前言:我们精心挑选了数篇优质电气化铁道技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
一、专业的职业面向和人才需求分析
电气化铁道技术专业培养掌握电气化铁道技术的基本理论和操作技能,能够胜任电气化铁路变电所、接触网的运行、检修和日常维护等岗位工作,适应电气化铁路发展需要的高素质技术技能型人才。通过现场调研、企业专家访谈和毕业生跟踪调查,本专业毕业生就业主要面向铁路局供电段,城际铁路、城市轨道交通企业,采用电气化铁道运输的工矿企业的供电部门,以及电气化铁路工程施工单位。主要就业岗位有接触网工、变配电值班员、变电所检修工、电力线路工。
(二)电气化铁道技术专业人才需求分析
根据《国家中长期铁路网规划》,到2020年全国铁路营业里程达12万公里,电气化铁路也由目前3万多公里增至6万多公里。据预算,未来8年全国铁路电气化铁道供电人才需求11万,年均1.38万。全国城市轨道交通企业未来3年电气化铁道供电人才缺口1.25万左右。从人才需求层次结构分析,研究生、本科生和高职大专生的需求比例大约为10%、30%和60%,因此高职大专生是铁路用人单位招聘的主要对象[1]。
二、基于岗位导向“三双、四模块、四阶段”人才培养模式构建
(一)“三双、四模块、四阶段”工学结合人才培养模式内涵
通过工作任务和岗位能力分析,电气化铁道技术专业所涉及的接触网检修、变配电值班、变电所检修、电力线路检修四工种对应的岗位任职要求各有不同,但必需掌握的基础知识相同。根据这四个岗位的任职要求,结合国家岗位职业资格标准,确定岗位导向“三双、四模块、四阶段”工学结合人才培养模式的内涵。
“三双”即为“双主体”“双导师”“双形式”。“双主体”,即校企“双主体”合作培养。以合作办学、合作育人、合作就业、合作发展为主线,创新校企合作办学体制、校企合作育人机制、校企合作双赢机制以及校企文化融合机制。与企业建立联合制定计划、联合组织教学、联合开发课程、联合聘请教师、联合评价质量等制度,充分发挥专业建设指导委员会的作用,确保企业全程参与专业建设。围绕学校和企业发展的共同点,建立实训基地共建共用、科技咨询与服务、竞赛培训与鉴定、顶岗实习实训、“订单式”“定岗定向式”人才培养等机制,促进校企深度融合,实现互利共赢。“双导师”,即校企“双教师”联合培养。建立校内教师与校外教师共同指导学生的“双导师”制度,采取“双教师”教学模式,成立“1+X+Y”课程组,由校内专职教师任课程负责人,多个校内专任教师和多个校外兼职教师组成课程组在顶岗实习、毕业设计、课程实训、3G实景课堂等方面开展教学活动。“双形式”,即采用理论教学与实践教学交替进行的教学组织形式。建立多岗轮换实践制度,在不同的合作单位或同一单位的不同岗位上完成专业综合实践,使学生对职业领域的多个岗位都具备一定的实践经验。
“四模块”,即课程体系由综合素质能力、职业基础能力、职业岗位能力和拓展能力模块构成。在课程体系的设计上,强化职业需求导向,突出学生综合素养和专业知识与能力培养,增加了以培养学生可持续发展为目标的专业拓展能力课程模块。
“四阶段”,即将三年的6个学期中的第3至第5个学期各分成2个小学期,这样总共有9个学期。其中第1~3学期为第一阶段,以文化基础知识和专业基础知识学习为主,同时安排学生到合作企业进行专业认识实习,开展专业基本技能项目训练;第4~7学期为第二阶段,以专业知识和专业单项技能、综合技能项目训练为主,并获取职业资格等级证书;第8学期为第三阶段,为拓展能力模块学习阶段;第9学期为第四阶段,为毕业设计和毕业顶岗实习阶段,通常为期半年。学校根据就业企业的分配安排学生对口进行顶岗实习,学生在顶岗实习期间结合企业真实课题完成毕业设计。
