美章网 精品范文 负荷理论论文范文

负荷理论论文范文

前言:我们精心挑选了数篇优质负荷理论论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

负荷理论论文

第1篇

关键词超市陈列柜风幕CFD热负荷分析湿度场

1引言

陈列冷柜已经在各类超市中已得到认可和普及,内外侧的隔热一般采用风幕。但是风幕对周围空气有较强的卷吸作用;另一方面,冬季陈列框风幕的冷泄漏又形成超市空调系统的一个重要冷负荷。因此,研究陈列柜风幕系统形成的影响因素是设计节能、性能优良的陈列柜的关键,也是设计超市空调系统的依据。

国内外对风幕的研究主要集中于温度场和速度场,如DavidStribling仿真了简化的冷柜,将他的误差主要归结于对湿度场的研究[1]。

南加州Edison制冷实验室(SCERTTC)定量测试的典型陈列柜的冷负荷分布情况,提出陈列柜73%的能耗来自风幕的耗

散[2]。

本文采用CFD方法对立式陈列柜的风幕系统进行仿真,以期为陈列柜风幕系统设计提供设计思路。

2CFD模型和边界条件

2.1计算模型

立式陈列柜通常成排放置,其长度方向尺寸远大于高度和深度方向,故可简化为二维模型。卧式陈列柜的结构如图1所示。计算时忽略外部辐射和绝热层的传导换热。回风空气在流道内经过蒸发器,温度、湿度降低后,经过喷射口水平射出,形成卧式陈列柜的风幕。与立式陈列柜相比较,卧式陈列柜的出风速度较低,在浮升力的影响下,风幕有较大的变型。因此本文中紊流模型选用带浮升力项的雷诺应力模型(ReynoldsStressModel)。

湿度场的采用简化的组分平衡方程:

m1表示组分1的质量分数;J1是扩散通量;R1是反应生成率,本案例中为0。我们把水蒸气在陈列柜中生成小液滴的反应,简化为水蒸汽低于当地露点温度就产生小液滴,且在固体壁面不凝结。

图1卧式陈列柜结构示意与实验点分布图

2.2边界条件的处理

1)为使求解过程稳定,所有边界均采用速度为零,绝热的第一类边界条件,外部空间为大空间,温度为27℃,绝对湿度为10g/kg。

2)进风口按实验值设定速度、温度边界条件;回风口边界条件按进风口设定为-10Pa的压力边界条件。进风口的绝对湿度为0.2g/kg,温度为-30℃,送风速度0.6m/s。

3)壁面函数采用Spalding方法处理,该方法比较适合于Pr<1气体。

4)为了加快收敛速度,动量方程采用QUICK算法,压力方程采用标准SIMPLE算法。

2.3实验装置与误差分析

计算所用的陈列柜原型被放在一个独立的房间内进行测试,该房间温度波动小于1℃,湿度波动小于0.2k/kg。温度的测量采用T型热电偶,速度测量采用热球风速仪,湿度的测量采用电阻型高分子湿度传感器,并用TESTO-400型测量仪进行校准。实验过程中,数据采集使用KEITHLEY-2700数据采集仪,测试前将热电偶放在冰水混合物中进行校准。

实验值与计算值比较如图2、3、4所示。结果显示:说明本文建立的模型基本能反应其速度场与温度场的实际分布。

图2测试点温度比较图

图3测试点绝对湿度比较图

图4测试点速度比较图

分析实验值与计算值之间存在的误差,认为主要来源于以下4点:

(1)由于采用直接测量法,测量所采用的湿度传感器和热球风速仪对风幕有一定的干扰作用,因此存在一定误差。

(2)计算模型中仅考虑对流换热的影响,并对模型进行了简化。实际工况下,辐射传热和由风道外侧保温层进入的传导热对温度场也有一定影响。

(3)在数值计算中,湿度场并未完全耦合。尽管在风幕上方的湿度测量结果显示有一层湿空气饱和区,形成的小液滴必定会在重力的影响下对湿度场有一定的作用,但是在CFD计算的每个网格中,仅在扩散方程中处理湿空气,所以会产生一定的误差。

