美章网 精品范文 低功耗设计论文范文

低功耗设计论文范文

前言:我们精心挑选了数篇优质低功耗设计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

低功耗设计论文

第1篇

2月7日~11日在旧金山举办的2010 ISSCC,以“感知未来”为主题,向观众展示了集成电路的前沿进展、未来的技术方向以及“后CMOS时代”硅半导体技术的替代者。

集成电路发展的见证者

时至今日,由IEEE(国际电气电子工程师协会)举办的ISSCC已经走过了57个年头。集成电路历史上一些里程碑式的创新大都会在ISSCC上首次公布:从1962年仙童公司的TTL(晶体管-晶体管逻辑)电路开辟了数字电路的集成时代,到1968年泰克公司的集成放大器将模拟电路带入集成时代,再到1974年英特尔公司的8位处理器开启了计算普及之门;更不用说多核、高性能CPU、低功耗技术、视频处理器、可编程DSP(数字信号处理器)、WiFi、蓝牙、CCD图像传感器等人们耳熟能详的信息技术。

本次会议设有10个议题:低功耗数字技术、高性能数字技术、存储器、模拟、射频、数据转换器、无线、有线、图像/显示/微电子机械系统/医疗和技术方向。

根据ISSCC公布的论文统计,来自世界多个国家和地区的半导体企业和高校等研究机构共向大会提交了638篇论文,其中有210篇被大会录用。这两个数字分别略高于2009年的582篇和203篇,稍低于2008年的656篇和237篇。从地域上看,北美和欧洲的论文数在国际金融危机最为严重的2008年也处于谷底,分别为78篇和52篇,而今年则达到86篇和59篇。从机构分布上看,在会议上达到或超过4篇的共有15家,其中英特尔以13篇位居其首,而产业界和学术界分别以51%和49%的比例在论文数量上平分秋色。

从注册观众上,今年的观众数量较2009年提高了一成。集成电路产业历来是整个IT产业的风向标,此次会议在论文和观众数量上都有所回升,这对于整个IT产业是个好消息。

我国内地是在2005年、2006年和2008年分别由新涛科技(上海)有限公司、中科院半导体所和清华大学实现了企业、研究机构和高校在ISSCC上论文的零突破。

高性能处理器龙争虎斗

高性能处理器依旧是ISSCC的热门之一,英特尔与AMD、IBM与Sun这两对“冤家对手”,各自在会议上亮出自家的“镇山之宝”。

32nm处理器成为英特尔与AMD比武的擂台。英特尔在其《Westmere:32nm IA处理器家族》的论文中,披露了32nm 处理器Westmere系列的技术细节。Westmere在性能上从45nm处理器Nehalem的4内核/8线程提升到6内核/12线程,L3 缓存从8MB提升到12MB,晶体管数量则从7.31亿个增加到11.7亿个。得益于32nm制程技术,6个内核的Westmere的芯片面积(240mm2)甚至略小于4个内核的Nehalem(262mm2)。Westmere还在电源输入端引入了反谐振电路和LC滤波器,以降低电源噪声对QPI总线和DDR时钟的干扰。

AMD没有出现在ISSCC统计的论文达到或超过4篇的统计名单中,它在《32nm SOI CMOS下实现的x86-64内核》的论文中介绍了未来AMD 32nm处理器内核的一些特征:采用SOI技术,主频超过3GHz,单个内核的功耗控制在2.5W~25W之间。

在RISC处理器上,IBM了性能较之上代产品POWER 6有近5倍提升的处理器POWER 7,这种计算性能的大幅提升,在当今处理器的更新换代中还是罕见的。POWER 7拥有8个内核,每个内核含4个线程。POWER 7采用45nm SOI工艺,它将原有外置的L3缓存集成到芯片上,每个内核拥有4MB的L3缓存,整个芯片的L3缓存高达32MB,芯片面积为467mm2。

被Oracle纳入旗下的Sun在会上介绍了UltraSPARC家族的下一代产品的技术特征:采用40nm制程、16内核、128线程。这一信息的披露给UltraSPARC的用户带来些许的安慰,但Sun能否将其付诸实施,那还要Oracle说了算。

英特尔还在会上介绍了采用SoC(片上系统)技术的48内核处理器Message passing。这款被称之为“SCC”(单芯片云计算)的处理器,除了在数据吞吐方面独具匠心外,其工作频率和电压分别设有28档和8档,可以分别独立调节,从而有效地降低了功耗。

综观高端处理器设计,各家都有自己的独门绝技,而各家共同关注的依旧是在降低功耗的同时通过增加内核数量来提升整体性能。

低功耗处理器跨越1GHz门槛

与高端处理器将对性能的追求放在首位不同,降低功耗成为低功耗处理器的第一诉求。如今,伴随着智能手机、消费电子产品以及其他嵌入式应用的发展,性能的提升已经成为低功耗处理器亟待解决的问题。

以未来智能手机的需求为例,它要求具有主频到达GHz量级,高达100Mbps的数据传输率,而且智能手机的总功耗应该限制在1W水平上。通常,功耗和计算性能如同鱼与熊掌一样不可兼得。于是,一些创新的技术被引入低功耗处理器的设计之中。

英特尔在本次ISSCC上介绍了一种采用45nm工艺的自适应处理器原型。这种处理器内核应用错误诊断和错误恢复电路,实现了降低电压和提高主频两个目的,该处理器在0.8伏这个超低的、接近门限电压的工作电压下,性能提高了22%。与此同时,该芯片1.3GHz的主频也使得低功耗处理器的主频突破了1GHz的门槛。

英国ARM公司介绍了Razor技术,Razor具有时序错误探测、错误恢复和电压-频率调节功能。采用这一技术的65nm ARM ISA处理器,工作在1GHz主频和1.1伏时,可在功耗降低52%的同时保持性能不变。

第2篇

Ultra Low-Power

Electronics and Design

2004, 273pp.

Hardcover $ 159.00

ISBN 1-4020-8075-1

Kluwer Academic Publishers

E.马茨著

20世纪70年代,英特尔公司(Intel)的戈登・摩尔(Gordan Moore)预言:芯片上晶体管的数量将每隔18个月至两年就会翻一番,是原来的两倍,这即是“摩尔定律”。在过去的25年当中,信息技术的发展证实了摩尔定律,而且业界也认为摩尔定律将会继续有效很长一段时间。现在是我们不得不面对摩尔定律的成功所带来的后果的时候了。本书出现在基于65纳米的CMOS技术的集成电路刚刚出现的时候,这种工艺的集成电路将用到的很多技术,本书都一一进行了充分讨论。这就是为什么我们在小型化方面取得重大成功的同时,也引发出了在电源管理方面的很多新的问题。

问题的关键和物理根源在于:集成电路当中对于功耗有影响的诸多因素的发展速度存在着差异,晶体管速度和密度的上升发展比晶体管功耗下降要快很多,所以,总的意义上来说每个晶体管单位面积的功耗是上升的。因此,低功耗技术对于信息技术的发展具有很大的意义,本书汇集了低功耗技术的多篇论文,主要题目如下:(1)超低功耗设计:设备和逻辑设计方法;(2)片上光学互联的低功耗技术;(3)纳米技术的低功耗技术;(4)静态漏电电压的降低;(5)多处理器片上系统的节能共享存储器系统结构;(6)低功耗嵌入式系统的转换cache;(7)片上多处理器的功耗降低技术;(8)节能嵌入式DSP和多媒体处理的体系结构和设计技术;(9)软件功耗最优化的源码级模型;(10)降低功耗的转换扩展;(11)无线掌上电脑的低功耗网络替换技术;(12)低功耗片上网络设计;(13)高端工业片上网络的系统级电压模型;(14)低功耗端到端码流对移动手持设备的适配。

本书适合计算机体系结构和电子信息专业的研究生和工程技术人员阅读,也适合相关专业的人员参考。

丁丹,硕士生

(中国科学院计算技术研究所)

第3篇

关键词:低功耗设计;电源关断; CPF格式

The Design Implementation Based on Power Shut off Technology

WANG Dian-chao YI Xing-yong Pan Liang

(CEC Huada Electronic Design Co.,Ltd. Beijing 100102,China)

Abstract:The technology of Power Shut Off(PSO) refers to shutting off the power of the module when it dose not work in a period of time, in order to reduce chip power .The CPF format developed by Cadence company was adopted in this paper to define each low power cell and to introduce implementation flow of PSO through an experimental case. The result shows that the chip's static power can be effectively reduced when the PSO technology is used.

Key words: Low power design; Power Shot Off; CPF format

1引言

随着系统芯片(SoC) 采用更先进的制造工艺并集成更多的功能,它所面临的高性能与低功耗的矛盾越来越突出。对于130nm及以下的工艺,芯片的功耗密度越来越高、漏电功耗所占比例越来越大,在90 nm时,静态功耗在总功耗的比例已经接近1/3,如图1所示,所以在芯片的设计过程中,除了对芯片的动态功耗进行优化外,还要对芯片的静态功耗进行有效的优化。

芯片中某些模块在一段时间内不工作时,通过将其供电电源关断,从而达到降低芯片功耗的目的。电源关断(PSO)技术是最有效的降低静态功耗的技术之一。本文通过采用Cadence公司的CPF格式来定义各个低功耗单元,用实例来介绍实现电源关断的过程,并对结果进行了分析。

2 电源关断技术

及CPF格式定义低功耗单元

2.1 电源关断技术简介

如果某一模块在一段时间内不工作,可以关掉它的供电电源。关掉供电电源可以使用设置在模块顶部或底部的Power Switch开关,通常在使用后端工具进行布局布线时加入。断电后,模块进入睡眠模式,其漏电功率很小。唤醒时,为了使模块尽快恢复工作模式,需要保持关电前的状态,保持寄存器(SRPG)可用于记忆状态。 为了使保持寄存器记忆状态,模块的电源关断时,需要常开电源为保持寄存器供电。为了保证在睡眠模式时,下一级的输入不会悬空,设计中需要插入隔离单元(Isolation Cell),提供一个“1”或“0” 的输出,使下一级的输入为确定的逻辑值。综上所述,电源关断设计需要工艺库中提供的低功耗单元包括:包括保持寄存器(SRPG)、隔离单元(ISO)、常开缓冲器(always on buffer)及电源开关(power switch)等低功耗单元。

2.2 CPF格式定义低功耗单元

面临低功耗设计,EDA工具供应商强调整个流程进行优化来实现低功耗自动管理的概念,同时简化设计的复杂性。由Cadence公司开发、Si2(silicon integration initiative)的低功耗联盟(LPC)管理的通用功率格式(CPF,common power format)首先于2005年向行业开放。Synopsys后来联合Mentor和Magma等公司开发了统一功率格式(UPF,unified power format)于2007年2月底作为一项Accellera标准出台。 UPF和CPF命令十分类似,只是各自对应于不同的EDA工具。如图2所示CPF设计流程。

CPF文件允许用户在整个RTL-GDSII设计流程中定义功率设计意图和约束条件,使用Tcl脚本文件,用户可以使用其中的命令完成诸如建立和管理电源域、确定隔离和保持、定义与电源相关的规则和约束条件等等。

3基于电源关断技术的设计实现

3.1设计实例介绍

测试芯片采用了电源关断的低功耗设计技术,芯片中划分了5个独立的电源域,其中PD0为常开电源域,PD1-PD4为可关断电源域,电源域中的寄存器在综合阶段全部替换成了保持寄存器,因此可以在电源重新上电后恢复断电前的数据。芯片的逻辑部分供电电压为1.8V,芯片中包含了一块电源可关断的SRAM模块,如图3所示。

物理实现选用的工艺库为130nm低功耗库,库中包含了电源关断设计所需要的低功耗单元。

3.2芯片的物理设计

相对于普通设计,在物理实现过程中,低功耗设计有一些特殊的步骤,需要在设计过程中加以注意,如加入power switch开关、添加连接常开电源的well tap 单元等等。接下来将对设计实现中的特殊步骤加以介绍。完整的低功耗设计实现流程如下:

3.2.1 添加 Power switch 开关

对需要关断的Power Domain,添加power switch开关,在添加开关时要保证power switch属于所添加的电源区域,同时起始点设置为布线间距的整数倍,否则在布线后插入filler会产生空隙。本次设计中power switch插入的起始点为264,此距离为采用的130nm工艺库中布线间距(0.48)的整数倍。插入power switch脚本如下:

#PD1

addPowerSwitch-column

-powerDomain PD1

-globalSwitchCellName scs8lp_sleep_head_L

-leftOffset 264 -enablePinIn sleep

-enablePinOut sleepout

-enableNetIn instance_core/UNCONNECTED22

-enableNetOut sw_out

-checkerBoard 1

-horizontalPitch 900.0

3.2.2加入well tap单元:

