前言:我们精心挑选了数篇优质人工智能导论论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
[关键词]人工智能;人才培养;AI技术人才
一国家对于高校人工智能教育的发展的重视
面对AI技术如火如荼地发展,我们国家对AI人才和人才培养都非常重视。2017年3月“人工智能”在政府工作报告中曾提及四次,指出要推动人工智能和实体经济深度融合。2017年7月20日国务院《新一代人工智能发展规划》[4]。《规划》指出完善人工智能领域学科布局,设立人工智能专业,推动人工智能领域一级学科建设,尽快在试点院校建立人工智能学院,增加人工智能相关学科方向的博士、硕士招生名额。鼓励高校在原有基础上拓宽人工智能专业教育内容,形成“人工智能+X”复合专业培养新模式,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。加强产学研合作,鼓励高校、科研院所与企业等机构合作开展人工智能学科建设。
二企业对于人工智能人才的需求
市场上AI技术人才非常稀缺,据腾讯研究院联合boss直聘的《2017全球人工智能人才白皮书》[5]显示:目前,全球大约有30万人从事AI工作。截止到2017年10月,中国人工智能人才缺口至少在100万以上。2017年头10个月,AI人才需求量是2016年的近两倍,2015年的5.3倍之多,年复合增长率超200%。百度、腾讯、阿里巴巴、京东等互联网巨头都在挖掘AI人才,纷纷开出了高额的薪资。2017年薪资最高的十个职位中AI类岗位占到1/2,其中语音识别、NLP、机器学习等职位平均月薪资超过2.5万元。
三高校AI人才培养的思考
高校具有多学科、高层次人才集中的特点,具备计算机与多学科交叉融合的优越条件;且大部分学校都开设有数学、物理等基础学科,具备夯实数学理论基础的条件;且人员相对固定,便于沟通交流,具备共同开展AI课题,促进发展AI技术的人力条件。但是遗憾的是我国开设人工智能课程的高校较少,2018年只有33所高校设立了智能科学与技术专业[6]。面对AI发展的火爆,国家对于AI人才发展的重视以及企业对于AI人才的严重需求,高校作为人才培养的主要来源,是不是应该思考AI人才的培养呢?AI人才可以分为三类:拔尖人才,研究性人才和应用型人才,呈金字塔性。当下已经有一批名牌大学开展了AI方向拔尖人才的培养,如北京大学图灵班、中国科技大学人工智能技术学院、西安交通大学人工智能拔尖人才培养实验班,南京大学计划成立人工智能学院等。但是金字塔的底层、中层更需要庞大的AI技术人才,如应用开发人员、数据工程师、AI和机器学习工程师、AI系统架构师、AI产品经理等岗位的人才,同样值得重视。很多专家都表示AI人才需要数学基础好、专业理论全面、具备一些工程基础,且有自主学习的能力。本文从夯实数学基础、人工智能方向课程的建设、实践能力的培养、自主学习能力的培养四个方面阐述高校关于AI人才培养的一些思考。
1奠定扎实的数学基础
在学习AI技术时,几乎所有专家学者都提出需要扎实的数学功底,数学功底的厚重程度决定了在AI技术上走多远。高等院校计算机专业都开设有“高等数学”“线性代数”“概率论”等数学课程,但是课时、难易程度不足,学生对于数学不够重视,或者觉得晦涩难懂,学习效果并不十分理想,因此加强数学基础的工作刻不容缓。可以通过必修和选修等方式开设“数据分析”“统计机器学习”“凸优化”等课程;通过微课或者MOOC等方式巩固数学基础的学习;通过优秀科普读物,如《数学之美》《编程之美》等书籍的推荐阅读激发学生兴趣;通过开展校内学术讨论、数学竞赛等方式促进学生学习数据的动力,逐步达到夯实数据功底的目的。
2人工智能方向课程的建设