(4)另外,陈列柜外侧存在一定的乱流干扰。所以,实际情况下陈列柜风幕的隔热效果比CFD计算稍差。

3CFD分析

3.1流场分析

CFD计算的优点在于能比较方便地改变边界条件及其参数,分析各参数的影响并对其优化,减少实验试制的次数,以节约研制费用并缩短周期。从风幕的流场图(图5)可以看出风幕按其结构可分为三个不同的区域:

图5陈列柜流函数分布图

第一个区是出口区,由于风口仅仅采用两片薄板作为气流喷射方向的引导。所以出风口的速度分布不理想,主要表现在:1.出风口的横截面没有均匀的速度梯度,导致风幕的脉动速度较强,不利于隔热和隔湿。如果采用塑料孔板整流,风幕的水平方向性会更强,脉动速度较弱,隔热隔湿的效果会更好。

图6陈列柜温度场分布图

第二个区是发展区,在这一区域,风幕在浮升力的作用下有较大的变形,风幕的主流与方向与陈列柜底板板呈45度角。在这一区域,风幕的中心速度进一步降低,它的两侧面受到黏性力的作用,而逐渐耗散。同时在其下方形成一个涡流。当风幕的主流遇到陈列柜底板后,风幕的主流再次改变方向,顺着底板流动,并在其上方形成一个较长的涡流。该涡流的底部与温度较低的风幕接触,顶部与陈列柜上方的热湿空气接触,所以这个涡流循环是陈列柜热湿负荷的主要来源之一。

第三个区是回风区,在该区域,风幕在回风口的抽吸作用下重新汇合。但是其上方有一定的空气涡流,风幕的底部又受到陈列柜壁面的影响,气流的方向不一致,导致风幕的温湿度进一步升高(见图6)。

3.2湿度场分布

从绝对湿度场图(图7)来看,从蒸发器排出冷空气的相对湿度一般为85%,由于送风通道有一定的漏热,使得出风口的相对湿度降低至70%左右。在风幕与环境热湿空气交换的过程中,第一区域上方的绝对湿度与相对湿度最大,极有可能在该处形成小液滴。在回风口附近,温度梯度比绝对温度梯度大,所以应该产生回风口上方的相对湿度回风口下方的相对湿度小的现象。这一现象在实际测量中得到了证实(见表1)。

图7陈列柜绝对湿度分布图

利用CFD计算,陈列柜热负荷的分布如表2所示。在试验工况下陈列柜的主要热负荷来自风幕的显热负荷见图8。

图8陈列柜热负荷分布图

陈列柜温湿参数表表1温度(K)绝对温度(g/kg)

蒸发器出口2430.2

出风口244.980.2

回风隔筛252.980.74

回风通道入口253.350.74

总增量10.350.54

陈列柜的热负荷分布表表2

显热负荷潜热负荷

总热负荷(J/m)488.7

出风口通道(%)16.9-

风幕(%)68.4811.4

回风口通道(%)3.17-

所占比例(%)88.611.4

现在的研究还存在一些问题。首先,如何准确测量风幕的速度场是困扰实论证的一个难题。由于陈列柜的速度场直接影响其温度场与湿度场的分布。用一系列详细的温度场分布图来论证CFD计算的合理性也不失为一种方法。其次,CFD模型还不能精确的计算风幕的各个场分布情况,如何使计算值与测试值相吻合可以从调整紊流模型和避免过多的结构简化入手。最后,蒸发器的结霜与融霜过程对风幕隔热性能有较大的影响,考查风幕的隔热性能还缺少一个比较权威的指标,这些问题还有待进一步的研究。

4总结

本文采用雷诺应力模型建立了超市陈列柜双层风幕的数学模型并进行了实验验证,研究表明风幕的发展可以分为三个不锈钢的区域。本文同时利用CFD方法的灵活性,对风幕的温湿度场进行模拟,分析了风幕各个阶段的热负荷分布,证明了解决风幕变形与耗散是设计高效节能陈列柜的关键。最后,提出了一些有待进一步研究的问题与解决思路。

参考文献

1DavidStribling,Savvas,A.Tassou,DouglasMarriott.Atwo-dimensionalCFDmodelofarefrigerateddisplaycase.ASHRAETrans,1996.