对于常开电源区和可关断电源区,需要添加不同类型的well tap,对于常开电源区,加入普通类型的well tap;但对于可关断电源区,由于电源关断后,仍然有保持寄存器中的一部分逻辑电路在工作,即保存关断前的数值,因此,必须对这部分工作的器件进行阱连接。添加特殊类型的well tap。如图4所示,well tap单元上加有窄的stripe,以保证well tap供电,进而使保持寄存器工作部分的逻辑电路的阱连接。

3.2.3 Buffer tree synthesis for SRPG and ISO cell

对于各个电源区域保持寄存器的控制端,由于受到同一个控制信号的驱动,容易产生信号的延时及max fanout不满足问题,通常对这些端口的信号线进行buffer tree synthesis,进而对信号到达不同寄存器的skew进行平衡。

隔离单元与保持寄存器单元类似,也要对控制信号端进行buffer tree synthesis。

相应的脚本如下:

#SRPG enable signal buffer tree synthesis

selectNet instance_core/n_594

bufferTreeSynthesis -bufList{scs8lp_bufkapwr_1scs8lp_bufkapwr_4}

-maxDelay 300ps

-net instance_core/n_594

-fixedBuf

-fixedNet

# isolation enable signal buffer tree synthesis

selectNetinstance_core/n_8065

bufferTreeSynthesis -bufList {scs8lp_buf_4}

-maxDelay 300ps

-net instance_core/n_8065

-fixedBuf

-fixedNet

在进行buffer tree synthesis 过程中,一定要设置-fixedBuf fixedNet,否则优化过程中,会使常开的buffer被普通buffer替代,致使期望保存或恢复的数值不能正确操作。

3.2.4 Always on pin connected for SRPG

保持寄存器用于受到电源关断的区域,保持寄存器一般包含两级:主级与存储级。主级与本地(可开关)电源轨相连。存储级与常开电源相连,以便用最小的漏电电流保持正常状态,存储级通常使用高阈值电压晶体管。如图5所示130nm工艺库中保持寄存器版图,其中kapwr为常开电源Pin。

保持寄存器的性能与常规寄存器几乎完全一样,不过需要更大的面积和稍高的动态耗电。在正常运行过程中,这些寄存器具有与其他标准寄存器相同的功能,一旦发出保持启动信号,寄存器就进入保持模式,意味着可以关闭电源,处于保持模式时,时钟和重置信号不起作用。

在时钟树综合之前,需要对保持寄存器的常开电源Pin进行连接。布线器会把选中的器件、选中的pin连接到指定的电源stripe上去,脚本如下:

#SRPG virtpwr connected by nanoroute

setNanoRouteMode -routeHonorPowerDomain true

setPGPinUseSignalRoute scs8lp_srsdfrtp_1:kapwr scs8lp_bufkapwr_1:kapwr

scs8lp_bufkapwr_4:kapwr

selectNet VDD1V8

setNanoRouteMode -routeSelectedNetOnly true

globalDetailRoute

setNanoRouteMode -routeSelectedNetOnly false

以上几个步骤为电源关断设计中相对普通设计需要特别注意的地方,布局布线完成后,需要进行详细的DRC/LVS检查。

4芯片的测试结果分析

芯片从Foundry返回后,测试结果表明,芯片可以实现电源关断的操作,重新上电后,可以实现数据的恢复,如图6所示。

对于单个可关断的电源域,动态功耗为:3.04-3.25mA,供电电源关断后,静态功耗为: 189-200nA,从上述结果可以看出,芯片采用电源关断技术,可以有效的降低芯片的静态功耗。对于手持式设备,芯片的静态功耗或待机功耗要求苛刻,对一些认证IP,认证结束后,芯片正常工作状态下,不需要其继续工作,可以考虑采用电源关断技术,关断其供电电源;对于某些特殊的IP或Memory等,也可以同样采用此技术。

5结束语

电源关断技术要求从系统级处了解在哪里增加电源门,怎样及何时去控制这些电源门。同时切断设计的电源必须能节省功耗,因为在断电和加电转换期间的功率纯粹是浪费的。断电和加电要求一定的转换周期,也需要通过仿真来对比电源关断时节省的功率以及加电时耗费的切换功率,同时,也必须权衡考虑为实现此省电技术而需要的芯片面积和关断该设计所导致的任何性能降低。

采用电源关断技术实现芯片设计,要从综合阶段开始,综合过程中插入隔离单元并把普通寄存器替换为保持寄存器。接着,物理实现阶段必须了解顶部/底部(header/footer)开关的特殊电源连接需求,正确的将开关插入各自的电源域中,同时要添加特殊类型的well tap,以保证保持寄存器常开部分逻辑电路的阱连接,在时钟树综合之前,需要对保持寄存器的常开电源Pin进行连接等等。

为确保流片成功,芯片设计要求通过时序和信号完整性分析,来解决开关中额外的IR-drop压降、通过隔离单元的时延和控制信号对噪声的灵敏度问题。等效性检查应包括电源域识别、隔离/电源开关使能的验证以及状态保持的睡眠/唤醒序列检查等等。

基于以上论述,是否采用电源关断设计要经过仔细的分析,准确的评估芯片设计中采用电源关断技术后可以优化静态功耗的比例。同时,物理设计实现过程中,需要特别注意与其他普通设计的区别。

参考文献

[1] 陈春章 艾霞 王国维编著 数字集成电路物理设计 北京: 科学出版社 2008

[2] 虞希清 专用集成电路设计实用教程 杭州:浙江大学出版社 2007

[3] Himanshu Bhatnagar 著 张文俊 译 高级ASIC芯片综合 北京:清华大学出版社 2007

[4] 李强 超高频射频电子标签芯片中低功耗电路研究(博士论文)上海:复旦大学2005

[5]Michael Keating David Flynn Low Power Metho- dology Manual For System-on-Chip DesignUSA: Springer publishing company 2006

[6] 张培勇 32位嵌入式CPU的超深亚微米物理实现与验证 杭州:浙江大学,2004.6

[7] 韦健 低功耗逻辑电路设计及在RISC设计中的研究(博士学位论文) 杭州:浙江大学,2001

[8] 杨波 低功耗微处理器体系结构的研究与设计(博士学位论文) 西安:西北工业大学,2001

[9] Samir Palnitkar Verilog HDL A Guide to Digital Design and Synthesis 北京:电子工业出版社 2006

作者简介

王殿超,北京中电华大电子设计有限责任公司芯片工程部 物理设计工程师;

第4篇

论文摘要:功耗问题正日益变成VLSI系统实现的一个限制因素。对便携式应用来说,其主要原因在于电池寿命,对固定应用则在于最高工作温度。由于电子系统设计的复杂度在日益提高,导致系统的功耗得到其主要功耗成分。其次,以该主要功耗成分数学表达式为依据,突出实现SoC低功耗设计的各种级别层次的不同方法。

引言

从20世纪80年代初到90年代初的10年里,微电子领域的很多研究工作都集中到了数字系统速度的提高上,现如今的技术拥有的计算能力能够使强大的个人工作站、复杂实时语音和图像识别的多媒体计算机的实现成为可能。高速的计算能力对于百姓大众来说是触指可及的,不像早些年代那样只为少数人服务。另外,用户希望在任何地方都能访问到这种计算能力,而不是被一个有线的物理网络所束缚。便携能力对产品的尺寸、重量和功耗加上严格的要求。由于传统的镍铬电池每磅仅能提供20W.h的能量,因而功耗就变得尤为重要。电池技术正在改进,每5年最大能将电池的性能提高30%,然而其不可能在短期内显著地解决现在正遇到的功耗问题。

虽然传统可便携数字应用的支柱技术已经成功地用于低功耗、低性能的产品上,诸如电子手表、袖珍计算器等等,但是有很多低功耗、高性能可便携的应用一直在增长。例如,笔记本计算机就代表了计算机工业里增长最快的部分。它们要求与桌上计算机一样具有同样的计算能力。同样的要求在个人通信领域也正在迅速地发展,如采用了复杂语音编解码算法和无线电调制解调器的带袖珍通信终端的新一代数字蜂窝网。已提出的未来个人通信服务PCS(PersonalCommunicationServices)应用对这些要求尤其明显,通用可便携多媒体服务是要支持完整的数字语音和图像辨别处理的。在这些应用中,不仅语音,而且数据也要能在无线链路上传输。这就为实现任何人在任何地方的任何时间开展任何想要的业务提供了可能。但是,花在对语音、图像的压缩和解压上的功耗就必须附加在这些可便携的终端上。确实,可便携能力已经不再明显地和低性能联系在一起了;相反,高性能且可便携的应用正在逐步得到实现。

当功率可以在非便携环境中获得时,低功耗设计的总理也变得十分关键。直到现在,由于大的封装、散热片和风扇能够轻而易举地散掉芯片和系统所产生的热,其功耗还未引起多大的重视。然而,随着芯片和系统尺寸持续地增加,要提供充分的散热能力就必须付出重要代价,或使所提供的总体功能达到极限时,设计高性能、低功耗数字系统方法的需求就会变得更为显著。幸好,现在已经发展了许多技术来克服这些矛盾。

由于可以高度集成,并具有低功耗、输入电流小、连接方便和具有比例性等性质,CMOS逻辑电路被认为是现今最通用的大规模集成电路技术。下面研究CMOS集成电路的功耗组成,概述实现集成电路——SoC(SystemonChip)系统的低功耗设计的诸多方法。目的在于揭示当今电子系统结构复杂度、速度和其功耗的内在联系,在及在数字电子系统设计方向上潜在的启示。

1CMOS集成电路功耗的物理源

要研究SoC的低功耗设计,首先要物理层次上弄清该集成电路的功耗组成,其次,才能从物理实现到系统实现上采用各种方法来节省功耗,达到低功耗设计的目的。图1为典型CMOS数字电路的功耗物理组成。

(1)动态功耗

动态功耗是由电路中的电容引起的。设C为CMOS电路的电容,电容值为PMOS管从0状态到H状态所需的电压与电量的比值。以一个反相器为例,当该电压为Vdd时,从0到H状态变化(输入端)所需要的能量是CVdd2。其中一半的能量存储在电容之中,另一半的能量扩展在PMOS之中。对于输出端来说,它从H到0过程中,不需要Vdd的充电,但是在NMOS下拉的过程中,会把电容存储的另一半能量消耗掉。如果CMOS在每次时钟变化时都变化一次,则所耗的功率就是CBdd2f,但并不是在每个时钟跳变过程之中,所有的CMOS电容都会进行一次转换(除了时钟缓冲器),所以最后要再加上一个概率因子a。电路活动因子a代表的是,在平均时间内,一个节点之中,每个时钟周期之内,这个节点所变化的几率。最终得到的功耗表达式为:Psw=aCVdd2f。

(2)内部短路功耗

CMOS电路中,如果条件Vtn<Vin<Vdd-|Vtp|(其中Vtn是NMOS的门限电压,Vtp是PMOS的门限电压)成立,这时在Vdd到地之间的NMOS和PMOS就会同时打开,产生短路电流。在门的输入端上升或者下降的时间比其输出端的上升或者下降时间快的时候,短路电流现象会更为明显。为了减少平均的短路电路,应尽量保持输入和输出在同一个沿上。

一般来说,内部短路电流功耗不会超过动态功耗的10%。而且,如果在一个节点上,Vdd<Vtn+|Vtp|的时候,短路电流会被消除掉。

(3)静态漏电功耗

静态漏电掉的是二极管在反向加电时,晶体管内出现的漏电现象。在MOS管中,主要指的是从衬底的注入效应和亚门限效应。这些与工艺有关,而且漏电所造成的功耗很小,不是考虑的重点。

(4)小结

通过设计工艺技术的改善,Pint和Pleak能被减小到可以忽略的程度,因而Psw也就成为功耗的主要因素。后面所做的功耗优化大部分是围绕这一个公式来进行的。对于SoC来说,所有的方法都是围绕着动态功耗来做文章的,因为在电路信号变化时,功耗消耗主要在电路中电容的充放电过程。如果从各个层次、各个方面尽量减少电路的充放电,将是我们关心的主题。

2降低集成电路SoC功耗的方法

功耗对于一个便携式SoC数字系统来说尤为重要。事实上,很多便携式SoC系统的设计,是先进行功耗分析,由功耗分析的结果再来划分设计结构。可以说,功耗将可能决定一切。现在要做的是,根据功耗分析的结果,评判SoC结构,改进设计,优化方案。

SoC系统的功耗所涉及的内容十分广泛,从物理实现到系统实现都可以采用各种方法来节省和优化功耗。通过对国外大量文献的查阅,我们得到了常用的实现低功耗设计的各种较为有效的方法,