(二)基于工作过程系统化的“模块化、项目化”课程体系构建
按照工作过程系统化理念,由行业企业专家、专业建设专家、课程开发专家、教学改革专家和专业教师组成的专业建设和课程开发团队,从接触网检修与施工、电力线路检修、变电所检修、变配电值班等典型工作任务分析入手,制定四个岗位的知识结构、能力结构和素质结构,确定专业行动领域和学习领域课程,构建与专业培养目标相适应的“模块化、项目化”课程体系,如图1所示。课程体系包括综合素质课程、职业基础能力课程、岗位能力课程和拓展能力课程四个模块,岗位能力课程又分别由四个岗位的课程模块构成。课程结构采用项目式结构进行设计,每个项目就是一个完整的工作任务,课程内容融入国家职业资格标准和企业岗位标准,按照职业能力培养要求,突出项目式教学[2]。
(三)“教学做一体”的教学模式构建
基于工作过程系统化的“模块化、项目化”课程体系采用模块化结构,课程全部以项目式结构进行设计,比如《小型电子产品制作》是由直流稳压电源制作、小型防盗器制作、双声道音响制作、病房呼叫系统制作和电子脉搏计数器制作等5个项目构成。每个项目包括学时、学习情境描述、学习目标、学习内容、教学环境设备与材料、作品和考核评价、学习过程分析记录、学习感受与信息反馈等。为保障项目化课程教学,专业系部建设了一体化实训室11间和铁路供电综合实训站场1个,真正实现“做中教,做中学”;同时所有教室都能利用职教新干线,借助云平台实现“空间教学”。
三、“三双、四模块、四阶段”人才培养模式实施建议
(一)建立和完善适合人才培养模式的各种机制
借助铁路运输职业教育集团平台,主动与集团内企业共同制订计划、共同组织教学、共同开发课程、共同聘请教师、共同制订评价质量等,确保合作企业全程参与 专业建设,形成学校和企业两个教学主体。建立和完善实训基地共建共享机制、员工联合培训机制、专家和教师结对帮扶机制等,促进校企深度合作,实现互利双赢。
(二)构建基于岗位模块式课程体系
以岗位职业能力为依据,按照岗位及其工作任务,构建由综合素质课程、职业基础能力课程、岗位能力课程和拓展能力课程四个模块构成的课程体系[3],岗位能力课程又分别由四个岗位的课程模块构成。采用项目化课程结构开发课程,使知识与技能有机融合,项目与任务紧密结合,实现“边做边教,边做边学”。
(三)建立全过程、多方位教学质量监控体系
教学质量监控具体要通过教学质量评估、教学过程监控和校内专业评估等措施实现[4]。由教务处牵头,系部具体负责教学质量评估,评价指标包括课程考核、专业技能抽查、职业资格证获取率、实习实训效果、企业满意度、毕业生发展等。建立“学院、处室、系部、教研室”四级随堂听课,“督导室、系主任、同行、企业、学生”五方面评教,“期初、期中、期末”三个常规检查,所有信息共享的教学全过程监控制度和奖[dylW.NEt专业提供写作毕业论文的服务,欢迎光临wwW. DYlw.NEt]惩制度。组建专业评估委员会,从专业人才培养地位描述、专业调查、专业建设概况、专业教学师资、专业课程体系、专业教学设备设施、专业重点项目等方面开展校内专业评估。
参考文献:
[1]刘国联,何燕,张敏海.高职电气化铁道技术专业人才需求调研与人才培养建议[J].考试周刊,2013(91):152-153.
[2]汤光华,周哲民,匡芬芳,等.“工学交替、三层三贯穿”人才培养模式的探索与实践[J].成人教育,2013(9):53-55.
[3]任津瑶,贾明昭,刘燕,等.高职医学影像技术专业“能力递进式”工学结合人才培养模式构建[J].职业技术教育,2009(32):34-35.
[4]蔡敏华.高职旅游管理专业“分阶段螺旋式”工学结合人才培养模式探索[J].职业技术教育,2010(31):9-11.