第2篇

关键词:热电冷联产负荷模拟计算写字楼负荷预测模型

1.前言

在热电冷联产系统的方案设计中,热电冷负荷的模拟计算是热电冷联产系统优化设计的基础,负荷计算结果的准确性对联产系统优化设计的成败起着至为关键的作用。然而,在建筑的规划阶段,一般只能确定该建筑最基本的信息:如使用功能和相应面积等,它反映的只是该建筑类型的共性。如何从这些基本信息来模拟不同建筑类型的热电冷负荷呢?

目前,在热电冷联产系统方案设计中,热电冷负荷计算常采用建筑物的设计负荷来进行,即根据每平方米的设计热负荷、冷负荷与电负荷来计算建筑物的总热电冷负荷。楼宇热电冷联产系统机组的选取,常采取以电基本负荷定机组容量、电力并网不上网的设计原则,经济性的评价也采取规定运行小时数的方法来进行。这种传统的设计方法可以初步确定机组的容量,但由于设计负荷不能反映出不同建筑类型负荷的逐时变化特点,不能反映热电冷负荷间的相互作用与联系,方案也就难以在分时电价模式下进行模拟,也就不能给出各个不同时段机组具体的运行策略,不能对系统进行全年逐时的技术经济模拟分析[1-2],因而,基于传统设计负荷方法的联产方案,也就难以做到真正的优化设计。

本文在对不同建筑类型负荷的基本构成及变化特点进行分析的基础上,提出利用“负荷因子”来反映不同建筑类型负荷的逐时变化特点,进而得出了负荷模拟计算的基本原理;并以写字楼为例,提出了写字楼的负荷预测模型,

2.负荷模拟计算原理

在建筑的规划阶段,一般只能确定该建筑最基本的信息,如建筑的使用功能和相应面积等,每种建筑类型负荷的基本构成及变化特点是不一样的。负荷的构成及大小由建筑的使用功能、建筑级别等决定,它反映了设计负荷的概念;而负荷的逐时变化特点主要由建筑的使用功能、作息模式等因素决定,它主要反映了不同建筑类型之间差别。因而,对同种类型建筑来说,负荷的逐时变化特点可以利用一个反映该建筑类型属性的无因次因子来表述,在这里,我们把这无因次因子称为“负荷因子”,它反映的是负荷的逐时变化信息,是一个介于0~1之间逐时变化的无纲量数。各不同建筑类型的“负荷因子”,是在对该建筑类型的负荷变化机理进行分析的基础上,模拟计算而获得的。在不知道建筑更深入信息的情况下,其可根据该建筑类型的典型设置条件来相应求取。

2.1冷热负荷的计算

建筑的冷热负荷主要包括:围护结构传热负荷、新风负荷、人员设备负荷等,这三种负荷基本上各占总负荷的三分之一左右。围护结构传热负荷主要与建筑的围护结构及地理位置有关,而对于同地同种类型同档次的建筑而言,围护结构一般相差不大。新风负荷主要与人员的作息时间及密度等相关,人员设备负荷的大小主要与建筑类型及作息时间有关。当建筑类型确定时,人员设备及新风负荷的相对逐时变化信息就可基本确定了。因而,冷热负荷逐时的变化信息主要与建筑类型有关,即“负荷因子”主要由建筑类型来决定。

另外,由于同种类型建筑的级别和服务对象的差别,其冷热负荷相对大小也会相差较大,因而,可将每种类型建筑的冷热负荷分高、中、低三个等级来处理。这样就可通过设计负荷或在调研分析的基础上,确定不同等级负荷的相对大小,结合“负荷因子”的概念,就可最终确定规划阶段不同建筑类型的逐时冷热负荷,其建模计算流程如图1