(1)系统级功耗管理

这一部分实际上是动态功耗管理。主要做法是在没有操作的时候(也就是在SoC处于空闲状态的时候),使SoC运作于睡眠状态(只有部分设备处于工作之中);在预设时间来临的时候,会产生一个中断。由这个中断唤醒其它设备。实际上,这一部分需要硬件的支持,如判断,周期性的开、关门控时钟(gateclock)等。

(2)软件代码优化

软件代码优化是针对ARM嵌入式处理器而言的。对于编译器来说,所起的使用不到1%,而对于代码的优化则可以产生高达90%的功耗节省。Simunic等人曾分别做过用各种针对ARM处理器的编译器进行的试验。比此的实验结果发展,风格比较好的代码产生的效果远比用ARM编译器优化的效果好。

(3)Clock控制

这是在ASIC设计中行之有效的方法之一。如果SoC芯片在正常工作,有很大一部分模块(它们可能是用于一些特殊用途中,如调试Debug、程序下载等)是乖于空闲状态的,这些器件的空运作会产生相当大的功耗。这一部分应使用时钟控制,即clockenable&disable。

(4)RTL级代码优化

与软件相似,不同的RTL(RegisterTransferLevel,寄存器传输级)代码,也会产生不同的功耗,而且RTL代码的影响比软件代码产生的影响可能还要大。因为,RTL代码最终会实现为电路。电路的风格和结构会对功耗产生相当重要的影响。

RTL级代码优化主要包括:

①对于CPU来说,有效的标准功耗管理有睡眠模式和部分未工作模块掉电。

②硬件结构的优化包括能降低工作电压Vdd的并行处理、流水线处理以及二者的混合处理。

③降低寄存电容C的片内存储器memory模块划分。

④降低活动因子a的信号门控、减少glitch(毛刺)的传播长度、Glitch活动最小化、FSM(有限状态机)状态译码的优化等。

⑤由硬件实现的算法级的功耗优化有:流水线和并行处理、Retiming(时序重定)、Unfolding(程序或算法的展开)、Folding(程序或算法的折叠)等等基本方法以及其组合。

(5)后端综合与布线优化

既然SoC的功耗与寄生电容的充放电有很大的关系,作为后端综合与布线,同样也可采取一些措施来减少寄存器电容。可以优化电路,减少操作(电路的操作),选择节能的单元库,修改信号的相关关系,再次综合减少毛刺的产生概率。

实际上,这一部分与使用的工具有关。与软件部分有相同之处,后端综合与布线同软件的编译差不多。软件编译的结果是产生可执行的机器代码;而RTL的综合与布线是把RTL代码编译成真实的电路。但是,后端综合与布线优化比较编译优化有更好的效果。这是因为一段RTL代码所对应的电路是可以有多种形式的;同时现有些编译器会根据设计者提供的波形,智能地修改电路(前提是最终电路的效果还是一样的),编译器就会进行相关的优化。但是后端综合的优化与RTL级代码优化和时钟控制相比,同样的RTL级与时钟优化所产生的影响要远大于用编译工具所产生的影响。

(6)功耗的精确计算

后端综合与布线工具不但可以根据基本单元提供的功耗参数进行优化,还可以根据这些参数估算出整个SoC的功耗。正因为有这样一些工具,使我们可以精确地知道我们所设计的是否达到设计要求。万一设计功耗不符合总体要求,则可能要求从系统级到物理综合布线都要做出检查与分析,做出可能的改进,尽可能地减少功耗以达到设计要求。

(7)小结

从上面的各种降低以及估算功耗的方法可以看出,SoC系统的拉耗优化涉及到从物理实现到系统实现的方方面面,是芯片设计中一个十足的系统工程。可以说,功耗可以决定一切。

结语

本文首先分析了CMOS集成电路的功耗物理组成,得到了其主要功耗成分。其次,以该主要功耗成分数学表达式为指导,突出了SoC低功耗设计的各种级别层次的不同方法。不管是现在还是将来,该领域的重要性将会日益显著。在下面的一些发展方向还将会有较大的发展:

①实现SoC系统设计的变换以及映射技术的进一步探索。

②将各种低功耗设计手段按照各性质最佳综合起来,以便使用基于人工智能的技术(如遗传算法和启发式算法等等)来研究。

③发展以实现低功耗为目的CPU指令程序的改写技术,以将其扩展到复杂SoC系统的设计中。

④进一步研究应用于SoC低功耗设计的编码和信号表示技术。

第5篇

关键词: 边界层; MSP430F149单片机; DC/DC; 功耗

中图分类号: TN964?34 文献标识码: A 文章编号: 1004?373X(2013)06?0136?03

0 引 言

深海海底原位监测技术是一种对海底界面生物地球化学过程进行长期、原位、多参数同步测量的水下监测技术。该技术在海底水合物系统及其勘探试采过程中的环境效应监测评估等方面有重要的应用前景。

因系统在深海海底长期使用且更换电池不方便,故电源管理系统的主要功能是使其工作时电流消耗尽可能的小、不工作时电源可以被切断,以及采集模拟量。单片机在不断电的情况下,实现长期控制整个电源系统的功能。由于海底原位监测工作具有长期性的特点,要求系统具有较高的稳定性和较低的功耗。

1 电源管理系统结构和总设计方案

本电源系统以MSP430F149为主控制器件,是一款16位超低功耗的单片机,其CPU功耗可以通过开关状态寄存器的控制位来控制:正常运行时电流160 μA,备用时为0.1 μA,低功耗的优点为系统设计提供了有利条件;内部集成了8路12位具有高速、通用特点的ADC12模块,可在没有CPU干预的情况下进行16次独立采样并保存结果[1],系统中用到2路模拟通道来分别采集模拟量DO和PH;其所有的I/O端口的管脚都是双向的[2],设置I/O口可控制DC/DC模块,图1中C1~C6为单片机I/O口输出的DC/DC模块的Ctrl信号,即通过I/O口输出1或者0控制DC/DC模块的开启或关断。

2 电源管理系统软件设计

整个系统的管理主要分为3个阶段:甲板上设置参数阶段、设备投放阶段、数据采集阶段。甲板上设置参数阶段主要是对单片机进行对时、设置投放阶段睡眠的时间长度以及数据采集周期。设备投放阶段主要是控制上位机和深海设备处于断电状态并且单片机进入低功耗状态,等待先前设置的投放阶段睡眠的时间长度到了之后退出低功耗,给上位机供电,然后等待上位机的命令。数据采集阶段主要是周期性的给上位机供电,上位机给单片机命令给相应的深海设备供电或断电。系统的设计中涉及到功耗、时钟切换、RTC等,以下是各个部分的具体实现过程。

2.1 低功耗设计

系统的功耗可以由公式P=CV2f计算出来[3],式中C为负载电容,V为电源电压,f为系统工作频率,可见一个系统的功耗主要由电源电压决定,其次是工作频率、负载电容。因负载电容不可控制,要设计一个低功耗的系统,在不影响其性能的前提下,应该尽可能地降低电源电压和使用低频率的时钟。

电源电压方面,一方面MSP430F149具有1.8~3.6 V的低电源电压工作范围;另一方面,系统中使用的DC/DC模块为程序可控的,即只有在要求给相应的负载供电时,才会程序控制相应的DC/DC模块开启,否则其一直处于关断状态。从以上2个方面,降低了整个系统电源电压以降低整个系统的功耗。

另外,MSP430F149具有1种活动模式和5种低功耗模式(LPM0?LPM4)[4],通过程序控制可使单片机在指定的时刻通过定时器中断退出低功耗模式进入活动模式,其他时刻均处于LPM3模式下。因系统中用定时器B实现软时钟,定时器B的时钟源选择的是ACLK,LPM4模式下CPU及所有的时钟(包括ACLK)都停止工作,但是系统要求软时钟即使在低功耗的状态下可用且可中断唤醒CPU,故选择的是LPM3模式。

系统设计中有两路模拟量采集用到ADC模块,此模块仅在单片机接收到上位机发送来的采集这两路模拟量的时候才开启,采集完之后可通过程序控制把ADC模块关闭,在一定程度上这也可以降低系统功耗[5]。

2.2 时钟切换设计

由2.1知,从低功耗的角度出发,选择了较低的工作频率,但是系统中涉及到单片机控制步进电机。MCLK为32 768 Hz时,由此时钟延时产生的矩形脉冲的频率太低,导致步进电机不能转动,所以在系统中考虑到时钟的切换,即在调整步进电机时,要把单片机的主系统时钟(MCLK)从LFXT1切换到LFXT2。BCSCTL2|=SELM1+SELM0该语句实现的是选择MCLK的时钟源为LFXT1,即设置了BCSCTL2寄存器的高两位为1(默认为0)。当要把MCLK的时钟源选择为LFXT2时,如果寄存器BCSCTL2的各个位仍为默认值,则只需BCSCTL2|=SELM1语句便可成功的设置MCLK的时钟源为LFXT2[6],但是程序没能达到预期目标。分析发现寄存器BCSCTL2被设置过之后,被设置的相应位的默认值就发生了改变,在进行下一次设置之前要保证把上一次设置过的相应位恢复为默认值,然后再进行设置才能达到预期目标,意思就是说在语句BCSCTL2|=SELM1前面加上语句BCSCTL2&=0X3F即可成功的将MCLK的时钟源由LFXT1切换到LFXT2。

2.3 实时时钟RTC的设计

一方面,系统长期工作于深海海底,甲板上设置好参数后,从投放到回收期间,不会再有外部工作人员的干预,系统自动化的完成数据的采集工作,对电源管理系统提出了能够按点、按周期周期性给嵌入式系统和深海设备加电的要求;另一方面,深海海底原位监测的DO,PH,CO2,CH4等要在严格的准同步下测得,才具有研究的意义和价值。以上两方面要求电源管理系统要有RTC,能够接受上位机发送来的时间,并以此时间为基准开始计时。程序能记录上次数据采集的时刻,并计算出下次数据采集的时刻。每次数据采集完单片机关闭电源,进入LPM3模式,等待到下一个数据采集时刻从低功耗状态退出然后给上位机供电,然后等待上位机命令给哪些深海设备供电与断电。

2.4 系统的健壮性

系统从硬件和软件2个方面来保证系统运行的稳定性。

(2)核对工作状态:ARM板相对于单片机有3个阶段,且其信息断电不丢失,而单片机一旦出现意外断电,其信息将全部丢失,程序被重新初始化,就会出现单片机和ARM板的工作状态不一致。为了消除因两者工作状态不一致给整个系统带来的风险,程序中设置了接收上位机核对工作状态的命令,单片机一旦发现两者工作状态不一致,将修改自己的状态,以与ARM板保持同步。系统流程图如图3所示。

3 结 语

通过2次海试,结果表明系统可以稳定地实时给上位机供电,系统功耗低,程序结构灵活稳定,修改方便,能够满足深海原位监测的要求。

参考文献

[1] 谢兴红.MSP430单片机基础与实践[M].北京:北京航空航天大学出版社,2008.

[2] 秦龙.MSP430单片机常用模块与综合系统实例精讲[M].北京:电子工业出版社,2007.

[3] 胡淑军.嵌入式系统低功耗技术研究[EB/OL].[2007?07?23].中国科技论文在线,http://.

[4] 张晞,王德银,张晨.MSP430系列实用C语言程序设计[M].北京:人民邮电出版社,2005.