【关键词】电气化铁路;负荷特性;计量方案
随着电力技术的快速发展和科学技术的迅速提高,使我国电气化铁路得到了迅速的发展。在进行电气化铁路运行过程中,通常需要将高次谐波电流注入电力系统中,会在一定程度上影响了电力系统的电压波形。在影响了电力运行系统时,会对电网安全和经济运行产生一定的危害,并且也需要制定科学合理的电能计量方案,以此保证电气化铁路的准确性。
1 电气化铁路的影响以及负荷特点
(1)电气化铁路对电网波形的影响。在电气化铁路中注入高次谐波电流,会对电网波形产生一定的影响。电气化铁力对电网波形产生的影响,使得电网波形发生畸变的现象,而在电网电压电流的信号中,使信号也不再是周期正弦信号,没有具备一定的平稳性。在对其进行分析时,电气化铁路会对电力系统谐波产生一定的影响,通常出现污染的现象,由于多次谐波的组合。在组合的多次谐波中,主要是奇次谐波。
(2)电气化铁路符合的特点。在电力系统中,电气化铁路是其主要的不平衡负荷和谐波源负荷。在电气化铁路中,通常是采用单相电力牵引,作为电力机车。当出现不对称的电流时,会对电力系统中的对称运行条件造成一定的影响,使运行条件出现损坏的现象,导致电力系统的负序分量大幅度增加。其次电力机车主要是整流型负荷,它会产生多次的谐波,并且注入电网中。在交流侧方面,电力机车会产生全部的频次谐波,并包括基波。当产生负序分量和谐波时并注入电网,从而会对电力系统产生严重的影响。
在电气化铁路中,电气牵引网的特点主要包括:用电量大、通常分布在较广的铁道线,并覆盖在广泛的公用供电区等。电力机车有着较大的功率和速度,并且负载状况也会发生频繁的状况,电力机车不仅会产生大量的电力谐波,且具备着不断变化的特点,也会对公用电网产生波动的现象,从而对电力系统产生严重的影响。
总而言之,电气化铁路用电负荷的特点主要包括:较大的容量和负序电流、较高的谐波含量;并且三相和电压会出现严重的不平衡现象,并且电流波形畸变等。用电负荷在具备着这些特点后,通常会对公用电网运行产生严重的影响,对电网的安全性和可靠性都产生影响。电气化铁路用电负荷不仅会对电力系统的电能质量和安全运行都会产生严重的影响,也会对电气化铁路牵引站的可靠性供电产生影响。而在危害电气化铁路因素中,主要就是电力谐波。
2 电力谐波计量方案
目前在谐波电能计量方式中主要分为两种,其一是感应式电能表,其二是电子式电能表。首先是感应式电能表,在谐波电能计量方式中,由于感应式电能表在工作时,有着较小的工作频率范围。在工频范围是45Hz-65Hz之间,它的铁芯才会对基波功率和电能进行测量。当输入信号的频率在发生变化后,使电流、电压磁通也会发生变化,而且电压和电流的夹角也会发生变化,从而引起驱动、抑制和补偿等力矩发生变化,造成计量出现误差的现象。当输入信号的频率不断增高时,误差向负方向也会增大,而计量只能得到较少的电量。在感应式电能表工作频率范围小于高次谐波的频率,从而感应式电能表不能在谐波电流中使用。
在电子式电能表对谐波电流进行计量时,由于数字化技术的快速发展,在很大程度上推动了谐波电流计量技术的发展,主要包括谐波和基波有功电能计量芯片和谐波无功电能计量芯片。在谐波电流计量技术中已经实现了非正弦计量。电子式电能表频率需要较宽的范围,当计量原理出现差异性后,在计量谐波电流时也会出现差异性。在利用电子式电能表进行计量时,主要有三种方式。
首先是普通计量方法。采用普通的计量方法对谐波电流进行计算时,需要利用数字乘法器的原理进行计量。在无功计量时,需要利用基波移相90度的方法。在普通电子表计量方式中,谐波源用户通常产生的谐波功率,会与基波功率相反,然后在向电网馈送,在普通电子表计量方式中会产生有功功率,造成总有功率的减少,也降低了有功电能。
其次是基波计量方式。在基波计量方式中,总有功功率与基波有功功率相等,当将非线性负载的影响消除后,通常也没有将对电网有害的谐波进行计算。
最后就是各次谐波叠加的计量方式。各次谐波叠加计量方式中当基波的有功功率加上各次输出谐波有功功率后就等于总有功功率。不仅将供电网电压中所造成损耗的谐波排除后,也计算了对电网有害的谐波有功功率,具备着较高的科学性、合理性和准确性。
3 选择谐波电流计量方案
(1)普通全波电能表。普通全波电能表应用在较广的范围中,有着最长的运行时间。在普通全波电能表中的有功电能中,主要是进行输入的谐波电能计量,将输出的谐波电能排除,主要适合在电网关口、电厂关口和非谐波源用户等进行计量收费,他们的电磁环境负荷都较为纯净。