2.2电负荷的模拟计算

电力负荷主要由不同建筑功能房间内各种用电设备所造成。电力负荷的大小及逐时变化

特征与建筑物内各种用电设备的安装功率、设备的耗电使用性能及作息时间直接相关。

根据常见的用电设备,电力负荷主要由如下几种类型构成:

(1)照明:包括各种功能房间照明(如办公室、客房、商店等)、楼梯过道照明、立面照明、安全和疏散诱导照明等;其安装功率主要取决于建筑类型和房间功能,不同的建筑类型和房间功能有不同的照明安装功率指标;而各设备耗电使用性能主要与使用的照明设备性能相关,作息时间由功能房间所决定;

(2)空调:包括冷冻泵、冷却泵、冷却塔、采暖泵、风机盘管、空调箱、新风机组等;不同空调形式的电耗特点也不相同;

(3)动力运输:主要指电梯,如客梯、货梯、消防电梯、观景电梯、自动扶梯等。电梯功耗受到楼层高度、上下电梯人数、运行时间等因素的影响。

(4)常用电器:主要指各功能房间内所使用的电器设备;如办公室内的电脑、打印机等,电器设备种类及其安装功率可由房间功能决定,对应不同的功能房间,各设备种类及相应的安装功率不同。

(5)其它:包括各种生活水泵、消防、排烟、安全监控、损耗等;

通过上述对各用电构成的分析,可以发现:建筑类型或房间功能决定影响着其用电设备的种类、相应设备的安装功率及作息时间等,因而,也可利用“负荷因子”的概念,反映不同建筑类型电负荷的逐时变化特点,电负荷的相对大小可由建筑负荷的构成、各用电设备类型的典型耗电性能等来确定。电力负荷预测模型的计算流程如图2。

逐时电负荷的计算公式如下:

(1)

其中,为逐时总电负荷,n代表各建筑类型中各功能房间类型,j为各功能类型房间内所分担的设备类型,如照明、空调、电梯、电脑等,为各功能区面积比,,为各设备投入使用系数,它主要反映各时刻设备投入的相对量,为各设备的实际功耗性能。为与的乘积,它反映的是各设备逐时耗电系数,为“负荷因子”,为负荷设计指标。

图1冷热负荷计算模型流程图

图2电力负荷计算模型流程图

3.写字楼热电冷负荷计算模型

根据以上计算原理,在对北京典型中高层(7层~20层)写字楼进行大量的实地调研分析的基础上,可得出应用于写字楼热电冷负荷预测的计算模型,下节为某典型写字楼热电冷负荷计算模型的设置条件。

3.1典型设置条件

3.1.1各功能区面积比

对于典型的写字楼而言,功能房间除了办公间外,还应有一些保证办公正常运转的辅助房间,如冷站、机房、职工餐厅、卫生间、楼道及大厅等,另外,由于停车场有地上地下之分,故将其单独列出,其不作为写字楼的辅助功能区。各功能区的对应面积比如表1

表1写字楼各功能区对应面积比建筑分区

办公区

公共区

辅助功能区

总计

房间功能

办公间

过道+电/楼梯间

卫生间

冷站+地下室

大厅+门厅

职工餐厅

空调机房

面积比

73%

8%

2%

5%

5%

5%

2%

100%

另外,对人员密度而言,办公区可取为0.1人/m2,辅助功能区可取为0.03人/m2

3.1.2各时段人数相对百分比

由于写字楼具有较强的作息规律,根据调研结果,典型写字楼的作息时间可设置如表2

表2各时段人数相对百分比

各时段人数相对百分比

时间段

22:00-6:00

7:00

8:00-17:00

18:00-19:00

20:00-21:00

工作日

0%

10%

100%

30%

10%

节假日

0%

0%

25%

10%

0%

3.1.3各用电设备额定功率指标

(1)照明根据建筑照明标准及实地调查结果,写字楼各功能区照明安装功率指标见表2;

(2)办公设备办公间电脑安装功率取为25W/m2,打印机、复印机等可取为5W/m2;