第6篇

[关键词]输电线路杆塔倾斜监测系统 zigbee和GSM技术

一、选题背景及其意义

随着科技进步及工农业的现代化发展,用电量大幅上升,对电网供电安全性、可靠性提出了越来越高的要求。架空高压输电线路是电力系统的动脉,其运行状态直接决定电力系统的安全和效益。目前我国对线路等的检测经验还较少,还没有相应的国家标准。另外随着近年来煤矿的大量开采造成形态各异的地下采空区,引起地面沉降、断裂等一系列工程地质灾害,这些采空塌陷区,大多分布广,延伸远,可造成地表输电线路基础倾斜、开裂、杆塔变形、倾倒,引起绝缘子串和地线线夹迈步,电气安全距离不够等问题,当问题扩大时容易造成倒杆断线,电气距离不够引起跳闸等事故。严重威胁输电线路的安全运行。

本论文设计的输电线路杆塔倾斜监测系统,在杆塔发生异常时,能够及时向管理中心汇报相关数据。该系统对于处在采空区的线路杆塔可以进行全天候的监测,能够及时准确的测量由于地面沉降等原因造成的杆塔倾斜角度,当杆塔顺线路或横线路倾斜角度超过预定报警值时,系统可发出报警信息,使工作人员能够及时处理危情,并且大大的减少了人工的巡视次数,提高了杆塔的安全系数。

二、国内外研究动态

近年来,随着经济的发展和社会的进步,越来越多基于网络化、模块化、智能化的系统应用在电网中。但目前我国电网智能化仅处于刚刚起步的阶段,尤其在运行状态检测环节上,和世界上先进发达国家的技术还有较大的差距。同时铁搭运行状态的稳定,是输电环节中的重中之重,因此应研究一套较为合理的杆塔运行状态监控系统,来保证输电环节的稳定。

目前国内已涉及线路监测系统的研究,例如高压输电线路绝缘子带电检测、杆塔故障在线监测、杆塔倾斜测量等。国外在这方面也有较多的研究。该系统采用移动通信网络作为数据传送媒介,为系统的数据传输提供更加简捷、便利的手段。

三、主要研究内容

本论文主要研究杆塔倾斜测量技术,传输线路周围的温度、湿度、气候检测,无线网络数据远程通讯方面的研究。

本文研究的主要内容如下:1、分析研究了倾角传感器的工作原理、GSM技术的工作原理,制定了监测仪设计的硬件和软件总体流程。2、根据监测仪设计方案,选择了该设计中的主要器件。包括倾角传感器的选择、GSM通信模块的选择、太阳能蓄电池的选择等。充分体现了监测仪设计中低成本和低功耗的要求。3、设计了硬件电路,包括微控制器ATmega64A的最小系统、电源电路、通信电路、电压电流转换电路等。4、实现了软件设计,包括系统初始化、A/D信号采集部分程序、按键中断程序等。5、在整体设计中,采取软件和硬件的方式,增强监测仪的抗干扰性和稳定性。6、通过EMC电磁兼容实验等验证了监测仪的稳定性和可行性。

四、研究方案及难点

整个系统的工作过程为:数据采集主模块根据监控中心设置好的采样间隔,定期产生数据采集命令发送到ZigBee主节点,然后由ZigBee主节点将数据采集命令广播给其他ZigBee子节点,ZigBee子节点再将数据采集命令发送给自己的数据采集模块,数据采集模块接到命令后,开始进行倾角、绝缘子拉力以及风向、风速、电源电压等数据的采集。

采集完成之后再发送给ZigBee模块,然后通过各ZigBee子节点将采集到的数据以接力的方式传送给ZigBee主节点,ZigBee主节点将各数据采集模块采集到的数据发送给数据采集主模块。最后由数据采集主模块将所有数据通过串口发送给GSM模块,由GSM模块将数据通过移动通信网络发送到监控中心的GSM模块,再通过串口发给Pc机后台。最后由Pc机完成数据的处理、存储和显示。

该系统的主要模块功能如下:

1.中央处理器。核心微处理器选用ATmega64A,它是由ATMEL公司推出的一款高性能,低功耗的8位AVR微处理器。最高处理速度可达16MHz,其芯片内部集成了大容量的Flash程序存储区和功能丰富强大的硬件接口电路。先进的RISC结构,拥有130条指令,大部分指令执行时间为单个时钟周期。

2.定时时钟模块。实时时钟芯片选用Philips公司生产的串行日历时钟芯片PCF8583.该芯片供电电压范围宽、功耗小、计时准确。

3.数据采集模块。在输电线路杆塔的运行时,数据采集模块主要进行杆塔倾角数据、绝缘子拉力数据以及风向、风速、气温、湿度,电源电压数据的采集。数据采集模块为分层次设计,有主辅之分,主模块除了在完成上述功能以外,还负责将产生的数据采集命令,以及各个节点数据的打包、处理、发送。

4.ZigBee模块。Zigbee是基于IEEE802.15.4标准的低功耗个域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。

5.GSM模块。GSM模块,是将GSM射频芯片、基带处理芯片、存储器、功放器件等集成在一块线路板上,具有独立的操作系统、GSM射频处理、基带处理并提供标准接口的功能模块。

使用ARM或者单片机通过RS232串口与GSM模块通信,使用标准的AT命令来控制GSM模块实现各种无线通信功能,它是基于ARM平台,使用嵌入式系统进行开发。有些GSM模块具有“开放内置平台”功能,可以让客户将自己的程序嵌入到模块内的软件平台中。

6.监控中心。包括GSM接收模块和后台管理软件,主要完成杆塔运行状态的实时显示、数据存储以及对于数据采集模块参数的控制。

7.电源模块。本系统包括太阳能电池板和蓄电池,主要为数据采集模块、ZigBee模块和GSM模块提供电能。

8.设计环境。硬件电路以Protel99SE(sP6)为环境进行设计,机械相关的设计以AutoCAD2006为环境进行;软件用c语言编写。

本设计中的杆塔倾角监测系统实现了低成本、低功耗,并采取zigbee及GSM无线通信的技术,实现倾角监测仪与杆塔监控中心的通信。

难点预计出现在倾角计算及程序的设计,再有系统的通信链路的安全,可靠;数据库的安全,主要是权限管理和数据备份。

五、预期成果和可能的创新点

文章论述的铁塔倾斜实时监测系统测量精度高、实时性好、运行成本低。该系统在实际运行过程中拥有较强的可靠性、稳定性具备在恶劣的环境下持续正常工作的能力,保证较长的使用寿命;系统进行操作时,无需记忆复杂的工作指令,应具有美观有好的人机界面;工作人员可以远程对系统进行控制、管理、维护,无需人员到现场。系统通过对塔身状态信息的综合在线监测,实现了倾角状态的全记录并起到预警,告警的功能便于提前采取有效措施,确保电网及通信网络的安全运行。从实际运行结果看系统是一种有效的监测铁塔倾斜的系统,有广阔的应用前景。创新点:为了以后对本系统的功能进行扩展,系统预留一些模拟量输入接口;通讯方式的扩展,支持短信息。

参考文献:

[1]刘君华.现代检测技术与测试监测仪设计[M]西安:西安交通大学出版社,2001

第7篇

【关键词】救生舱;温湿度;SHT75

Abstract:Rescue capsule as underground emergency shelter for the cabin temperature and humidity monitoring and control,you can extend the survival time of the trapped miners.Systems based on the importance of rescue capsule and SHT75 temperature and humidity monitoring with high accuracy,small size,etc.,designed a SHT75 temperature and humidity detection system is based,and temperature and humidity testing SHT75 compensate calculated values to ensure that the rescue capsule temperature and humidity testing.

Keywords:Rescue capsule;Temperature and humidity;SHT75

1.引言

救生舱作为井下紧急避难场所,其舱内温度和湿度的实时监测与控制,是延长被困矿工生存的工作之一。为延长救生舱备用电池的工作时间,因此要求各用电设备均低功耗。

SHT75温湿度传感器克服了传统传感器在检测时温度变化对湿度产生的影响且测量结束时可自动进行休眠模式,大大减小系统功耗,因此本文采用SHT75[4]作为井下救生舱温湿度检测传感器并对其工作原理、电路以及数据的补偿进行了详细分析与设计。

2.SHT75温湿度传感器

2.1 SHT75温湿度传感器概述

SHT75是一款集温度、湿度于一体的传感器,采用CMOSens技术,具有体积小、抗干扰能力强、功耗低等优点。采用两线数字化接口,可与单片机直接相连,大大减小了电路。其内部结构图如图1所示。

图1 SHT75内部结构

SHT75具有较宽的温湿度测量范围。分别为-40℃~123.8℃和0~100%RH。若芯片工作在非正常条件下,则会导致采集的信号暂时性漂移,需要对传感器进行校正。在温度为100~105℃,相对湿度小于5%RH的条件下保持10小时即可自动校正;或者在温度为20~30℃,相对湿度大于75%RH的条件下保持12小时。

SHT75在默认条件下,温湿度测量分辨率分别为14bit和12bit,但在高速测量或者超低功耗情况下,温度和湿度采样分辨率可分别下降为12bit和8bit。

2.2 SHT75温湿度传感器工作原理

SHT75温湿度传感器芯片上设计有传感器稳压电路、信号运算处理电器、标定数据存储器、温湿度传感元件、14位AD转换电路和两线数字串行接口电路,输出信号是经过全量程标定和补偿的数字信号。以I2C总线的通信方式与单片机相连,芯片内部OPT存储器保存有校准系数。

3.SHT75与MSP430单片机电路设计

为降低系统功耗,本设计采用美国TI公司的超低功耗型号为MSP430F149的16位单片机与SHT75温湿度传感器相连接[1],通过两个普通IO口模拟I2C总线与传感器通信。根据需要,在救生舱内可安装多个传感器挂在IIC总线上。SHT75与MSP430F149单片机电路连接如图2所示。

图2 SHT75与MSP430F149单片机电路连接图

4.温湿度数据检测

4.1 SHT75寄存器操作

单片机通过模拟I2C总线与SHT75进行数据传输,通过写入不同的指令实现对SHT75的寄存器操作。SHT75寄存器指令代码如表2所示。

4.2 温湿度数据处理与补偿计算

SHT75传感器数字信号输出时通过8bit CRC[5]校验保证数据传输的正确性。由于通过SHT75检测的温湿度信号曲线为非线性,因此需要对检测的数据进行补偿,补偿公式如下:

RHliner=c1+c2・SORH+c3・SORH2 (式1)

式中,RHliner表示检测的线性湿度值,SORH表示从SHT75中读取的温度值,在测量精度为12bit时,c1为-4,c2为0.0405,c3为-2.8・10-6;在测量精度为8bit时,c1为-4,c2为0.648,c3为-7.2・10-4;

由于温度对湿度测量会产生较大影响,因此在所测温度点进行补偿运算,补偿运算公式如式2所示。

RHtrue=(ToC-25)(t1+t2・SORH)+RHliner (式2)

式中,RHtrue为实际测量的相对湿度值,ToC为实际测量的温度值,在测量精度为12bit时,t1为0.01,t2为0.00008;在测量精度为12bit时,t1为0.01,t2为0.00128;

在进行温度测量时,由于温度传感器具有很好的线性,可直接使用式3进行处理计算。

式中,ToC为校正后温度读数,SOT为直接读取的温度数据,参数d1功能供电电压有关,具体如表3所示。

参数d2在测量精度为14bit时,d2为0.01℃或为0.018;在测量精度为12bit时,d2为0.04℃或为0.072。

5.结语

本文基于SHT75温湿度传感器及超低功耗的MSP430F149单片机构建井下救生舱的温湿度检测系统,整个系统可以较大范围的监测救生舱内温湿度,体积小、测量精度高和功耗低等,满足井下救生舱的特殊要求。

参考文献

[1]蒋正义,朱善安,韩东芳.基于MSP430和nRF401的无线自动抄表系统[J].集成电路应用,2004,11:74-77.

[2]孙继平.煤矿安全生产监控与通信技术[J].煤炭学报, 2010,35(11:1925-1929.

[3]王建军,陈光柱,夏晓东.煤矿井下救生舱体结构设计与分析[J].煤矿机械,2011,32(12):13-15.

[4]杨景景,黄亮.数字式湿温度传感器SHT75的应用[J].常州工学院学报,2009,22(1):31-33.

