原理实验指导书》,围绕问题表示、经典逻辑推理、不确定推理、搜索策略及简单专家系统实现等教学内容提供了7组实验供学员选择。

例如,在状态空间搜索一节教学过程中,先完成理论部分的教学,使学员对状态空间基本概念、问题表示及求解方法有一个准确的认识,然后进行实验教学。由学员自主完成重排九宫问题求解的程序,初始状态和目标状态如图1所示,调整的规则是,每次只能将与空格(左、上、下、右)相邻的一个数字平移到空格中[4]。实验过程重点指导学员掌握状态空间进行问题求解的关键步骤:问题表示和搜索策略。问题表示就是要确定该问题的基本信息及程序实现的数据结构,基本信息有初始状态集合、操作符集合、目标检测及路径费用函数,数据结构可采用向量、链表等形式;搜索策略可分为盲目式搜索和启发式搜索,可按照先易后难的原则,先实现盲目搜索中的广度优先及深度优先搜索,在此基础上再定义估价函数实现启发式搜索。而在启发式搜索实现过程中,又可以通过定义不同的启发函数:如某状态格局与目标节点格局不相同的牌数、不在目标位置的牌距目标位置的距离之和等加以比较,准确理解启发函数的意义。通过实验,学员加深了对课堂讲授的理论知识的理解,能够熟练地将状态空间法运用于实际问题的求解,提高了工程实践能力。

实验教学组织方式可根据具体的实验内容特点,采用上机编程实验、演示程序验证、模拟平台开发、分组讨论等多种形式进行。

5适度开展双语教学

研究生的英语基础普遍较好,基本都通过了国家公共英语四级考试,部分学员通过了六级考试,加之在本科阶段还开设了专业英语课程,因此,在培养研究生人工智能知识的同时,我们要提高学员阅读原版英文资料、用英语进行简单科技写作及对外学术交流的能力,适度开展双语教学,对此,我们可采取以下基本方式。

1) 专业术语全部用英语表示。

在教学过程中用英语表达人工智能原理中的专业术语和主要概念,如Knowledge Representation(知识表示)、Depth-First Search(深度优先搜索)、Breadth- First Search(广度优先搜索)等。

2) 以英文原版教材为教学参考书。

选定机械工业出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》为参考书,该书“是人工智能课程的完美补充。它既能给读者以历史的观点,又给出所有技术的实用指南[5]。”

3) 加强英文文献的阅读。

在课程论文撰写时,要求阅读一定数量的外文文献;在讨论课中,鼓励学员使用英语进行讨论。

经过课程学习,学员都能准确掌握人工智能学科专业词汇,英文运用能力得到一定提高,能较自如地阅读原版英文专业资料,为进一步用英文进行学术交流及学术论文写作打下基础。

6考试与成绩评定改革

考核方式采用传统的试卷与课程论文、实践环节等三部分组成,全面考查学员对基础理论知识掌握情况以及理论联系实际的能力,其中试卷占70%,课程论文占10%,实践环节占20%。课程论文题目不作限制,由学员在课程学习阶段结合某一专题选定题目,课程论文以选题意义、研究内容、论文结构、参考文献及撰写规范等指标为评价依据;实验成绩采用实验过程考查、实验结果验收和实验报告评阅相结合的考核方法,综合评定。这样做不但考核了学员人工智能基本理论掌握情况,也反映了学员的学术研究能力和工程实践能力。同时,考核结合实际教学进程,改变了单一课终总结性考核的弊端。

7结语

经过课程组近两年的教学方法研究与教学实践,研究生人工智能原理课程教学收到较好的效果,但仍存在一些问题,如在课堂讨论环节,个别学员准备不充分、讨论不够深入;课程论文撰写选题随意,文献综述不够全面、准确,论文格式不够规范等。在今后的授课中,课程组将根据授课研究生人数较少的特点,采取明确每名学员预习重点、加强课程论文交流等方式予以改进,力求取得更好的教学效果。同时,进一步充分利用便利的校园网平台,开展“人工智能原理”网络课程建设,购买或自主开发网络教学资源,引导学员利用网络资源进行个性化自主学习,增强教学过程的信息化程度。

参考文献:

[1] 王永庆. 人工智能原理与方法[M]. 西安:西安交通大学出版社,2002:1.

[2] 李志厚. 国外教学设计研究现状与发展趋势[J]. 外国教育研究,1998(1):6-10.

[3] 肖川,胡乐乐. 论研究生学术能力的培养[J]. 学位与研究生教育,2006(9):1-5.

[4] 周金海. 人工智能学习辅导与实验指导[M]. 北京:清华大学出版社,2008:204.

[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:机械工业出版社,2009:754.