很多高校计算机专业课程中只开设有《人工智能》导论,有的甚至没有。智能科学与技术专业开设有“人工智能”“计算机视觉”“机器人学导论”“计算智能”这几门课程,但是在编程、算法等方面不足。那么AI技术人才应具备哪些专业能力呢?如何从专业角度培养AI技术人才呢?2018年1月CSDN了“AI技术人才成长路线图”[7],通过专业路径和实战路径两方面介绍了AI技术人才需要具备的知识。需要具备Python、C++、Linux、CUDA编程知识,需要学习机器学习课程、掌握TensorFlow框架。该路线图中列出了机器学习算法工程师、数据科学家等10个岗位AI人才应具备专业知识和能力。微软公司也推出AI人才培养的10门免费课程,如“AI导论”“数据科学会用到的Python语言-导论”“AI领域运用的数学概要”“数据和分析所需要的道德与法律”“数据科学概要”“机器学习法则”“深度学习”“强化学习”“微软专案项目之人工智能”。同时在“文字和自然语言识别”“语音识别”“计算机视觉和图像识别”中选择其一。Google在人工智能学习网站开设有《MachineLearningCrashCourse(简称MLCC)》的免费课程[8],由机器学习概念、机器学习工程、机器学习现实世界应用示例三个部分组成。Intel近期也了三门免费的AI课程,分别是“机器学习基础”“深度学习基础”和“TensorFlow基础”[9]。AndrewNg在Coursera上也推出了机器学习的课程,且用比较通俗的语言讲解机器学习中各个算法。最近在Deeplearn-ing.ai和Coursera平台又开设了5门深度学习课程[10]。综上所述,不同的研究机构都着眼于AI编程基础、AI算法、AI框架、AI实践这几个方面。那么高校也可以借鉴这些经验,通过三个阶段分层次的开展相应的课程。
3实践能力的培养
AI技术不能纸上谈兵,必须动手实践才能真正掌握,可以从以下几个方面着手培养学生的实践动手能力。(1)设计教学环节时多从工程应用的角度来介绍,激发学生的兴趣,培养学生解决问题的能力。要求学生新手编程编程实现模型,充分理解算法的含义和原理到实现的过程。(2)在掌握一定的机器学习知识后,鼓励学生尽早走进实验室,接触科研工作。可以从一些AI应用方向作为入手,使学生了解自己的兴趣点、培养科学研究能力。(3)鼓励学生参加算法比赛。目前有很多AI方向的竞赛,如Kaggle上的挑战赛,国内阿里天池大数据竞赛等。通过参加竞赛刺激学生学习AI的动力和热情,使得解决问题的能力和实践动手能力都会大幅度提高。(4)鼓励学生到工业界实习。很多专家都指出AI人才应该具备一定工程基础。确实,学术界往往追求算法的性能,而工业界更重视经济效益和解决问题的有效性。到企业学习可以快速了解行业发展的框架,掌握算法转化到产品的过程。
4自主学习能力的培养
AI技术发展速度很快,要求不断地学习才能跟上节奏。可以从以下几个方面来培养学生的自主学习能力。(1)平时教学中,可以给出一些小型的项目,让学生自己寻求解决的方案,并把它作为考试成绩的依据之一。(2)提供给学生免费的AI慕课资源,让学生更好的学习和巩固相关知识。(3)课外可以开展学术讨论或者通过社团等方式开展AI方向的研讨,交流,给学生一个学习的平台,让学生尝试选择自己感兴趣的方向。也可以介绍一些近期的AI会议内容,开阔学生的眼界,使其了解AI发展的动态。(4)鼓励高年级学生订阅Arxiv,关注机器学习的顶级会议,如ICML/NIPS等。通过研读论文,动手完成论文中的实验发现新问题;或者扩展感兴趣的论文的实验部分;或者尝试寻求论文中有价值的地方,找到自己的研究方向。
>> 引入深度学习的人工智能类课程 中西合璧的人工智能课程双语教学模式 可调戏的人工智能 生活中的人工智能 不断超越的人工智能 逐渐靠近的人工智能 正在落地的人工智能 2035年的人工智能 航天类专业“人工智能”课程的教学探索 林业院校人工智能课程教学的思考 人工智能导论课程的兴趣教学法 人工智能概论课程的教学思考 “人工智能”课程教学的实践与探索 游戏开发应用中的“人工智能”课程教学方法探讨 人工智能的应用研究 人工智能的日常应用 人工智能的应用和发展 浅析电气自动化控制中的人工智能应用 分析继电保护中的人工智能技术及其应用 电气自动化控制中的人工智能应用分析 常见问题解答 当前所在位置:l)。在情境创设时,教师根据学生特点提出了多种应用需求,例如化妆品销售咨询等。学生利用该工具,兴趣盎然地开发了自己的小型专家系统,不仅理解了专家系统的特点、作用、运行方式等,还具有强烈的成就感。