第8篇

【关键词】 ZigBee CC2530 阅读器 标签

近年来,我国铁路部门加快了科学技术的步伐,大力发展电力牵引技术,积极引进先进技术,列车行车速度越来越快。速度快,给国民带来了方便,但是铁路行车安全却成为另一个亟待解决的关键问题。

铁路路面状况信息作为列车行车的重要环节,其准确、实时问题也是重点,更是难点。目前,列车接近临时速度控制区段、接近封锁施工地点或者施工地点邻线行车时,地车间实时信息仅靠地面设置的移动减速信号牌、作业标、移动停车信号牌以及响墩等信号标牌。这种方式缺少了路面状况信息的自动传送和控制,行车安全完全依赖机车司机的注意力和技术水平,稍有疏忽将直接危及行车安全[1]。基于此,亟需建立实时、可靠、准确的铁路安全巡检机制,以确保列车运行的安全。

ZigBee是一种基于IEEE802.15.4的低功耗、低传输速率、架构简单的短距离无线通信技术,它在自动控制领域的应用越来越广泛。由于其传输距离为数十米,使用频段为免费的2.4GHz与900MHz频段,传输速率为20kbps至250kbps,且具有成本低、结构简单、耗电量小等特点,使得利用ZigBee技术组成的网络具备省电、可靠、成本低、容量大、安全、自愈性强等诸多优势。因此,本限速信息采集系统的实现将具有良好的实际经济效益。

一、系统硬件设计

系统的硬件框架主要包括阅读器和电子标签。阅读器和标签的硬件结构是一样的,他们之间通过ZigBee无线通信协议进行短距离通信,通过ZigBee技术,阅读器可以在一定范围内读取到标签里面的信息。主要模块有:射频模块、天线模块、串口转换模块、外设接口和电源模块。

1.1 射频模块

射频模块的设计是本系统设计的难点,该电路主要由CC2530射频电路、滤波匹配电路和天线匹配电路组成。

1.2 天线模块

天线是射频通信中的重要器件,其选择非常重要,它的性能直接影响射频通信的效果。微波段天线必须满足以下几个要求:大小合适能够装置到相应的模具上;有全向或半球覆盖的方向性;提供最大可能的信号给标签的芯片;天线的极化都能与读卡机的询问信号相匹配。因此,该模块采用的是2.4G 14dBi PCB平板定向天线,主要由带精品抗氧化层的铝反射板和0.5米的镀银高品质馈线组成。

1.3 电源模块

电源部分是整个系统正常工作的保证,如果电源部分出现故障,则有可能烧毁整个电路,每个模块对电压的要求有所不同,要保证通信的前端电量充足,需要对电压进行分类管理,保证电源能够达到整个电路工作正常的要求。串口转换模块

本模块主要由芯片MAX485E(用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器)和芯片6N137(高速光电耦合器)组成的电路来完成串口转换功能的,以便于后续调试的进行。信号采集通常是模拟电路和数字电路的混合体,其中模数变换是不可缺少的,模拟电路和AD变换电路决定了系统的信噪比,在铁路系统这种恶劣的环境下干扰比较多,为了保证通信的稳定性,采用6N137将模拟电路及AD变换器和数字电路彻底隔离。

二、系统软件设计

在该系统下,阅读器属于可移动ZigBee模块,考虑低功耗、数据传输安全性等因素,阅读器的工作模式设计为:每隔30ms定时发送查询命令,并且自动切换到接收状态等待标签的回复;标签收到请求信息后会将标签信息发送给阅读器。阅读器在等待标签回复的时候会开启定时器计时。如果阅读器附近存在标签模块,收到标签信息时,则会将该标签信息对数据进行封装成处理器需要的格式发送给处理器,同时向该标签发送灭活命令。然后再等待接收其他的标签信息,以确保所有的标签都被读到。

三、结论

本文提出了基于ZigBee技术铁道临时限速系统的限速信息采集模块的一种新的设计思路,硬件射频部分采用具有成本低却能建立强大的网络节点的CC2530芯片,及覆盖面非常广的2.4G 14dBi PCB平板定向天线等;软件部分也对阅读器和标签的工作模式进行了详细设计。通过对限速信息采集系统的详细设计,使得整个系统中ZigBee模块之间的通信及信息处理更加精准、安全。本文提出的这一设计思路将为整套铁道临时限速系统提供了可靠的技术保障。

参 考 文 献

[1] 金辉. 基于RFID技术的临时限速便携终端的研究与设计[D]. 广州:华南理工大学,2011

[2] 李文仲,段朝玉. ZigBee无线网络技术入门与实践[M] .北京:北京航空航天大学出版社,2007,4

第9篇

【关键词】RFID货架期指示器;条形码;保质期

1.引言

我国有近13亿人口,食品安全是近几年来具有持续挑战性的问题和社会热点[1-3],并且随着中国经济的高速发展,消费者对食品的质量提出了更高的要求。人们不仅要求食品能够安全食用, 还要求食品的感官特性基本不变[4],但无论是植物性食品、动物性食品还是人造食品,其水分活度、总酸度、营养物质、自然微生物群、酶和生化底物及防腐剂等因素,在从原材料的摘取、加工、物流、仓储、销售等环节中,都会受外界温度、湿度、光照及环境中微生物群与包装气体组成等的影响,而不断地发生物理、化学、微生物上的变化,以一定的速度和方式丧失其原有品质。

2.传统货架期指示器存在的问题

传统的简单设定食品保质期及基于条码的食品安全管理模式无法满足更深入细致与高效食品安全管理的目的。目前传统的食品保存与管理方法存在如下问题:

(1)传统保质期是通过在实验室内对少量食品样品进行加速实验、常温保存实验或通路实验等验证手段来确定,而事实上,在流通过程中食品品质不仅与每个食品个体初始状态有关,同时也与所处流通的环境密切相关。评价食品的实际品质不仅需要了解食品个体的初始状态,还需要对食品个体进行实时监测、跟踪其在运输、储藏和分销环节中的温度、湿度、光照、氧气含量等及诸多不可预见的影响因素。因此,食品安全状态评估比传统质保期的确定更加复杂、需要在更大的时间与空间范围内由具有数据采集与智能性标签的参与,带来诸如信息交互、运营成本等问题。

(2)使用传统的时间-温度指示器评价食品个体品质方法虽然应用范围广泛(如常用于乳制品、冷冻肉和冷冻水果等冷藏、冷冻食品),具有使用方便、易于观察等优点,但此类产品是一次性使用,不能记录食品流通过程中环境参数的历史变化情况,信息的获取依赖于人工观察,不利于信息管理自动化与效率的提高。生化式时间-温度指示器必须使用在有温度-时间历史影响的食品上,使用前还必须知道食品的活化能,以选择合适的指示器与其动力学参数进行匹配,且成本与可靠性也限制了其使用。

(3)现在食品的信息标识主要是利用条形码技术[5-6]。从当今企业和食品流通的现状来看,采用条形码技术进行信息标识是具有成本低、易于操作、易于制作等优点,但是条形码技术自身存在一些缺陷,不能够满足发展的需要,例如条形码存储信息少;在实际的操作过程中扫描仪只能在近距离下才能对其读取;在读取条形码时,经常会有货物粘贴条形码位置的不同和货物包装的不规则等问题,使得操作员在对货物进行扫描时需要花大量时间来寻找扫描条形码的精确位置;有时还会发生漏扫描情况。条形码技术不能够满足高精度快速识别的要求,并且其存储的信息一旦写入就不可以对其存储的内容进行修改,也不能够重复使用,降低了条形码的使用率,最主要的缺点是不能对食品进行实时的监测,这些都制约着食品企业的发展。

3.RFID货架期指示器的优点

RFID货架期指示器由RFID读写器和RFID微粒构成。RFID技术作为一种快速、实时、准确采集与处理信息的高新技术,通过对实体对象的唯一有效标志,其可广泛用于生产、零售、物流、交通等各个行业[7]。RFID货架期指示器优点有:

(1)不需要光学可视、非接触完成识别工作。在冷链物流中,需要对大量食品进行识别,利用RFID技术解决了条形码技术识别速度慢、识别操作复杂等缺点,提高了效率。

(2)工作时无须人工干预、不易损坏,减少了由于人为原因产生的出错概率。由于条形码识别操作过程中容易磨损,使得食品质量不能得到有效的标识,而RFID货架期指示器不需要人工对食品进行干预,通过读取微粒的数据来掌握食品的质量。

(3)可远距离识别运动物体,提高了传统货物在分拣登记信息时候的处理速度。RFID货架期指示器不需要人工操作近距离地读取食品环境与质量信息,通过射频技术,可以远距离完成通信,提高了登记食品质量信息的速度。

(4)能够对食品进行实时监测、评估与预测。传统技术不能根据当前环境的变化而实时地监测、评估与预测食品的质量,这使得食品在冷链物流过程中的质量不能被实时的反映,而RFID货架期指示器通过采集食品的一些质量信息,能够实时地监测食品的质量。

4.RFID货架期指示器亟需解决的问题

在冷藏运输过程中,射频装置运行与典型的行业环境下:首先装置工作于低温、潮湿、机械振动、冲击和大范围金属干扰、电磁干扰等恶劣环境下;其次射频装置要求的识别距离远,能够达到多目标快速识别;最后要具有低功耗、存储容量大、使用寿命长等特点。因此,对RFID货架期指示器的性能提出更高的要求,主要表现在:

(1)应具有低功耗特性。在冷链物流过程中,RFID货架期指示器需要长时间、实时监测食品的质量,能量消耗较大,其主要是采用电池供电的方式,而电池的容量是有一定限度的,不能无限制供电,因此,这就对微粒的功耗提出了较高的要求。

(2)应具有抗干扰能力,数据通信的保密性。食品在运输过程中,由于外界信号会干扰RFID读写器与RFID微粒的通信,这就要求RFID货架期指示器能够具有较强的抗干扰能量和数据通信的保密性。

(3)要求系统具有较高的稳定性和可靠性。RFID货架期指示器需要具有较强的稳定性与可靠性,才能实现对食品实时监测的目标。

(4)能识别多个移动RFID微粒。在食品源、中转站、目的地,RFID读写器需要读取多个移动的RFID微粒,读取的过程中由于信息的不断碰撞和智能RFID微粒的移动,会产生RFID微粒被漏读的问题及功耗问题。

5.展望

为了实现RFID货架期指示器能够被较好地应用于食品冷链物流中,需要通过对RFID货架期指示器的功耗和多个移动RFID微粒的防碰撞问题进行了研究。论文需要在以下几个方面展开研究:

(1)需要提出时间序列电源管理算法

冷链物流具有较强的行业特殊性,RFID货架期指示器需要在这一过程中实时监测食品的存储环境与质量信息,并需要对数据进行计算和存储,其能量消耗较大。现有的电源管理技术一般都是将以前的状态综合来预测将来的工作状态,不能有效应用在冷链物流中。本文提出了时间序列电源管理算法,该算法根据划分的运行模式对智能RFID微粒进行管理,优化了微粒的功耗与性能之间的平衡。

(2)需要提出智能自适应帧时隙ALOHA防碰撞算法

传统的防碰撞算法一般都是针对于静止的应答器与读写器而设计,而在冷链物流过程中,智能RFID读写器需要读取多个移动的智能RFID微粒。针对这一情况,论文分析了冷链物流环境下RFID货架期指示器在射频通信时存在的三种情况,并总结了这三种情况共同存在的问题:一些微粒将离开稳定通信范围;而一些新的微粒将进入稳定通信范围。针对这一问题存在三个技术难点需要解决,论文通过对智能RFID微粒数量的估计,提出了智能自适应帧时隙ALOHA防碰撞算法,算法的设计思路主要是减少多个移动微粒之间的信息碰撞,并减少微粒的射频通信时间,以此达到降低功耗的目标。

(3)需要设计低功耗的RFID货架期指示器

在上述两项技术的研究基础上,设计低功耗的RFID货架期指示器。

参考文献

[1]Aarnisalo K,Jaakkola K,Raaska L,et al.Traceability of foods and food borne hazards[J].VTT Tiedotteita-Valtion Teknillinen Tutkimuskeskus,2007,23(95):1-46.

[2]Sofoss J N.Challenges to meat safety in the 21st century[J].Meat Science Symposium on Meat safety:From Abattoir to Consumer,2008,78(1-2):3-13.

[3]余平祥,巫远媚,胡月明等.RFID食品安全可追溯系统读取率优化策略研究[J].农业工程学报,2008,24(7):132-136.

[4]马丽珍,南庆贤,戴瑞彤.不同色调包装方式对冷却猪肉在冷藏过程中的理化及感官特性的影响[J].农业工程学报,2003,19(3):156-160.

[5]袁伟华.条码技术在物流管理中的应用[D].华中科技大学学,2005.

[6]Wang huhu,Xu Xinglian. Reserch peogress of traceability technology of livestock and poultry and its applications[J].Science and Technology of Food Industry,2010,31(8):413-416.