(3)电梯对于建筑层数在7~20间的写字楼,根据调研结果,其单位面积电梯安装功率基本满足y=12.1-0.27×n其中n为楼层数,y为电梯安装功率(W/m2),现取中间值8*W/m2;

(4)空调根据理论计算及调查结果,可得出各种空调设备的输送系数范围,其中冷站部分各设备的输送系数见表4;

(5)其它设备其他用电主要包括各种生活水泵用电、安全监控、地下车场照明及送排气用电等;由于生活水泵主要是满足人员的用水要求,根据这类生活水泵的性能特点及人均日用水的标准,可以确定各种生活水泵消耗每单位电功供水所能满足的人数。安全监控、地下车场照明及送排气用电等可根据调研结果概算。

表3写字楼各功能区照明安装功率指标房间功能

办公间

冷站+地下室

大厅+门厅

内部餐厅

过道+电/楼梯间

卫生间

一般照明

非常照明

单位面积功率(W/m2)

20

10

15

20

10

5

15

表4冷站部分各设备的输送系数冷站部分各设备

冷却水泵

二次泵系统

一次泵系统

冷却塔

冷冻水一次泵

冷冻水二次泵

冷冻水泵

输送系数范围

35~45

35~45

32~42

30~45

150~200

缺省输送系数

38

38

34

32

160

3.2冷热负荷计算模型

根据上述设置参数,利用DeST对典型的写字楼进行冷热负荷计算,得到写字楼全年的冷热负荷逐时变化无因次因子,即负荷因子,如图3、图4。根据负荷因子及写字楼的典型设计负荷,就可以计算写字楼的冷热负荷。

图3(中高档)写字楼冷负荷“负荷因子”

图4(中高档)写字楼热负荷“负荷因子”

3.3电负荷计算模型

3.3.1耗电系数

耗电系数是用电设备逐时电耗与其额定功率的比值,它集中反映了各用电设备的实际耗电性能、同时使用系数等因素。正由于写字楼作息的规律性,导致了多种用电设备的耗电系数一般也只呈现工作日与节假日的差别,因而在下列部分用电设备的耗电系数图中,也只列出工作日、节假日的逐时耗电系数,其中前24小时为工作日,后24小时为节假日。

由于冷冻泵、冷却泵、冷却塔、采暖泵、风机盘管等空调相关设备的电耗与冷热负荷有关,因而这部分用电设备的耗电系数不能简单的采用上述工作日、节假日的区别来进行描述,其需根据冷热负荷及设备的性能来进行计算。当给定典型写字楼的冷热负荷时,就可得出空调相关设备全年逐时的耗电系数。

图5办公间照明设备耗电系数

图6办公间办公设备耗电系数

图7办公间风机盘管耗电系数

图8公共区电梯耗电系数

3.3.2电负荷计算模型

在求得各用电设备的额定选型功率和耗电系数后,就可以根据公式(1)得出写字楼建筑电负荷的逐时电力负荷。图9~图12即为不同空调系统中高档写字楼的电负荷的“负荷因子”及该设置条件下写字楼的单位面积电负荷。

图9电“负荷因子”(风机盘管+新风)

图10电负荷“负荷因子”(全空气系统)

图11写字楼单位面积电负荷(风机盘管+新风)

图12写字楼单位面积电负荷(全空气系统)

4.应用实例

为对负荷模型的准确性进行检验,利用北京某一具有代表性的中高档写字楼实际调研数据与负荷预测值进行比较。由于该写字楼冷热负荷尚无实测数据,在此只对电负荷模型进行校验。在应用负荷模型时,考虑了该楼的一些实际情况,对电负荷模型进行了充实修正。如图13~16所示,在全年逐时模拟的大多数时段内,逐时电力负荷预测值的大小及变化趋势与实际值几乎一致,该预测结果已可满足设计要求。另外,从电力负荷延时曲线的比较中,还可以看出:对于腰谷段电力负荷,负荷构成较为稳定,模型预测值与实际测量值非常吻合,而对于尖峰段电力负荷,由于制冷耗电不定因素的增多,预测难度加大,因而,尚有必要对冷热负荷到电力负荷的转变关系进行更深入的研究。