(2)基波电能表。基波电能表可以有效的防止非线性负载对电能计量产生的影响,并且基波电能表计量出来的结果,通常都是按照谐波源用户的谐波情况。在基波电能表计量方式中,将电能计量点上的负谐波电能进行排除,只是对用户消耗的有功电能进行计量,并没有计量有害的谐波电能,因此,应用基波电能表只能是在电气化铁路等方面,对用户进行计量和收费。
(3)谐波电能表。谐波电能表在计量数据时,会大于和等于普通全波表所计量的数据。当谐波越大时,计量数据就会出现越大的差值。谐波电能表与其他两种计量方式相比有着更好的科学性、准确性和合理性。使用谐波电能表可以将用给谐波源用户消耗的有功电能进行全面的记录,同时也可以准确的计量用户向电网传输的谐波电能。谐波电能表作为有效的科学依据,可以帮助电力公司向用户征收较多的电费,并且也可以向污染电网的用户征收惩罚性电费。采用谐波电能表可以能够有效的抑制谐波污染,使电能质量得到有效的提高,另外也可以作为净化用电环境的有效手段。但是采用谐波电能表,需要耗费大量的成本。
4 总结
在电气化铁路负荷计量方案中,要对电气化铁路用电负荷的特性进行全面的分析,从而制定有效的计量方案。在制定计量方案时,要对普通全波电能表、基波电能表和谐波电能表进行全面的分析,然后根据它们的特性,从而选择最佳的计量方案,以此保证电气化铁路的准确性。
参考文献:
[1]朱彬若.电气化铁路负荷特性分析和计量方案研究[J].第四届全国电磁计量大会文集,2007(05).
[2]景德炎.电气化铁路负荷特性分析及供电方案相关问题的建议[J].会议论文,2008(11).
关键词 高速铁路电力供电系统
Abstract electric traction is a new type of rail transport traction power form. In the trunk railway, has a wide range of railway transportation and mining transport. Electric traction electrical energy is used as traction power, converting electrical energy into mechanical energy, drive train, EMUs and rail vehicles are a form of transport rail transport operation.
Keywords high speed railway power supply system.
中图分类号:U224 文献标识码:A
一、电力牵引供电系统的概述
(一)电力牵引供电系统
电力牵引供电系统,是指电气化铁路中由牵引变电所和接触网组成的向电力机车供给牵引用电能的系统。牵引变电所将电力系统通过高压输电线送来的电能加以降压和变流后输送给接触网,以供给沿线路行驶的电力机车。有些国家电气化铁路有时由专用发电厂供电。
电力牵引供电系统按照向电力机车提供的电流性质分为直流制和交流制,交流制又分工频单相交流制和低频单相交流制。我国电气化铁路采用工频单相交流制电力牵引,直流制电力牵引仅用于城市轨道交通运输系统和工矿运输系统。各种电流制的电力牵引供电系统的设备有很大的差别。
工频交流单相电力牵引供电系统主要有牵引变电所和牵引网组成,牵引网实行单相供电,由馈电线、接触网、轨道电路及回流线等组成。为了使电能有效、可靠地供给电力机车、开闭所等。我国规定牵引网额定电压为25kv,额定平率为50Hz。牵引供电构成的回路是:牵引变电所——馈电线——接触网——电力机车——钢轨和大地——回流线——牵引变电所。
(二)电力牵引特点
1、电力牵引机车本身不带燃料,可使用二次能源,为非自给式牵引动力,并由大容量电力系统供电,连接全国电网,能源有保证。
2、机车或动车组总功率大,具有启动和加速快、过载能力强,运输能力大等特点,能满足各种现代交通运输队快速、大运输能力的需要。
3、不造成空气和环境(噪声)污染,改善劳动条件。
4、电力牵引的总效率高,节约能源。我过的铁路机车牵引经历了蒸汽机车、内燃机和电力机车的发展阶段。