第10篇

【关键词】 桌面虚拟化 云终端 ARM IMX6Q

一、绪论

1.1 云终端概述

云终端是桌面云应用的终端硬件承载侧,它运用自身的VDP技术,通过网络访问后端服务器主机,将服务器的音频视频流通过云终端的显示端输出并且利用鼠标键盘等设备进行交互,使得用户看起来独立拥有一套完整的操作系统硬件和软件。服务器侧具有强大的运算能力,一台服务器一般可以虚拟出十几个甚至上百个操作系统。

1.2 IMX6Q芯片简介

IMX6Q系列芯片是Freescale 半导体公司最新推出的高性能低功耗CPU,该系列芯片包含S/D/Q等几个不同型号,分别表示单/双/四核芯片。芯片基于ARM CortexTM-A9架构,兼容DDR 3-1066M、LVDDR 3-1066M、LPDDR2-1066M(单通道或双通道)等内存设备接口,被广泛应用于:笔记本、手持设备、多媒体播放等视频终端设备。

IMX6Q具备1.2GHz主频,32KB L1,1MB L2(共享于所有CPU核心,双核/四核),96K超大启动ROM,内部特有的16K加密RAM,多达128个GPIO口,2D/3D图形视频加速处理器引擎,独立的多媒体处理器引擎IPU,独立的视频处理器单元VPU,性能非常强大。

二、云终端的总体设计

2.1 云终端的总体结构

云终端作为桌面云应用的终端承载体,主要的功能就是接收服务器端通过网络传过来的音视频流,本地不需要太强的运算能力。所以,CPU具有视频流硬件解码能力是非常重要的。而ARM类型的CPU,其本身的计算能力不强,功耗非常低,且一般都配有GPU单元,能够轻易的对视频流进行硬件解码。

2.2 云终端的硬件技术

对于ARM架构的CPU,只要CPU的频率在1GHz左右,并且具有GPU能力,就完全可以用来做云终端的主控CPU。论文中使用的硬件是基于IMX6Q进行开发的。IMX6Q开发板里包含了非常丰富的外设,根据云终端的需求,去掉开发板中多余的模块。

2.3 云终端的软件技术

由于各种云桌面协议客户端的特性,Linux云终端至少需要有如下的要求:1、需要支持各种解码库,最好能在库里实现硬件解码功能。2、需要支持X11。3、需要有很好的视频播放组件。

三、基于IMX6Q处理器构建云终端

3.1 硬件改进

针对DEMO板和云终端的一般结构,提出如下硬件改进方案:

1、IMX6Q具有两个USB2.0接口。但是一般的云终端至少需要4个或以上的USB口,所以采用一个USB口外接4口USB HUB芯片来满足。

2、IMX6Q支持两路10M/100M/1000M以太网接口,支持MII/RMII/GMII/RGMII接口,于是采用RMII接口及PHY芯片RTL8201F完成。

3、云终端一般配合显示器使用,所以要有一个VGA接口。所以,采用THS8200芯片将IMX6Q的一路HD视频信号转化为VGA信号来实现。其中,VGA信号接入时,采用IMX6Q的I2C来读取外部显示器的EDID信息。

4、电源按键设计,给单板供电的12V全部通过mos管来控制,mos管的栅极通过按键和CPU的IO口相与来控制,这样,在上电后,按下按键后,mos管导通,单板供电,CPU工作后,第一时间通过IO口控制mos的栅极,已达到持续供电的目的。

3.2 软件改进

IMX6Q的DEMO板已经带了UBOOT、Linux内核和简单的文件系统,基于这些已有的代码,再结合2.4节的需求,需要移植一套X11图形管理系统。

Ubuntu上软件非常丰富,而且完全开源,出现问题后能够充分的利用开源资源解决,非常适合做为云终端的承载OS。目前市面上的Linux云终端,也有很多都是利用的Ubuntu操作系统。

结论:本文首先分析了云K端的硬件架构与软件架构,然后基于Freescale的IMX6Q处理器和DEMO板,从硬件、软件两方面进行改进,最终实现一个具备连接RDP与Citrix服务器功能的云终端。

参 考 文 献

第11篇

关键词:线性稳压器;低功耗;宽带

1、引言

随着集成电路规模的发展,电子设备的体积、重量和功耗越来越小,这对电源电路的集成化、小型化及电源管理性能提出了越来越高的要求。而随着片上系统(SOC)的不断发展,单片集成的LDO线性稳压器的应用也越来越广泛。对于片内的LDO,最担心的是寄生电容过大引起不稳定,论文针对片内应用而设计的这款LDO,能保证在μF级别的寄生电容范围内都可以正常工作,毕竟寄生电容再大也不至于是μF级别的。功耗是LDO线性稳压器的重要指标之一,一般的LDO功耗都在几十μA以上,例如文献[2]中电路的静态电流为38μA,文献[3]中静态功耗高达65μA,而本文的静态功耗做到10μA左右,不仅功耗低,本文中第二级靠电阻的电流关系提供了一个小增益级,并且提高了整个LDO的带宽。

2、LD0电路组成原理与关键模块设计

2.1、电路基本工作原理

图1是LDO线性稳压器的结构框图,由下面几个部分组成:基准电压源(Vref)、误差放大器、同相放大器、反馈电阻网络、调整管等。其中基准电压源输出参考电压Vref.要求它精度高.温漂小,误差放大器将输出反馈回来的电压与基准电压Vref进行比较,并放大其差值,其经过同相放大器来控制调整功率管的状态,因而使输出稳定。在这里C1是前馈电容.可以提高负载调整率,并增加了一个左零点补偿,C。提供一个零点补偿。第一级放大器就是一个差分对,和大多数误差放大器结构一样,第二级为同相放大级,靠电阻的电流关系提供一个小增益级,并控制带宽。相对于普通结构而言的,如果靠运放直接驱动功率管,那带宽就被功率管的寄生电容和运放输出阻抗和增益决定了,而这个结构的增益和输出阻抗,相比运放小很多,带宽自然就提高很多。表1为该LDO的主要设计参数和性能指标。

2.2、电路组成与设计

(1)调整管结构设计:MOS型线性稳压器的调整管是电压驱动的,能大大降低器件消耗的静态电流,而且其较小的导通阻抗使得漏失电压也比较低,从而提高了电源的转换效率。根据调整管的平方率关系式以及设计指标Vdropout≈200mV,可以计算出调整管的宽长比,结合调整管的栅极寄生电容以及工艺的要求,在重载情况下考虑调整管需工作在线性区,将调整管的宽长设计为:W=6000μm,L=0.5μm。

(2)电阻R1与R2选择:输出电压由反馈网络决定,根据VOUT=VREF[(R1+R2)/R1],当选定的VREE=1.25V,R1=625KΩ,那么R2=625KΩ。

2.3、误差放大器(EA)设计

误差放大器电路原理图如图2所示。对该EA部分功耗(3μA)以及低的失调电压的要求,根据σ2(VT)=A2VT/WL+S2VTD2以及MOS管的平方率关系,设计出各MOS管的尺寸,M1和M2的宽长比为41/2,M3和M4的宽长比为4/1,M5和M6的宽长比为2/1,我们这里取w1=W2=82μm,L1=L2=4μm;W3=W4=12μm,L3=L4=3μm;W5=W6=8μm,L5=L6=4μm。实际上,在EA这部分为了让这一级增益Ger不小于10dB且保证有足够的相位裕度,将反馈电容CFF设计为20.8pF,把c1设计为1.5pF。该部分的仿真结果如图3所示。结果表明,该设计在保证稳定的前提下Ger为11dB。

2.4、同相放大器设计

同相放大器电路结构如图4所示。这一级主要是获得整个环路最大的增益Gnon-inv=25dB~30dB。为保证低功耗的前提下I1设为5μA,I2设为3μA,在小的偏置电流以及较大的负载的情况下为了保证能得到不小于25dB的增益,把RF设计为500K。由于同相放大器的增益随负载的增加而减小,在设计中需要适当增加偏置电流I1和增加RF的值。而带宽受M2的跨导和调整管的W/L的影响,需要增加M2的W/L以及偏置电流I2。图中M1的宽长比为4/1,这里取W1=30μm,L1=3μm,M2的宽长比为110/1,取W2=110μm,L2=1μm。仿真结果如图5所示。

3、LD0整体仿真结果与讨论

我们基于HHNEC0.35μmBCD工艺下,采用cadence和Hspice仿真软件对整体电路做仿真,如图6所示为LDO环路稳定性仿真曲线。

(a)图为负载电流为50mA时,LDO环路增益为50dB、单位增益带宽为470KHZ、相位裕度为74degree。(b)图为负载电流为0时,LDO环路增益为63dB、单位增益带宽为1KHZ、相位裕度为87degree。图7给出了该LDO的线性调整率曲线,仿真条件为CL=1μF,由仿真曲线可以看出该LDO的线性调整率为:

(V2-V1)/(VIN2-Vin1)=0.0020V/V

图8给出了该LDO的负载调整率曲线,仿真条件为CL=1μF,由仿真曲线可以看出该LDO的负载调整率为:

(V2-V1)/(VL2-VL1)=8mV/50mV=0.1600V/A

图9给出了该LDO的电源抑制比仿真曲线,仿真条件为IL=1mA。从该曲线可以看出,该LDO的PSRR在1KHz时为-60dB。

4、 结论

第12篇

关键词: 背光组件;LED发光条;超薄结构;导光板

中图分类号:TN312+.8文献标识码:B

Design and Development of LED Backlight Units Used for

Notebook PC

LI Xiu-zhen, YANG Dong-sheng

(Beijing BOE CHATANI Electronics Co., Ltd., Beijing 100176, China)

Abstract: At present, the small-size LED backlight has a very high market share. The design and development of LED backlight used for notebook PC is introduced in this paper. The development process is elaborated separately from the standpoint of optical, circuit and structure. In the optical, the LGP is manufactured by mold injection using stamper technology without printing pollution. According to the specification and quantity of LED, the LED light-bar is designed to drive the whole backlight. The structure achieve ultra-slim with "no back cover" design. LED backlight in this paper has reached the level of industry-leading with the feature of ultra-slim, high brightness, low power consumption

Keywords: backlight units; LED light-bar; ultra-thin structure; LGP

引 言

随着LED技术的发展,特别是发光效率的提高,节能、环保的LED产品在显示领域的应用已越来越广泛。LED封装、SMT贴片、发光条制作均发展到较高水平,LED背光制造和产业化水平也达到了相当高的水准。目前小尺寸产品市场需求大约以每年20%的水平剧增,LED背光在笔记本电脑上的应用已独领,CCFL背光在笔记本电脑上的应用将逐渐退出历史的舞台[1-2]。目前全球大厂都在积极发展LED背光产品,目前市场的主流笔记本电脑几乎全部采用LED背光技术。

本文介绍了笔记本电脑用LED背光组件的设计开发,分别从光学、电路、结构角度阐述了开发的过程。光学方面,采用STAMPER技术,一体成型射出导光板,减少印刷环节,无印刷污染;电路方面,根据LED的规格及颗数设计LED发光条,驱动整个背光源;结构方面,采用无背板的结构设计,达到超薄效果。本文设计的笔记本电脑用LED背光源超薄、高亮、低功耗,达业界领先水平。

1光学设计

1.1LED光源

背光模组的作用是把点光源发出的光通过漫反射使之成为面光源。为了得到合格的面光源,首先要选择合适的LED,通常应用到笔记本电脑背光组件的LED的规格为3014。通过预设白场光度指标,结合对液晶屏、光学膜等影响因素的研究分析,完成对整个背光源所需光通量的计算。根据计算的光通量,结合LED的光学特性计算出所需LED的颗数。

1.2LGP设计加工

采用STAMPER技术,一体成型射出导光板,减少印刷环节,较少印刷污染。以模具射出形成网点,入射面设计能破坏光源的全反射,并控制光源射出导光板面角度的分布,网点数量的多少对光源做有效的控制。网点可随模具任意设计形状,若网点为极小的平滑镜面,可使光在网点及导光板内部的损失减至最小,应用光学设计软件进行网点设计。图1所示为模拟的背光组件的亮度均一性。

2电路设计

在侧光式背光组件中,应用长条式的LED light-bar作为整个组件的光源,LED light-bar采用白光顶发光LED。以某机种产品为例,单颗功耗:3.2V×0.02A=0.064W。整个light-bar功耗:0.064W×42=2.69W。LED背光源电路设计主要包括发光条设计和驱动控制电路设计,驱动电路采用一款DC/DC恒流驱动芯片,对发光条进行恒流驱动。图2所示为LED light-bar的驱动原理图。

3结构设计

笔记本电脑用LED背光组件通常采用侧光式结构,背光组件结构包括:LED发光条、膜材、导光板、驱动板、胶框。背光组件采用白光LED,整个结构设计以Active Area的中心点为所有部件的设计中心,以笔记本电脑所用液晶屏的尺寸为前提,设计其它尺寸。综合考虑电路设计及光学设计的要求,对结构进行设计。结构设计先从LAYOUT布局图着手,表达整体机构以及各部件相互之间的装配关系,然后着手零件图结构设计。某机种背光源产品厚度可达2.35mm。所设计的笔记本电脑用LED背光源的结构特点:

(1) 背光源单短边入光,入光方式为短边入光,发光条尺寸减小,成本降低;

(2) 使用薄型平板LGP,对LGP网点技术要求较高;

(3) 胶框结构,无背板,无灯罩结构,采用高反射率反射片遮光,使用铝箔散热;

(4) 组装时对LED发光面和LGP入光部对位要求较高。

4测试

本文所设计的笔记本电脑用LED背光组件光源采用白光LED,组装后的LED背光源利用BM-7进行13点测试,5点平均辉度为4,019nit,亮度均齐性为85.33%,色彩还原性达到95%@CIE 1976。背光源整体功率为3.2W,其中LED功耗为2.69W。背光系统的驱动电路简单,电流一致性良好。表1所示为背光源的光学测试数据。

5结论

本文设计开发了笔记本电脑用LED背光源,采用STAMPER技术,一体成型射出导光板,减少印刷环节,较少印刷污染;根据LED的规格及颗数设计LED发光条,驱动整个背光源;结构方面,采用无背板的结构设计,达到超薄效果。本文设计的笔记本用LED背光组件超薄、高亮、低功耗,达业界领先水平。

参考文献

[1] 笔记本电脑LED背光源快速增长[J].消费电子,2010年7月.