图13北京某写字楼2002年实际耗电曲线

图14北京某写字楼2002年计算耗电曲线

图1512月20日-12月21日实测值与模拟值比较

图162002年实测与预测电负荷延时曲线比较

5.小结

本章主要分析讨论了热电冷联产系统中负荷的预测模型研究,提出了利用“负荷因子”来反映不同建筑类型的逐时负荷变化特征,进而提出了针对不同建筑类型的特征分别构建热电冷负荷计算模型的建模思路。并以写字楼为例,建立了热电冷负荷预测模型,并对其电力负荷模型进行了初步的验证,实测值与预测值吻合较好,其可用于写字楼联产系统中负荷的模拟预测,为热电冷联产系统的优化设计奠定了基础。

参考文献

第3篇

贯流式水轮机的流道形式和轴流式水轮机不同,为保证向导水机构均匀供水和形成必要的环量,保证导叶较平滑绕流,轴流式水轮机需设置蜗壳,其流道由蜗壳、导水机构和弯肘型尾水管组成。贯流式水轮机没有蜗壳,流道由圆锥形导水机构和直锥扩散形或S型尾水管组成。通常采用卧轴式布置,从流道进口到尾水管出口,水流沿轴向几乎呈直线流动,避免了水流拐弯形成的流速分布不均导致的水流损失和流态变坏,水流平顺,水力损失小,尾水管恢复性能好,水力效率高。灯泡贯流机组的发电机装置在水轮机流道中的灯泡形壳体内,采用直锥扩散形尾水管,流道短而平直对称,水流特性好。大型贯流机组几乎都是灯泡机组,中小型多采用轴伸式、竖井式等形式。

贯流式水轮机单位过流量大,转速高,水轮机效率高,且高效区宽,加权平均效率也较高,具有比轴流式水轮机更优良的能量特性。其特征参数比转速ns、可达1000以上,比速系数可达3000以上。与轴流式水轮机相比,在相同水头和相同单机容量时,其机组尺寸小,重量轻,材料消耗少,机组造价低。贯流机组电站还可获得年发电量的增加。

贯流式水轮机的空化性能和运行稳定性也优于轴流式水轮机,其空化系数相对较小,机组可靠性高,运行故障率低,可用率高,检修时间缩短,检修周期延长。对于低水头资源开发,贯流式水轮机的稳定运行范围宽,在极低水头时也能稳定运行(如超低水头1.5m以下),是其他类型的水轮机不可比的。如广东白垢电站,额定水头6.2m,最大水头10.0m,但在1.3m水头时仍能稳定运行。

贯流式水轮发电机组结构紧凑,布置简洁,厂房土建工程量较小,可节省土建投资。贯流机组设备运输和安装重量较轻,施工和设备安装方便,可缩短工期,实现提前发电。根据国内外有关水电站的统计资料,采用灯泡贯流机组比相同容量轴流转桨机组,电站建设投资一般可节省10%~25%,年发电量可增加约3%~5%。如我国广东白垢和广西马骝滩水电站,投资节省分别达22.6%和24%。小型水电站采用轴伸贯流机组与立式轴流机组比较,也可节省建设投资约10%~20%。由此可见,贯流式水轮机是开发低水头水能资源的一种最经济、适宜的水轮机形式,具有资源利用充分、投资节省的优势和电量增值、综合效益增值的效果。

2国内外贯流式水轮机的应用现状

贯流式水轮机自20世纪30年代问世以来,因其优良的技术经济特性和适用性而得到广泛应用和迅速发展,包括灯泡贯流发电机技术在内的贯流机组技术日益成熟,贯流式水电站的开发、设计、运行技术与经验日益丰富。国外水头25m以下的水电开发,已出现取代轴流式水轮机的局面。贯流机组技术在1960~1990的发展最为迅猛,这一时期投入运行的贯流机组,最大单机容量达65.8MW(灯泡贯流,日本只见),最大水轮机转轮直径达8.2m(竖井贯流,美国墨累),最高工作水头达22.45m(灯泡贯流,日本新乡第二)。