2.2面向研究的情境创设
苏霍姆林斯基认为,研究型教学法应该充分体现学生的主体地位,激励、引导和帮助学生去主动发现问题、分析问题和解决问题,激发学生学习的内在兴趣和成就动机[4]。人工智能课程中包含了大量的前沿问题,研究型课题比比皆是,如何平衡这些研究课题与兴趣、实用的关系,是教学设计中重点考虑的内容。
下面以“规划”中的路径规划内容为例,详细分析以研究为导向的情境创设过程。表2给出了整个教学设计。
综合几次研究课题完成情况,班级中有1/3的学生通过广泛查阅资料和多次与教师讨论,提交了质量尚可的标准格式论文,并因此获得了学院的科研学分。除此之外,教师还组织这部分具备一定科研潜力的学生参加科研项目,进一步磨练科研技能,极大提高了学生的学习兴趣和能力。
3DBR驱动的教学过程
人工智能课程各单元内容相对独立,难以形成统一的联系,怎样验证各单元的学习效果?从提出问题到任务解决,每个单元的学习通常要跨越几节课甚至几周,怎样在此期间保持学生的兴趣和关注?
DBR是情境设计、实施、评价、再设计、理论形成等环节多次迭代循环的过程,柯林斯称之为“不断进步的修正”(Progressive Refinement),以检测设计的价值。因此,评价是教学过程中非常重要的一环。本课程教学主要做好两个环节,以驱动整个教学过程的推进。
1) 实践环节。
通常的实践环节是课程结束后固定时间的实际任务,而本课程的实践却贯穿整个教学过程,是单元教学、教师、学生之间的粘合剂。实践包括应用型实践和研究型实践,一般在每个单元教学开始,提出问题后,实践任务就被布置下去,例如前面所述的“黑白棋”、“路径规划算法研究”等。学生接受任务后,带着问题搜索解决途径,在此期间需要教师提供方法指导及答疑(既可固定时间,也可通过E-mail等形式)。及时地交流,特别是针对实际问题的交流,不仅有效率,而且便于教师及时调整教学设计。
2) 教学评价。
除了课程考核以外,每个教学单元结束时都有反馈和评价环节。评价方式包括单元测试、编写软件测试、研讨会等。具体采用何种形式,要根据前一阶段的反馈信息决定。这些来自学生反馈信息包括前一阶段学习的接受情况、兴趣点、其他课业繁忙情况等。在学期的不同时间点采用合适的评价方式,有助于加强学习刺激,总结和发现教学设计中的问题,及时调整。
通过上述两个环节的推动,精心设计的教学内容得以顺利实施并被学生欣然接受。2/3的学生在整个学期教学中都保持了积极的态度和充分的关注度,确实感受到人工智能的魅力,并能够从技术角度看待人工智能,消除了未学或初学时的神秘感。
4教学实施效果分析
1) 正效果分析。
中原工学院计算机学院作为普通工科院校,以培养实用型人才为主,人工智能并非主干课程,学生重视程度不足。两年来,经过教师与学生的共同努力,教学改革成果逐步体现。人工智能类学生人数从过去的5%上升到15%,科研论文数量从1%上升到20%。有20%的学生接触过或正在从事人工智能类项目的研究与开发,考研选择人工智能科目的学生比例从0上升到15%,考研成功人数占毕业生总人数的20%。
人工智能教学中采用的应用型与研究型情境创设,不仅促进了学生理解接受知识,而且锻炼提高了学生独立分析、解决问题及开发能力。学习也不再局限于课堂,而是拓展到图书馆、互联网等更广阔的空间。学生在学习期间保持了高度的关注,充分发挥了主动性和主体意识,为持续发展奠定了良好的基础。
2) 不足分析。
DBR的方法论能够促使教师在教学过程中不断完善教学设计,融合先进的教学理论及工具,逐步加深学习的理解和设计的提升,切实提高教学效果。然而,仍然存在一些DBR无法解决或完善的问题。具体表现在:
(1) 缺乏合适的教材。目前大多数教材的示例以解答式或推证式为主,设计型或实际项目案例较少。
(2) 投入时间限制。尽管上述教学设计和教学过程都经过精心准备与实施,但是要取得好的成效,还需要教师和学生都投入大量时间交流、研究或开发。而学生课业繁忙造成了实施的瓶颈。
这些不足制约了上述教学方法的实际实施效果,需要今后不断改进。
5小结
本文针对普通工科院校学生特点,将DBR研究成果应用于人工智能课程。教学效果表明,精心设计的应用型与研究型情境有助于维持学生长时间的关注度、主动性和兴趣;强调基于评价的修正使教学过程可调节,学生的学习效果更可靠。希望本文研究能够对人工智能教学及学生培养起到一定的参考作用,下一阶段的主要工作是进行适合的教材建设。
参考文献:
[1] 杨南昌. 基于设计的研究:正在兴起的学习研究新范式[J]. 中国电化教育,2007(5):6-10.
[2] 曾安,余永权,曾碧. 人工智能课程教学模式的探讨[J]. 江西教育学院学报:综合版,2006,27(6):40-43.
[3] 李鸣华. 案例教学法在高中人工智能课程中的运用研究[J]. 中国电化教育,2008(2):99-102.
[4] 杨种学. 研究型教学法在数据结构课程中的应用研究[J]. 计算机教育,2007(1):55-56.
DBR Utilized Teaching Method for Artificial Intelligence
WANG Lu, LU Xiao-xia
(School of Computer, Zhongyuan University of Technology, Zhengzhou 450007, China)
Abstract: In view of the characteristics of artificial intelligence curriculum, including abstract content and complex algorithm, and the actual needs of undergraduate teaching, combined with teaching practice, this paper discusses and sums up the teaching reform and innovation of undergraduate artificial intelligence curriculum from the teaching system, teaching content, teaching methods and assessment methods.
P键词: 人工智能;创新;本科
Key words: artificial intelligence;innovation;undergraduate
中图分类号:G642 文献标识码:A 文章编号:1006-4311(2017)22-0230-02
0 引言
人工智能是计算机科学的一个分支,是当前科学技术中正在迅速发展、新思想、新观点、新理论、新技术不断涌现的一个学科,其属于一门边缘学科,同时也是多个学科交叉而成的一门学科,包括语言学、哲学、心理学、神经生理学、系统论、信息论、控制论、计算机科学、数学等[1]。当前人工智能已经是很多高校计算机相关专业的必修课程,它是计算机科学与技术学科类各专业重要的基础课程,其教学内容主要包括自然语言理解、计算智能技术、问题求解和搜索算法、知识表示和推理机制、专家系统和机器学习等,国内外很多大学都意识到了其重要性,纷纷对其展开了教学和研究。人工智能课程包含多个学科,具有内容抽象、理论性强、知识点多等特点,且算法复杂,但是多数高校采用的教学方式仍是传统的课堂教学方式,即“教师讲、学生听”的教学模式,这种信息单向传输教学模式以教师为主体,学生只是在被动的接收知识;存在过分重视理论教学,忽视实践活动教学的问题,导致教育内容无法和社会接轨;人工智能教材理论性过强,学生在学习过程中常常感到枯燥乏味,进而对学习该课程失去热情[2],久而久之,不仅人工智能课程的教学质量和效果无法达到预期,甚至学生还会产生厌学心理。针对人工智能课程中现有的各项问题,本文作者结合自身丰富人工智能教学实践经验,参考人工智能课程特点和教学目标,从多个方面探讨和总结了人工智能,包括教学内容、教材选择、教学方法和考核形式等。