[2] 张成功. LED背光源驱动及光学设计技术研究[D].中国海洋大学学位论文,2009年6月.

[3] 黄启智. LCD显示器的背光技术分析及应用[C]. 漳州职业技术学院学报,2008年1月.

[4] 王大巍,王刚,李俊峰,刘敬伟. 薄膜晶体管液晶显示器件的制造、测试与技术发展[M]. 机械工业出版社.

[5] 郭莉荭. LED背光源测试方法的研究[J]. 灯与照明,2009年9月.

第13篇

【关键词】MP3;SOPC;Nios II;硬件实现

1.引言

MP3(MPEG Audio Layer3)是高品质的音频压缩标准,因其在音质,复杂度与压缩比的完美折中,占据着广阔的市场,目前在便携式设备领域深受人们喜爱。而随着消费电子的快速发展,MP3在各种场合的需求越来越多,同时针对MP3解码器的设计也越来越多。其中主要有以下三种方式:①以专用MP3编解码芯片为核心加上必要电路的VLSI实现;②DSP处理器加外部存储器,数模转换等器件实现;③以低速核心处理器(CPU/RISC)与其他硬件加速模块的SOPC设计加上器件实现。而第三种实现方式相对于前两种方式在功耗和性价比方面有着明显的优势,本文是基于SOPC技术来实现MP3解码器的设计,其中MP3文件数据用SD卡来存放[1]。

2.MP3解码流程分析

MP3解码流程如图1所示,解码的主要过程包括同步提取码流(以帧为单位)哈夫曼解码,比例因子解码,反量化,重排列,立体声处理,混叠重建,IMDCT变换,子带综合滤波合成,最后输出原始的PCM数据。

在解码过程中,耗时比较多的主要是IMDCT和子带综合滤波这两部分。在编译后它们占据着相当多的硬件资源,功耗特高,所以在设计时针对这两个计算量大的算法IMDCT,子带综合滤波器做了硬件加速处理,来提高整个系统的性能。在IMDCT算法中有长块和短块,计算时长块输入是18点而短块输入是6点,长短块输入的值都是非2的n次方,所以可以采用Szu Wei Lee快速算法,此算法对输入点数越大的运算,其速度提升就越明显。传统的IMDCT算法,在计算长块时需要的是36*18次乘法和36*17的加法,采用Szu Wei Lee算法后,长块的计算只需要43次乘法和115次加法,程序的运算速度显著提高了。在设计子带综合滤波时,直接计算则需要执行32*64次乘法和31*64次加法,两声道采样率为44.1KHz,乘法运算量为(44100/32)*(64*32+512)*2=7056000次/秒,而系统时钟一般都采用的是50MHz,单个周期内占着整个解码时间的58.2%,严重影响了整个系统解码的速率。所以可以根据余弦函数的对称性,并结合Byeong Gi Lee快速DCT算法来进行改进,改进后子带综合滤波则只需要进行384次乘法和376次加法,大大提升了运算速度[2]。

3.系统的硬件设计

基于Nios II的嵌入式系统主要是由三部分组成:IP库(NiosII软核处理器,Avalon总线,设备接口等),GNUPro软件编译器,SOPC Builder开发工具。本文在硬件设计时使用Altera公司的Cyclone II FPGA芯片,型号为EP2C70F896C6,主要设备包括片外SDRAM存储器、SD卡、音频芯片WM8731、LCD等,其中FPGA芯片完成对各个硬件模块和数据流的控制,片外存储器存放程序数据和执行代码,SD卡存放MP3文件,音频芯片将PCM数据流转换输出,LCD显示系统状态,IP核的复用是SOPC设计的关键[3]。其硬件系统结构如图2所示。

而FPGA内部逻辑设计是以Quartus II为开发环境,以Verilog语言编程实现音频控制,SD卡的读写,液晶显示驱动等功能模块的设计。用SOPC Builder配置并产生NiosII软核处理器以及必要的外设,然后在再通过编译,下载到FPGA的配置芯片中,形成硬件逻辑电路的连接,最后验证系统,从而实现MP3音频文件的输出。除了音频模块、SD卡控制模块、LCD显示驱动模块外其他模块都可以通过SOPC Builder来添加IP核构建。

至于MP3解码算法中的子带综合滤波,IMDCT变换两部分处理起来特耗时,针对这类耗时问题,可以采用软硬件协同处理(软件中耗时较多的部分进行硬件加速后,往往会比原先软件处理时的速度快上好几倍。)来提高整个系统运行的时间。通过这种设计方法,在综合时可以确定系统软件和硬件之间的相互制约关系,从而保证系统的确定性,高效性。

4.SOPC片上系统的实现

在FPGA中搭建SOPC系统时,需要用到如下图3所示的软核处理器和Avalon总线结构和外设接口等,其中,系统时钟c0由外部晶振50MHz倍频后得到的,c1为100MHz外设SDRAM时钟,c2为音频芯片提供的18.51MHz工作时钟。timer用于系统内部时间的产生,time_stamp用于记录指令的运行时间。片外SDRAM存储芯片是作为程序存储器及数据存储器。本系统自定义了AUDIO模块,该模块主要用于与WM8731音频芯片数字接口进行数据传输。

5.实现结果

本文是基于SOPC技术实现MP3解码器的设计,其优势在于系统功能改进的灵活性,即不改变硬件平台的情况下,可以随便的对系统进行增删和优化,降低系统的成本,这是其他方案很难比拟的地方。而本设计是在在DE2-70开发板上实现的,硬件解码系统采用Verilog HDL语言进行描述,经过RTL级仿真和验证后,在Cyclone II EP2C70F896C6器件内资源占用率为8%,总的寄存器为3335个,系统频率可达到72MHz,经过实际测试,本设计达到了预期的效果。但还存在着一些地方不够完善和有待改进,这同时也是以后MP3播放器设计需要改进和研究的重点:

(1)本设计功能比较简单,编译后FPGA芯片资源占用的比较少,可进一步增加其它功能,如图像显示。

(2)如何改进更有效的算法,提高系统运行时间,降低功耗,以达到便携式高性能、低功耗的要求,这是未来MP3设计研究的重点。

参考文献

[1]毛丽萍.MP3音频编解码运算中IMDCT算法研究及其FPGA实现[D].[硕士学位论文].华东师范大学,2007.

第14篇

关键词:无线传感网络;RPL;IP;能量路由

中图分类号:TP393 文献标志码:A 文章编号:2095-1302(2014)01-0057-03

0 引 言

低功耗有损网络路由协议 (RPL)是IETF的ROLL(Routing Over Low power and Lossy networks )工作组,专门针对低功耗有损网络LLN(Low power and Lossy network)新提出来的路由协议[1]。低功耗有损网络是由功率、存储空间、处理能力等资源受限的嵌入式设备所组成的网络。它们可以通过多种链路连接,比如IEEE 802.15.4、蓝牙、低功率Wi-Fi,甚至低功耗电力线通信(PLC)等等。ROLL将LLN网络的应用主要划分为四个领域[2]:城市网络(包括智能电网应用)、建筑自动化、工业自动化以及家庭自动化,并且分别制定了针对四个应用领域的路由需求[3-6]。由于LLN的独特性,传统的IP路由协议,比如OSPF、IS-IS、AODV、OLSR,无法满足其独特的路由需求,因此ROLL工作组制定了RPL协议,其协议标准RFC6550[1]于2012年3月。

本论文首先介绍了RPL的应用场景及基本原理,并在路径选择策略中加入了对节点剩余能量的考虑;最后通过仿真验证了改进后的路由协议的性能。

1 RPL协议工作原理

RPL是一个矢量路由协议,通过构建有向非循环图(DAG)来形成拓扑结构,加入DAG中的节点自动形成一条指向根节点的路径。RPL主要为数据汇聚型的场景设计,即数据流量由叶节点指向根节点。当然RPL也扩展支持多点对点(MP2P)和点对点(P2P)的应用场景。

图1所示为典型的DAG结构。其中的每一个节点至少有一条指向根节点的路径。

1.1 DODAG的形成

DODAG(Destination Oriented Directed Acyclic Graph)是面向目的地的有向非循环图的简称,可以视为物理网络上的逻辑路由拓扑。

RPL中定义了由多种ICMPv6消息来控制拓扑的形成。DIO消息用于通告有关DODAG的参数,例如DODAGID、目标函数(OF)、DODAG版本号等[1]。其中OF规定了拓扑建立及最优父节点的选择方式,规定了节点级别的计算方法,是路径选择的首要参考标准。级别决定了节点在DODAG中的相对位置,主要用于避免回路。DAO消息是用来建立从根节点到叶节点的“向下”的路径。根据节点的存储能力,RPL协议中将节点类型定义为可存储型和非存储型,两者的区别在于是否存储有路由表信息。在图1中,当D节点要和E节点通信时,如果B节点和C节点是非存储型,那么必须先追溯到根节点A,查找路由,即路径为D—C—B—A—B—C—E。若C为可存储型节点,则只需追溯到共同的祖先节点即可找到路由,即路径为D—C—E。DIS消息用于向邻居节点请求DODAG信息。当一个孤立的节点没有收到任何DIO消息的时候,可通过DIS向周围节点请求DODAG信息。收到DIS消息的节点会反馈DIO消息给DIS源节点。

如图1所示,首先A节点通过DIO消息广播自己创建的DODAG信息,收到DIO消息的节点根据OF来决定是否应该加入该DODAG;加入之后然后再向自己周围的节点继续广播DIO消息;这样一层一层地建立拓扑结构。当节点加入DODAG之后,就自动创建一条“向上”汇聚到根节点的路径。“向下”的路径则由DAO消息完成。

1.2 定时器管理

RPL中使用细流算法[7]来控制DIO消息的发送。细流算法是一个适应性的机制,用来限制控制协议的开销。与传统IP网络不同,LLN网络有着非常有限的资源,必须尽可能的减少控制协议消息所占的比例,但同时又必须要维护好网络结构。当网络改变时,节点会以较高的频率发送控制包;当网络趋于稳定时,则控制流的速率减少。算法中定义了控制消息发送间隔参数I,当网络很稳定时,则I成倍的增加;而网络有动荡时,则发送间隔迅速降为最小值,高频率的发送控制消息以修复网络。

本文借助Contiki系统中的Cooja模拟器,对RPL协议进行了仿真。图2所示为节点布局图,并在图3中以节点5为例展示了DIO消息的发送控制过程。从图3中可以看到,当网络刚形成逐步趋于稳定的时候,DIO消息发送间隔成倍增加;图3中23:00和01:20附近陡峭的转折点表明此时监测到节点5和网络存在不一致性,迅速将控制消息发送间隔调至最小值以迅速修复网络。

1.3 环路避免机制

RPL中规定,在沿着叶节点到根节点的路径上,节点级别必须是递减的[1],即父节点的级别必须小于子节点的级别。当节点在网络中位置发生改变时,必须根据父节点重新计算自己的级别。假设节点N的最优父节点为P,P的级别为R(P),那么N的级别R(N)计算公式为:

R(N)=R(P)+ rank_increase

rank_increase为子节点和父节点级别的差值,其算法在OF中有定义。

节点的级别在环路避免中有着重要的意义。RPL协议也通过在包头上设定标志位来附带路由控制数据,以避免数据包被循环转发。

2 考虑节点剩余能量的RPL协议

2.1 RPL协议原始路由方案

目标函数决定了RPL协议的路径选择方式。目前RPL的官方文件中,只明确定义了零目标函数(OF0)[8],即以跳数(HC)为最佳路径选择的唯一标准,而其他的目标函数则由开发者根据需求灵活定义。比如对链路可靠性要求较高的应用,可将链路质量作为路由选择的首要考虑标准;而对能量受限的环境则可以定义在路径中尽量避开电池供电节点。在文档RFC6551[9]中,提出了多种可供开发者参考的路由度量。

在选择路径时,若只考虑跳数因素,必然会导致Sink周边节点数据压力过大,从而使关键节点能量过早消耗而死亡。文献[10]将网络的生命长度定义为第一个节点死亡的时间。对于能量受限的低功耗有损网络,如何平衡能量消耗,延长网络整体寿命,是协议要考虑的重要因素。

2.2 优化之后的RPL路由方案

目前已有多种针对无线传感网络能量优化的路由协议,比如分级能量路由协议LEACH和TEEN,以数据为中心的能量有效路由协议DD和SPIN,还有基于地理位置的路由协议GPSR和GEAR等[11]。 但这些协议都很难实现和RPL协议的融合。RPL协议是通过在container metric中,定义路径选择时所考虑的参数,然后再以一定的方式将所需要考虑的参数相结合,从而确定一个合理的路径选择方案。