Reform on Postgradrates Artificial Intelligence Course Teaching

TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei

(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)

第15篇

关键词:人工智能技术;教学方法;编程能力

中图分类号:TP3 文献标识码:A 文章编号:1009-3044(2014)16-3865-02

1 概述

2008年11月16日,中国科协成立50周年新闻会在北京召开。在新闻会上,“五个10”系列评选活动,即10位传播科技的优秀人物、10部公众喜爱的科普作品、10个公众关注的科技问题、10个影响中国的科技事件、10项引领未来的科学技术评选结果揭晓。10项引领未来的科学技术是:基因修饰技术;未来家庭机器人;新型电池;人工智能技术;超高速交通工具;干细胞技术;光电信息技术;可服用诊疗芯片;感冒疫苗;无线能量传输技术。

人工智能技术学科是计算机科学中涉及研究、设计和应用智能机器的一个分支。指人类的各种脑力劳动或智能行为,诸如判断、推理、证明、判别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动,可以用某种智能化的机器来予以人工实现[1]。

通过《人工智能技术》课程的学习,使学生对人工智能技术的发展概况、基本原理和应用领域有深入了解、对主要技术及应用有一定掌握,并对现代人工智能技术发展的方向有所研究。通过人工智能技术课程的学习与研究,启发学生对人工智能技术的兴趣,培养知识创新和技术创新能力,并能将人工智能技术融入到今后所开发的计算机软件之中。

《人工智能技术》是一门众多学科交叉的新兴课程,其涵盖范围广,涉及知识点多,知识更新快,内容抽象,不容易理解,理论性强,而且需要较好的数学基础和较强的逻辑思维能力,这给该课程的讲授带来了一定困难。《人工智能技术》也是一门应用型学科,怎样将理论运用到实践中,使学生将学到的人工智能技术知识和思想运用到自己的实际课题,这也是该课程需要解决的问题之一。

因此,对《人工智能技术》课程教学来说,我们要了解课程的最新信息,把握课程的特点,帮助学生找到好的学习方法,使他们能充分发挥自己的创新思维能力,提高学习兴趣,该文给出了《人工智能技术》课程的教学与实践的探索。

2 教学与实践的探索

2.1 教材和实验教学内容的选取

1) 人工智能技术是整个计算机科学领域发展最快,知识更新最快,最前沿的学科之一。在教材选用方面,我们采用了蔡自兴教授等主编,由高等教育出版社出版的《人工智能基础》这本教材。蔡自兴教授的主要研究领域为人工智能、机器人学和智能控制等。这本教材是作者在美国国家工程院院士、普度大学教授傅京孙先生的指导和鼓励下编写,借鉴了国内外人工智能技术研究领域专家的最新研究成果和学术书籍的长处,该书比较全面地介绍了人工智能技术的基础知识与技术,材料新,易于理解,兼顾基础及应用[2]。

此外,我们还给学生自主学习提供多种类型的学习资料,其中包括参考书目,如:Russel S, Norvig P.等编著的《Artificial Intelligence: A Modern Approach》一书,人工智能技术国内外期刊,如电子学报,计算机学报,人工智能与模式识别,Artificial Intelligence,Journal of Artificial Intelligence Research,Engineering Applications of Artificial Intelligence和International Joint Conference on Artificial Intelligence,AAAI: American Association for AI National Conference等人工智能技术会议,使学生能够掌握人工智能技术的更多前沿动态,提高学习兴趣。

2) 配套的实验教学内容。《人工智能技术》是一门理论性和实践性都很强的课程,实践性教学环节对该课程尤为重要。除了完成课本上的作业之外,还注重实验教学,培养学生的创新能力、算法设计能力和编程能力。首先,每个章节设置相应的实验,而实验内容经过严格的考虑,如:五子棋游戏,产生式系统,旅行商问题,传教士和野人问题,BP神经网络实现简单的分类,遗传算法、人工生命程序等,要求学生运用所学章节的知识,独立地设计和实现实验内容。实验报告包括简述实验原理及方法,给出程序设计流程图,源程序清单,实验结果及分析等内容,通过这种方式,进一步加强学生的信息获取能力和研究能力。

2.2 教学方法和手段的改革

人工智能技术课程交叉性强,涉及面广,传统的教学方法手段单一,缺少交流,课堂气氛沉闷,激发不起学生的学习兴趣,教学效果不理想。人工智能技术这门课程内容抽象,如何激发学生的学习兴趣是本课程需要解决的主要问题,也是关系教学改革成败的关键。本课程需采用多种方法进行教学,以此来激发学生的学习兴趣。

1) 问题启发式教学。《人工智能技术》这门课程中有很多似是而非、引人入胜的问题,主要是用计算机模拟人类的智能来解决这种问题。在教学中,有目的的提出这些问题,鼓励学生思考,提出自己的想法和解决方案,并进行分析和比较,这样强化学生的主动学习意识,提高学习积极性[3]。