1 教学内容优化与更新
人工智能是一门崭新的学科。开设本课程首先是确定教学内容。通常来讲,人工智能学科的内容包括两个部分,具体:一是知识表示和推理;二是人工智能的应用。前者是人工智能的重要基础,后者主要介绍了几种人工智能应用系统,包括自动规划和机器视觉、机器学习、专家系统等。另外,课程内容中还包括了一些人工智能应用的实例,将实践和理论紧密结合起来[3]。
随着时代的发展和科技的进步,人工智能学科也取得了较大发展。基于此,人工智能学科也应该与时俱进,更新人工智能教学大纲,进一步完善其教学内容。修订后的人工智能教学大纲将人工智能分成两个部分,即基础部分和扩展应用部分。前者包括计算智能、搜索原理、知识表示等,后者包括智能机器人、智能控制、多智能体、自然语言理解、自动规划、机器学习、知识工程等。
教学内容的选择和确定应综合考虑多项因素,不仅要重视基础知识,也应注意推陈出新,随着科技的进步做到与时俱进,同时教学内容应符合现实的需求,能够与社会接轨,将理论和实践紧密结合起来,只有这样人工智能课程的教学质量和效果才能事半功倍。
2 教学策略及教学方法的改革创新
由于人工智能课程具有算法复杂、内容抽象、理论性强、 知识点多的特点,传统的教学模式已经无法满足人工智能课程的需求,教师应探索更加有效的教学模式和方法,确保人工智能课程能够取得良好的教学质量和教学效果。具体的改革和创新人工智能课程的手段和方法主要包括以下几个方面:
2.1 激发学生的学习兴趣 无论是经验还是常识都在告诉我们每个人最好的老师就是兴趣,学生只有对某门学科存在兴趣,才会更加主动积极的学习该门课程,从而获得良好的教学效果。比如,作者在课程的一开始先播放了一段著名导演斯蒂文・斯皮尔伯格的《Artificial Intelligence》的相关片段,由这个电影学生知道了世上存在人工智能的机器人,学生们随着电影情节的发展而深深感动,与此同时教师让学生思考和谈论人工智能是什么?研究人工智能的意义在哪里?实践发现,在课堂中加入电影因素,能够大大提升学生们的注意力,让学生更加专注在教学任务中,有效提高了学生探索人工智能的积极性和主动性。此外,在教学中还可以用动画、视频、图片等手段将反映人工智能最新研究和应用的成果展示出来,让学生更直观的感受人工智能的奥妙,从而投入更多热情学习人工智能课程。
2.2 面向问题的案例教学法 案例教学法是一种以案例为基础、以能力培养为核心的一种教学方法[11]。针对学校学生特点,我们采取了以下几种教学形式实施案例教学。①讲解式案例教学:这种案例通过教师的讲解,帮助学生理解抽象的理论知识点。案例的呈现有两种基本形式:一是“案例―理论”,即先给出教学案例,然后再讲解理论知识;二是“理论―案例”,即教师先讲解理论知识,再给出教学案例;通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。②讨论式案例教学:在课程初期将学生分成若干学习小组,每小组3~4人;教师将提前设计好的一题多解的教学案例以及收集的相关资料分配给每个小组,要求学生在课余时间通过自学和组内讨论的方式给出问题的不同解决方案。③辩论式案例教学:在课程后期,采取专题辩论的方式对综合应用案例进行讨论,能有效地启发学生全方位地思考和探索问题的解决方法,加深学生对人工智能的理解。