本篇论文中采取的是跳数(HC)和节点能量(EN)相结合的方式。结合方式有两种[12],一种是Lex,一种是Add。Lex是指优先考虑跳数,只有在跳数相同的情况下,才考虑节点能量;而Add则是采取两种参数综合考虑的方式,按照一定的比例相结合,即:

其中:

本文对这两种不同的结合方式做了仿真对比。

2.3 RPL协议改进前后的仿真对比

仿真工具采用的是美国UIUC大学开发的针对无线传感网络研究的J-Sim平台,该平台基于Java语言,和NS2相比具有内存消耗小、仿真速度快、有更好的可扩展性等优点。本文仿真了传感网络数据收集的场景。在100×100的区域里,规则的布置有100个节点,图4所示是网络节点布局图和OF0的拓扑结构,其中最左上侧的0号节点为数据汇聚节点,右下侧的49-99和94-98这11个节点为传感器数据采集节点。数据从右下侧的11个源节点发送到左上侧的0号节点。由于该网络具有对称性,1和10对称,2和20对称等,对称节点的能量消耗基本一致。本文中重点仿真了具有代表性的1、2、11、12、22这几个关键节点的能量消耗情况。

对于OF0,由于跳数是路径选择的唯一标准,节点位置固定的网络,其拓扑结构也相对保持不变。图4即为这种情况下的拓扑结构。由图4中可以看到,节点1和节点10承载了大部分的数据量,几乎任何从下侧或者右侧源节点发过来的数据都要经过这两个节点转发到Sink节点。而节点11,则只有来自源节点99的数据由它转发。

图5所示是系统节点能耗图。其中图5(a)为OF0方案下部分节点能量消耗图。从图中可以看出,最关键的节点1和节点10,能量很快就消耗殆尽。而节点11,则能耗相对较少。这对节点位置固定的网络是很不利的,会使数据量较大的节点在短期内能量迅速消耗完而死亡,而其他非位置关键节点,则一直被闲置。造成网络能耗分布极其不均匀,能量利用率不高。

接下来可以仿真跳数和节点剩余能量相结合的路径选择方式,图5(b)为跳数和能量按照2∶8的比例加权所得到的能耗结果。从图5(b)可以看出,节点1、10和11的能耗更为均衡,第一个节点死亡的时间大为延长。跳数和节点剩余能量相结合的路径选择方式,能一定程度上改善以跳数为唯一度量所造成了能量消耗不均的情况,从而延长关键节点的生命长度。仿真中也能看到,最佳路径的拓扑图一直处于动态变化,原先经过节点1和节点10到达汇聚节点的数据,有一部分从节点11分流,从而缓解节点1和节点10的压力。

(a) HC路径选择方案节点能耗 (b) HC+EN路径选择方案节点能耗

本文也仿真了跳数(HC)和节点能量(EN)按照Lex的结合方式,即优先考虑最小跳数,当跳数相同的时候再考虑节点能量,以及在Add结合方式下按0.8HC+0.2EN和0.2HC+0.8EN的不同比例相结合的情况对比。最后得出的结论是,两种不同的结合方式对网络能耗均衡都有一定程度的改善;而Add的结合方式能耗更为均衡,且剩余能量所占的比例越高,改善的效果越为显著。图6所示是在不同路由策略下,关键节点能耗的对比情况。

4 结 语

本文描述了RPL协议的基本原理,并且对原路由协议的路径选择策略进行了改进,在只考虑跳数的基础上,加入节点剩余能量的考虑,从而平衡了网络能耗,延长网络整体寿命。由于RPL是近几年新提出的协议,随着实践的不断深入,越来越多的新问题被提出,还有很大的研究空间。RPL协议在物联网领域有着广阔的应用前景,值得广大学者进一步深入研究。

5 致 谢

本论文的工作得到了实验室项目的大力支持。感谢国家自然科学基金(61271257),北京市自然科学基金(4122034)和教育部博士点基金(20120005110007)对本文研究工作的支持。

参 考 文 献

[1] WINTER T. RFC6550 RPL: routing protocol for low power and lossy networks [S]. USA: Internet Engineering Task Force, 2012.

[2] VASSEUR J P, DUNKELS A.基于IP的物联网架构、技术与应用[M]. ,田辉,徐贵保,译.北京:人民邮电出版社,2011.

[3] DOHLER M. RFC 5548 routing requirements for urban low-power and lossy networks [S]. Internet Engineering Task Force, 2009.

[4] PISTER K. RFC5673 industrial routing requirements in low-power and lossy networks [S]. Internet Engineering Task Force, 2009.

[5] BRANDT A. RFC5826 home automation routing requirements in low-power and lossy networks[S]. Internet Engineering Task Force, 2010.

[6] MARTOCCI J. RFC5867 building automation routing requirements in low-power and lossy networks [S]. Internet Engineering Task Force, 2010.6

[7] LEVIS P. The trickle algorithm draft-ietf-roll-trickle-08 [S]. Internet Engineering Task Force, 2011.

[8] THUBERT P. RFC6552 objective function zero for the routing protocol for low-power and lossy networks (RPL) [S]. Internet Engineering Task Force, 2012.

[9] VASSEUR JP. RFC6551 routing metrics used for path calculation in low-power and lossy networks [S]. Internet Engineering Task Force, 2012.

[10]廖梦泽.无线传感器网络生命期最优化[D].上海:上海交通大学,2010.

第15篇

关键词:ZigBee,智能家居,前景展望

 

0 引言

智能家居,又称为智能住宅(SMART HOME),是以住宅为平台,利用综合布线技术、自动控制技术、网络通信技术、安全防范技术、音视频技术将家居生活有关的设备集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。智能家居起源于上世纪80年代的美国,随着我国人民生活水平的不断提高,已经有越来越多的厂商和个人开展了对智能家居的研究,并有各类相关产品问世。

传统的智能家居更多的是通过有线的方式进行组建,比如常见的Ethernet、CEBus、X-10等,其中得到最广泛应用的是X-10,主要是因为其相对低廉的价格和用户可自行装设的特点。,前景展望。CEBus的性能虽然高于X-10,但是由于售价较高而难以得到普及。Ethernet主要用于高速数据传输网络,用于家庭自动化控制则会受到电缆布线的限制。而日益兴起的无线技术能否在智能家居领域占有一席之地并得到广泛的应用呢?

和采用有线网络的通信技术的智能家居产品相比较,无线技术解决方案最吸引人的地方是安装布置的灵活性、低廉的安装费用和在智能家居系统进行重新布置时的可移动性。尽管无线通信技术和有线相比较有明显的优势,而且无线局域网技术和蓝牙技术已经在市场上获得了巨大的成功,但无线通信技术在智能家居领域应用相对还是较少。这主要是因为目前没有一项标准化的,获得各厂商一致认可的无线通信技术适合在智能家居领域进行广泛的推广,而且现有的一些针对智能家居领域无线通信产品的价格偏高,导致无线通信技术在智能家居的应用停滞不前。随着近年来人类在微电子机械系统(MEMS)、 无线通信、数字电子方面取得的巨大成就,使得发展低成本、低功耗、小体积、短通信距离的多功能传感器成为可能。近年来所涌现出来的一项新的无线通信技术—— ZigBee技术将改变这种状况。ZigBee技术产品以其低成本、低功耗、低传输速率、优秀的组网能力,被广泛认为将在未来的几年中对智能家居行业产生重大的影响。

1 ZigBee技术介绍

ZigBee技术是建立在IEEE(Institute of Electrical and Electronics Engineers,美国电气电子工程师学会)802.15.4基础上的无线通信协议,它是一个短距离、低功耗协议,特别适合设计应用在小型的建筑物自动化设备中,比如温度自动调节装置、灯光控制设备、环境传感器等。

2000年的12月,IEEE成立了IEEE 802.15.4工作组,致力于开发一种可应用在固定、便携或移动设备上的,低成本、低功耗的低速率无线连接技术。2001年8月,美国霍尼韦尔等公司发起成立了ZigBee联盟,他们提出的ZigBee技术被确认为IEEE 802.15.4标准。2002年,摩托罗拉、飞利浦和三菱等企业加盟ZigBee联盟,06年中国的华为公司也加入了该联盟。现联盟内有180多个成员企业,包括软件供应商、系统集成商和终端产品商。2003年,IEEE 802.15.4标准获得通过,并在2004年12月推出了ZigBee技术规范1.0版本。2006年,推出ZigBee 2006,比较完善。2007年底,推出ZigBee PRO。

ZigBee技术能够在低功耗下提供短距离、低速的数据传输,使用普通干电池的ZigBee无线传感器能够持续运行2~3年的时间。,前景展望。,前景展望。另外ZigBee技术优秀的组网能力使得它和其他无线通信技术在智能家居系统中的应用相比尤其具有无可比拟的优势。具体地分析,ZigBee技术有如下几点优势:

(1)低成本,ZigBee技术是免协议专利费的,而且每块芯片的价格大约为2美元左右。

(2)低功耗,在低耗电待机模式下,两节五号干电池可支持1个节点工作半年至两年时间甚至更长。,前景展望。

(3)低速率,ZigBee工作在20~250kbps的较低速率,在不同频带间分别提供250kbp(2.4GHz)、40kbps(915MHz)和20kbps(868MHz)的原始数据吞吐率满足低速率传输数据的应用需求。

(4)短时延,ZigBee的响应速度较快,一般从睡眠转入工作状态只需15ms,节点连接进入网络只需30ms,进一步节省了电能。相对而言,WIFI需要3s,而蓝牙则需要3~10s。

(5)大容量,ZigBee可采用星状、树状和网状网络结构,由一个主节点管理若干子节点,最多一个主节点可管理254个子节点,同时主节点还可由上一层网络节点管理,最多可组成65000个节点的大型网络。

(6)高安全性,ZigBee提供了三级安全模式,包括无安全设定、使用访问控制列表(ACL)防止非法获取数据以及采用高级加密标准(AES 128)的对称密码,以灵活确定其安全属性。

基于上述特点可看出ZigBee主要应用于短距离范围内并且数据传输速率不高的各种电子设备之间,其典型的传输数据类型有周期性数据(如传感器数据)、间歇性数据(如照明控制)和重复性低反应时间数据等。因此ZigBee技术十分适合应用于智能家居系统之中。

2 ZigBee技术在智能家居中的应用前景

目前,ZigBee的开发以大厦自动化设备、产业、医疗及家庭自动化等领域为目标。尤其在自动仪表领域,ZigBee拥有很高的关注度。市场调研公司In-Stat预测,支持ZigBee及IEEE802.15.4的芯片组的合计供货量到2011年将从06年的500万个增至1亿2000万个。但在智能家居市场,由于竞争技术较多,ZigBee成为唯一标准的可能性很低,但因为自身的技术特点,发展前景还是值得期待的。另一家市场调研机构ABI Reserch对ZigBee技术持有非常乐观的态度。该公司的一份预测数据显示,2005年到2012年,ZigBee市场的年均复合增长率为63%,而到2012年ZigBee市场份额将达3.5亿。目前国际上智能家居领域专家们的共识是,ZigBee技术在智能家居中的应用将不可阻挡,但是多种无线技术并存的局面将会持续比较长的时间,能否完全取代其它技术,成为智能家居领域的首选,还要多方面的共同努力,进一步完善技术,加快标准化的脚步。,前景展望。

3 结束语

随着我国经济的飞速发展,智能家居的数量也会越来越多,Zigbee技术与智能家居系统的结合有着广泛的应用前景,本文主要探讨了该技术在智能家居系统中的应用,并对技术的应用前景做了展望。这种方式在现实生活中具有很强的应用性,相信在不远的将来,会有越来越多由Zigbee技术延伸而出的设备投入应用,并将极大地改善我们的生活。,前景展望。需要关注的一个问题是,虽然目前我国智能家居中所使用的系统及产品大多被国外的大公司所垄断,但是ZigBee技术的出现将给我国开发自主的具有世界先进水平的智能家居系统及产品提供一个崭新的契机。

参考文献

[1]吕九一,陈楠.基于Zigbee技术的家庭无线传感网络应用研究[J],科技广场,2009,第 11期

[2]白建波,张小松,路诗奎.ZigBee技术及其在楼宇自动化系统中应用的思考[J],智能建筑与城市信息,2006,第1期

[3]飞思卡尔中国有限公司.飞思卡尔的802.15.4ZigBee——轻松实现无线连接[J].半导体技术,2004(7):80~81

[4]ZigBee Alliance.ZigBee Specification[M].2007.

[5]王永春.Zigbee技术在智能家居中的应用[J],智能建筑与城市信息,2009,第1期

精品推荐