2) 个性化学习和因材施教。学生中存在计算机专业和非计算机专业本科毕业的差别,由于他们每个人的基础不同,有的计算机知识比较匮乏,因此有必要针对每个学生的学习进度,课堂作业和实验报告情况进行及时评估,对学生提出个性化的教学。例如:在实验教学中,要求有能力和兴趣的学生可以做探究性和创新性的附加实验,从而引导学生发挥个性的空间,而对稍微吃力的学生则要求完成基本的实验,更注重基础知识的学习和夯实,这样就能达到因材施教的目的。同时对不同层次的学生进行分析,进一步提出学习建议,并进行有针对性的指导。

3) 多媒体使用和多学科知识的融合。本课程PPT课件图文并茂,提纲挈领,便于学生理解。课堂讲授、板书与PPT手段相结合,注重课程中的关键词用英文表示,并适当指定英文参考书,使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。PPT课件运用了大量多媒体技术,如动画、声音、图像,通过动画和视频演示抽象的概念、算法和过程,使人工智能技术中抽象的知识形象化,在课件中融入了文学,历史等其他学科的相关知识,便于学生较好地理解知识难点和重点[4]。

4) 师生互动和课内外答疑。在教学中,改变了传统的老师讲,学生听的教学模式。针对人工智能技术的实用性,适当提问,收集学生学习情况,尽量使用实例进行讲解。设置了实验讲解互动课程,对于实验的讲解,学生可以提出疑问,然后在课堂上展开讨论,学生可以看到问题从提出、分析到解决的整个过程,让学生自己在讨论中总结结论。为了解决教学中存在的疑难问题,还设有课后答疑,使学生能将所有的问题都理解透彻。

5) 理论研究与实践结合。在教学内容的安排上,注重学生的理论研究和动手能力,适当布置一些课程相关的论文和实验编程。通过课程论文,可以培养学生钻研问题的兴趣; 通过查阅科技文献使学生掌握如何查找相关文献的技能,可以培养学生撰写科技论文的能力。通过实验实践,使学生可以更加清楚地了解人工智能技术基本概念和难点,也能了解算法的设计具体运行过程,并对其进行验证,提高了学生的编程能力和和学习兴趣。

6) 考试考核方式改革。本课程的考核考试也是一个值得探讨的问题,本课程应采用多种综合考试方法,注重学生对基础概念、知识和基本的技能的掌握以及理论联系实际的能力。平时作业考核成绩,实验实践教学成绩、提交课程论文成绩,以及最后的期末考试成绩形成一种有效的考试考核方法,促进学生主动学习,提高教学质量。实验的评价指标在于算法设计、编程的准确性和实验结果及分析。课程论文评价指是选题是否严谨科学和具可研究性,论文结构、思路是否严谨,论文内容科学性、正确性,能否提出自己的见解。考查查阅科技文献的能力主要通过是否查找到权威的、最新文献以及撰写是否规范。

2.3 学生学好《人工智能技术》课程的建议

《人工智能技术》是一门理论与实践相结合的应用课程,学生如何学习这么课程,也是我们应该探讨的问题。

学生应该正确看待《人工智能技术》这门科学的发展。人工智能技术孕育于20世纪30、40年代,形成于60、70年代,发展至今,人工智能技术只有短短60多年的历史,它是一门不断发展和完善的崭新学科,还有许多课题处于探索中,理论和技术还远未成熟,我们应该对它有科学的认识。

针对非计算机专业本科毕业的学生,除了课堂听讲之外,还应该课下自学该课程的先修课程,如:数据结构、离散数学等课程。人工智能技术中涉及到大量的数学知识,如:模式识别需要具有较好的概率论,数理统计知识,另外还会用到少量随机过程、模糊数学的一些知识。人工智能技术是一门应用课程,编程语言的掌握必不可少,涉及到SVM算法,粒子群算法,免疫算法神经网络,遗传算法等算法,实现这些算法要求学生具有较强的编程能力。

学生应该多读,多查阅资料,特别是国外的期刊文献和重要国际会议论文,多了解人工智能技术最前沿的信息,理论联系实际,加深对基本算法的理解,并将人工智能技术的知识运用到自己所研究的领域,以做到学以致用。

3 结论

人工智能技术在一定程度上代表着信息技术的前沿,该文对《人工智能技术》的课程教学进行了一些探讨,教学与实践效果有了显著提高,但仍然有许多方面还需要我们继续探讨和改进。

参考文献:

[1] 蔡自兴,徐光佑.人工智能技术及其应用[M].北京: 清华大学出版社,2003.

[2] 蔡自兴,肖晓明,蒙祖强,等.树立精品意识搞好人工智能技术课程建设[J].中国大学教学,2004(1):28-29.