2.3 个性化学习与因材施教 在开展课程教育过程中应注意对学生进行个性化教学,结合学生特点因材施教。比如,在日常教学中多观察学生情况,鼓励那些应对教学任务后仍存在余力的W生深入探索较深层次的课程及相关知识,同时友善面对学习较差的学生,分析其学习过程中面对的困难,有的放矢地采取应对措施,帮助其不断进步;在教学过程中让学生以读书报告的形式多多思考,鼓励学生发散性思考问题,鼓励优秀学生进行深一步的探讨,并且教师应帮助具有新颖思想或论点的学生将其智慧以科技论文和发表文章的形式转化为成果。
2.4 注重综合能力培养 在研究型教学中任务驱动是一种常用的教学方法,其中心导向是任务,学生在完成任务的同时也在吸收和掌握知识。通常来讲,该教学方法的步骤是:教师提出任务师生共同分析以得出完成任务的方法和步骤适当讲解或自学、协作学习完成任务交流和总结。”[3]该教学模式不仅有利于培养学生的创新能力和创新意识,还能够培养学生解决实际问题的能力,提高其综合实力。不仅如此,由于该教学模式通常是以小组协作的方式进行,教师给出研究范围,学生自愿结组并选择具体的题目,经过分析和讨论后以程序设计或者论文的形式协作完成研究。由此可知,学生是在以团队的力量解决问题,这十分考验学生的团队协作能力,对于学生团队合作精神的培养至关重要,且在完成任务的过程中学生需要查阅大量的资料,久而久之学生收集资料和创新能力势必会得到提升。
2.5 采用启发式教学 人工智能的很多问题都较为抽象,对学生理解力的要求较高,因此,在实际的教学过程中教师应有意识的就课程内容提出相关问题,让学生自己独立思考,鼓励学生提出自己的想法和解决方案。然后回归到课程上,对比分析教材上的解决方案和学生自己的解决方案,如此不仅培养了学生独立思考的能力,也增加了学生参与教学活动的意识,提高了学生的学习热情。比如,在讲到较为抽象的“遗传算法”时,先提出一个问题,即“遗传算法如何用于优化计算?”,然后从“达尔文的生物进化论”入手,讨论“遗传”、“变异”和“选择”作用,之后举例分析,启发学生思考“遗传”、“变异”和“选择”的实现,最后师生一起导出遗传算法用于优化计算的基本步骤。如此既完成了教授遗传算法的目的,也锻炼了学生逻辑思维的能力,教学效果良好[4]。
3 作业和考核方式的改革创新
过去的课程作业都是单一书面习题作业,发展至今,课程作业形式已经发生了变化,更加丰富多样,包括必须交给教师评阅的书面家庭作业和不必交给教师的课外思考题目、口头布置的思考题或阅读材料以及大型作业等。其中通过网络就可以完成上交作业,并且教师批阅作业后也可以通过网络返回给学生,实现了网络化。课程的考核方式较之以前也发生了较大变化,加强了平时思维能力的考核,更加注重学生实验能力和动手能力的培养,不再是绝对的一次考试定成绩,而是在总评成绩中加入30%的平时成绩,如此不仅减轻了学生的期末负担,也迫使学生更加重视平时的学习思考,有利于课程教学质量的提升。
4 结束语
本文是以提高教学质量为目标,结合教学实践,从教学体系、教学内容、教学方法、考核方式等方面对本科人工智能课程的教学改革进行了探讨,总结了该课程在教学和实践方面的一些教改举措。这些举措符合二十一世纪高校教学的要求,可以支持教师提高教学手段现代化的水平,同时更贴合学生的学习需求。作为该课程的授课教师应始终保持对教学内容的不断更新、教学方法的多样化,才能激发学生的学习兴趣,培养他们的思维创新和技术创新的能力,最终提高本课程的教学质量。从学生的反馈来看,作者所总结的教学实践具有明显的教学效果。但仍有许多方面做得不够,今后将继续在教学过程中不断总结成功的经验,吸取失败的教训。
参考文献:
[1]蔡自兴.人工智能及其应用[M].三版.北京:清华大学出版社,2007.
[2]谢榕,李霞.人工智能课程教学案例库建设及案例教学实践[J].计算机教育,2014(19):92-97.
[3]蔡自兴,肖晓明,蒙祖强.树立精品意识搞好人工智能课程建设[J].中国大学教学,2004(1):28-29.