我国从20世纪60年代开始贯流式水轮机的研究和应用,到20世纪80年代,贯流机组技术及其应用取得突破性的进展,1983年引进设备的第一座大型灯泡贯流机组电站一湖南马迹塘水电站建成,1984年自主开发的广东白垢电站转轮直径5.5m,单机容量10MW灯泡贯流机组投运,标志着具备自行开发研制大型贯流机组设备的能力。贯流式水轮机的应用研究和运行技术也获得了发展,积累了经验。最近20年来,相继开发建成引进设备、技术合作或自行装备的大型灯泡贯流机组电站数十座,如凌津滩、王甫洲、尼那、洪江等。其中洪江水电站最大工作水头27.3m,单机容量45MW,是目前世界上应用水头最高、国内单机容量最大的灯泡贯流机组。国内已运行的灯泡贯流式水轮机最大转轮直径已达7.5m。目前规划或在建的贯流式水电站遍布全国各地,在建的广西长洲水电站装机15台,总装机容量达621.3MW。在西北地区,20世纪80年代开始贯流式水电站的规划设计,并完成了柴家峡等电站的可行性研究。在黄河干流上现已建成青海尼那电站,宁夏沙坡头电站即将竣工,甘肃柴家峡、青海直岗拉卡等电站在建。尼那电站是我国海拔最高的大型灯泡贯流机组电站,沙坡头则是应用于高含沙水流的第一座大型灯泡贯流机组电站,各具特色,为贯流式水电站的开发提供了新的经验。

对于低水头小型水电站,轴伸贯流水轮机和竖井贯流水轮机具有与灯泡贯流水轮机相当的技术经济优势,国外20m以下的小水电开发,已逐步取代轴流机组。据文献介绍,国外已运行的轴伸贯流式水轮机转轮直径达8.6m,单机容量达到31.5MW,最大使用水头达到38m。我国轴伸贯流式水轮机的技术开发起步较晚,自行研制的GZ006、GZ007(5叶片)等转轮的性能达到或超过国际先进水平,但尚没有得到普遍的技术推广和形成相应的生产和市场规模。国内已运行的轴伸贯流水轮机多采用定桨式转轮,最大转轮直径2.75m,单机容量3.5MW,最大使用水头22m。而竖井贯流和全贯流机组技术开发程度较低,应用很少,与国外存在明显差距。

3贯流式水轮机的应用及技术发展探讨

我国水电资源丰富,第四次水力资源复查成果显示,全国江河水电资源蕴藏量达7亿kW,可开发量5亿kW,经济可开发量4亿kW。现已开发量1亿kW,只占到经济可开发量的25%。我国江河的低水头水力资源,根据文献估算,水头在10m左右的资源量占到可开发资源的约500,达0.2亿kW以上。此外,我国大陆和岛屿海岸线蕴藏着巨大的海洋潮汐能资源,可开发量超过0.21亿kW,尚未进行规模开发。以上数据说明,我国适用于贯流式水轮机开发的低水头水能资源蕴藏巨大,贯流式水轮机应用前景广阔,需求巨大。经过40余年的研究与实践,我国对贯流机组设备开发、研制以及贯流水电站设计和运行技术都取得了很大的发展和成就。对于25m以下低水头水电开发,优先选择贯流机组,已基本形成共识。但目前国内贯流机组设备技术和供给能力还不能满足水电建设的需要,许多大型或顶级的机组设备需要国际市场供货,国内外同类产品在设备性能、单位千瓦材料消耗等技术方面存在着较明显的差别,中小型贯流机组产品的多样性和技术适应性也不能满足国内或适应国际市场的需求。由于研发能力和技术水平的限制,又影响贯流式水轮机的广泛应用。因此,全面提升我国贯流式水轮机的技术水平,任务迫切,意义深远。