5、安全性高。随着信息技术、微电子技术的广泛应用,电力机车可实现实时检测故障、自动驾驶、遥测及遥控,电力牵引系统易于实现全面自动化和信息化,从而大力提高劳动生产效率和经济效益。
6、有利于铁路沿线实现电气化,促进工农业发展。
二、接触网供电概述
(一)接触网供电
从牵引供电回路可知,接触网受到牵引供电系统的影响。接触网是在电器化铁道中,沿钢轨上空“之”字形架设的,供受电弓取流的高压输电线。接触网是铁路电气化工程的主构架,是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路。
接触网主要由以下内容组成:①基础构件,如水泥支柱、钢柱及支撑这些结构物的基础;②基础安装结构件,这项内容的作用主要是连接接触网导线和基础构件;③接触网导线,这部分作用就是传输电流给电力机车;④其他辅助构件,包括回流线、附加悬挂等。接触网、钢轨与大地、回流线统称为牵引网。
接触网的电压等级:工频但相交流制度:25KV。
接触网主要通过单边供电、双边供电、越区供电及并联供电四种方式。
(二)优化接触网
接触网担负着把从牵引变电所获得的电能直接输送给店里机车使用的重要任务。因此接触网的质量和工作状态讲直接影响着电气化铁道的运输能力。为了减少接触网的弊端,我们主要通过;接触网的控制;供电方式的调整;防干扰设施来优化接触网。
1、接触网的控制
由于接触网是露天设置,没有备用,线路上的负荷又是随着电力机车的运行而沿接触线移动和变化的,对接触网提出以下要求:①在高速运行和恶劣的气候条件下,能保证电力机车的正常取流,要求接触网在机械结构上具有稳定性和足够的弹性。②接触网设备及零件要有互换性,应具有足够的耐磨性和抗腐蚀能力并尽量延长设备的使用年限。③要求接触网对地绝缘好,安全可靠。④设备结构尽量简单,便于施工,有利于运营及维修。⑤在事故的情况下,便于抢修和迅速恢复送电。⑥尽可能地降低成本,特别要注意节约有色金属及钢材。
2、供电方式的选择
供电方式直流制电气化铁路接触网普遍采用两边供电方式,在相邻的两个牵引变电所供电的接触网中间设置分区亭,将接触网连通。运行中的电力机车由两边的牵引变电所同时供电。这种供电方式可降低接触网中的电能损失,减小接触网的电压降,一个牵引变电所停电时,电力机车运行不致中断。交流制电气化铁路则常采用一边供电方式,接触网在分区亭处断开,分区亭只在一边牵引变电所停电时接通,由另一边牵引变电所越区供电。
3、防干扰设施的建立
防干扰设施为了减少接触网电流的电磁感应对沿线通信电路的干扰,在交流制电气化铁路邻近城镇的区段将接触网每2~4公里划成一个吸流分段,设置回流线和吸流变压器。这时,电力机车的电流沿回流线流回牵引变电所,从而沿轨道和大地流回的电流很少。回流线和接触网的电流近似相等,方向相反,这就大大减轻了电气化铁路对沿线通信电路的干扰。这种方式的缺点是吸流变压器串接在电路中,加大了接触网阻抗。日本新建设的工频单相交流制电气化铁路采用了自耦变压器方式,沿铁路每10公里左右设置一台自耦变压器。自耦变压器中性点接地,一端接接触网,另一端接回流线,称为正馈(电)线。正馈线和接触网电流大小相等,方向相反,同样起着减小对通信电路干扰的作用。另一方面,由于接触网和正馈线之间电压为二倍接触网电压,沿接触网电压降便大大减小。
三、牵引供电系统主要供电设备
(一)电气设备的概述:
一次设备分:开关电器、变换电气、保护电器、补偿电气、成套装置和组合电气。
(二)牵引变压器
电力变压器是变电所中最重要的一次设备,其主要功能是变换电压和传输电能,将一次侧的电能通过电磁能量转换的方式传输到第二侧,同时根据应用的需要将电压升高或降低,完成电能的输送和分配。
(三)变压器分类
1、按相数分:单相变压器和三相变压器。
2、按用途分:普通用途分升压变压器和降压变压器:其他用途分电炉变压器、电焊
3、变压器、整流变压器、掉压变压器和实验变压器等。
4、按铁芯结构分:心式变压器和壳式变压器。
5、按绕组数目分:自耦变压器、双绕租变压器、三绕组变压器和多绕变压器。
6、按绕组材质分:铝绕组变压器和铜绕组变压器。
7、按冷却介质和冷却方式分:油浸式变压器和干式变压器。
四、总结
本文通过对电力牵引供电系统的了解认识,更好的理解了接触网对我国高铁的应用。有效的协调了牵引供电系统可能对临近线路接触网的影响。减少接触网的弊端,实现我国高铁未来的高速的发展。
参考文献