推进我国贯流水轮机技术的进步,应当关注贯流机组大型化技术的发展,并致力于提高国内贯流机组整体技术水平。

根据对贯流式水轮机的应用及其技术发展的分析,应用水头逐渐提高、贯流机组大型化是国际贯流水轮机技术发展的趋势,这也和我国低水头水电开发对大型贯流机组的应用需求相吻合。贯流机组对开发低水头水电资源具有优势,而这些资源的开发地点往往位于经济发达、人口稠密的平原或河谷地区,自然资源富集或处于交通要道(如黄河上游等地区)。这类水电资源经济合理的开发,要求实现发电、防洪、航运等综合利用功能,保护生态环境和土地资源,减少移民搬迁及交通设施等淹没、浸没及赔偿,修建高坝大库通常已不适宜。为了优化开发方案和工程总体布置,便于工程综合功能经济地实现,有利于保护生态和环境等资源,往往需要采用单机容量(机组尺寸)更大或应用水头更高的贯流机组。

大型化贯流式水轮机的水力设计不存在重大的技术难题,但机组设计、制造与安装等方面的一些关键技术,以灯泡机组为例,灯泡体及水轮机的支承结构,轴系的分析计算、大吨位轴承的设计制造,发电机的设计,发电机的通风冷却,机组的刚度及振动特性的评估、优化,大尺寸机组的安装技术等,存在较大的技术难度和经济风险。近年,我国水电业界结合湖南洪江、广西恶滩扩建工程、四川桐子林等水电站机组的选型设计,对此进行了研究。在洪江水电站,对采用灯泡贯流机组的关键技术及制造难度,与日本只见、俄罗斯萨拉托夫等电站的大型灯泡机组进行了对比研究,结论是技术可行。该工程已成功实施,成为我国贯流电站技术进步的典型案例。而恶滩扩建工程采用灯泡贯流机组方案,其应用水头和单机容量等设计参数,机组设计制造的技术难度均已超越了世界上已运行的同类电站机组,研究表明采用灯泡贯流机组在技术上是可行的。两座电站的经济分析数据也都表明,可节省建设投资和获得年电量的增加,特别是恶滩扩建工程采用8台75MW灯泡贯流机组与采用4台150MW轴流转桨机组的方案比较,前者首台机组提前9个月发电,工程总工期缩短一年,其提前发电的电费收入,与比后者高出的投资差基本相抵(贯流机组方案设备投资概算按采用2台进口、6台合作编制),每年还可多获得约3%的电量增加,其经济性明显优越。上述研究也说明,开发、应用25~35m水头段的贯流式水轮机和单机容量75MW及以上的灯泡贯流机组,技术上可行,经济上仍处于有利和合理范畴。

全面提高我国贯流式水轮机的整体技术水平,实现包括产品研制技术(水力开发、结构分析、制造工艺、试验研究等)及产品的技术性能、贯流式水轮机应用开发和运行等技术水平的全面提升,结合国内实际和借鉴国际先进经验,应加强计算机及信息技术如计算机CFD、FE、CAD/CAM等及现代制造技术在贯流式水轮机开发、研制和运行等领域的推广和应用,还应加强对国际先进技术的引进、消化和吸收.研究具有自主知识产权的贯流式水轮机产品和技术,这是提升我国贯流式水轮机技术和产业竞争力的必然途径。此外,我国的各类水电资源开发,包括广大农村中小低水头资源及海洋潮汐能源的规模开发,需要技术经济特性优越的,包括各类贯流式水轮机在内的多样性的水轮发电机组设备,因此,应加强对轴伸贯流式水轮机的研究和推广应用,完善轴伸贯流水轮机转轮的研究并形成系列型谱;应加强对用于潮汐能源开发的双向可逆贯流机组、全贯流机组及竖井贯流机组的技术开发和研究;对齿轮增速技术及设备在贯流机组的应用,以及贯流水轮机适用的调速设备的开发等技术课题,应进行全面的规划布局和系统的研究。

精品推荐