前言:我们精心挑选了数篇优质生物信息学论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
一、正在出现的技术
Klingler(Lncytepharmaceuticals,PaloAlto,CA,USA)强调基因组学正推动制药业进入信息时代。随着不断增加的序列、表达和作图数据的产生,描述和开发这些数据的信息工具变得对实现基因组研究的任务至关重要。他谈到了Incytepharmaceuticals对大规模基因组数据和生物信息学的贡献。
Lipshutz(Affymetrix,Santaclara,CA,USA)描述了一种利用DNA探针阵列进行基因组研究的方法,其原理是通过更有效有作图、表达检测和多态性筛选方法,可以实现对人类基因组的测序。光介导的化学合成法被应用于制造小型化的高密度寡核苷酸探针的阵列,这种通过软件包件设计的寡核苷酸探针阵列可用于多态性筛查、基因分型和表达检测。然后这些阵列就可以直接用于并行DNA杂交分析,以获得序列、表达和基因分型信息。Milosavljevic(CuraGen,Branford,CT,USA)介绍了一种新的基于专用定量表达分析方法的基因表达检测系统,以及一种发现基因的系统GeneScape。为了有效地抽样表达,特意制作片段模式以了解特定基因的子序列的发生和冗余程度。他在酵母差异基因表达的大规模研究中对该技术的性能进行了验证,并论述了技术在基因的表达、生物学功能以及疾病的基础研究中的应用。
二、基因的功能分析
Overton(UniversityofPennsylvaniaSchoolofMedicine,Philadelphia,PA,USA)论述了人类基因组计划的下一阶段的任务——基因组水平的基因功能分析。这一阶段产生的数据的分析、管理和可视性将毫无疑问地比第一阶段更为复杂。他介绍了一种用于脊椎动物造血系统红系发生的功能分析的原型系统E-poDB,它包括了用于集成数据资源的Kleisli系统和建立internet或intranet上视觉化工具的bioWidget图形用户界面。EpoDB有可能指导实验人员发现不可能用传统实验方法得到的红系发育的新的药物靶,制药业所感兴趣的是全新的药物靶,EpoDB提供了这样一个机会,这可能是它最令人激动的地方。
Sali(Rockefelleruniversity,NewYork,NY,USA)讨论了同源蛋白质结构模建。比较蛋白质模建(comparativeproteinmodeling)也称为同源模建(homologymodeling),即利用实验确定的蛋白质结构为模式(模型)来预测另一种具有相似氨基酸序列的蛋白质(靶)的构象。此方法现在已经具有了足够的精确性,并且被认为效果良好,因为蛋白质序列的一个微小变化通常仅仅导致其三维结构的细微改变。
Babbitt(UniversityofCalifornia,SanFrancisco,CA,USA)讨论了通过数据库搜索来识别远缘蛋白质的方法。对蛋白质超家族的结构和功能的相互依赖性的理解,要求了解自然所塑造的一个特定结构模板的隐含限制。蛋白质结构之间的最有趣的关系经常在分歧的序列中得以表现,因而区分得分低(low-scoring)但生物学关系显著的序列与得分高而生物学关系较不显著的序列是重要的。Babbit证明了通过使用BLAST检索,可以在数据库搜索所得的低得分区识别远缘关系(distantrelationship)。Levitt(Stanforduniveersity,PaloAlto,CA,USA)讨论了蛋白质结构预测和一种仅从序列数据对功能自动模建的方法。基因功能取决于基因编码的蛋白质的三级结构,但数据库中蛋白质序列的数目每18个月翻一番。为了确定这些序列的功能,结构必须确定。同源模建和从头折叠(abinitiofolding)方法是两种现有的互为补充的蛋白质结构预测方法;同源模建是通过片段匹配(segmentmatching)来完成的,计算机程弃SegMod就是基于同源模建方法的。
三、新的数据工具
Letovsky(JohnshopkinsUniversity,Baltimore,MD,USA)介绍了GDB数据库,它由每条人类染色体的许多不同图谱组成,包括细胞遗传学、遗传学、放射杂交和序列标签位点(STS)的内容,以及由不同研究者用同种方法得到的图谱。就位置查询而言,如果不论其类型(type)和来源(source),或者是否它们正好包含用以批定感兴趣的区域的标志(markers),能够搜索所有图谱是有用的。为此目的,该数据库使用了一种公用坐标系统(commoncoordinatesystem)来排列这些图谱。数据库还提供了一张高分辨率的和与其他图谱共享许多标志的图谱作为标准。共享标志的标之间的对应性容许同等于所有其它图谱的标准图谱的分配。
Markowitz(LawrenceberkeleyLaboratory,Berkeley,CA,USA)讨论了分布式数据库与局部管理的关系,以及用基于工具的方法开发分子生物学数据库(MDBs)的问题。许多方案当前正在促进搜索多种不同来源MDBs的数据,包括建立数据仓库;这要求对各种MDBs的组合有一种全局观,并从成员MDBs中装填数据入中心数据库。这些方案的主要问题是开发整体视图(globalviews),构建巨大的数据仓库并使集成的数据库与不断发展中的成员MDBs同步化的复杂性。Markowitz还讨论了对象协议模型(objectprotocolmodel,OPM),并介绍了支持以下用途的工具:建立用于文本文件或者关系MDBs的OPM视图;将MDBs作成一个数据库目录,提供MDB名称、定位、主题、获取信息和MDB间链接等信息;说明、处理和解释多数据库查询。Karp(SRIinternational,MenloPark,CA,USA)解释了Ocelot,一种能满足管理生物学信息需求的面向对象知识陈述系统(一种面向对象系统的人工智能版)。Ocelot支持略图展开(schemaevolution)并采用一种新的最优化并行控制机制(同时进行多项访问数据的过程),其略图驱动图形编辑器提供了交互式浏览和编辑功能,其注释系统支持数据库开发者之间的结构通讯。
Riley(MarinebiologicalLaboratory,WoodsHole,MA,USA)在讨论大肠杆菌蛋白质的功能同时,特别提到了GPEC数据库,它包括了由实验确定的所有E.coli基因的功能的信息。该数据库中最大比例的蛋白质是酶,其次则为转运和调控蛋白。
Candlin(PEappliedBiosystems,FosterCity,CA,USA)介绍了一种新的存储直接来自ABⅠPrismdNA测序仪的数据的关系数据库系统BioLIMS。该系统可以与其它测序仪的数据集成,并可方便地与其它软件包自动调用,为测序仪与序列数据的集成提供了一种开放的、可扩展的生物信息学平台。
Glynais(NetGenics,Cleveland,OH,USA)认为生物信息学中最关键的问题之一是软件工具和数据库缺乏灵活性。但是,软件技术的发展已得到了其它领域如金融业和制造业的发展经验的借鉴,可以使来自不同软件商的运行于各种硬件系统的软件共同工作。这种系统的国际标准是CORBA,一种由250多个主要软件和硬件公司共同合作开发的软件体系。联合使用CORBA和Java可以开发各种通过一个公用用户界面访问任何种类的数据或软件工具的网络应用软件,也包括生物信息学应用软件。Overton不同意Glynias的这种想法,他强调说CORBA仅对软件集成有用,不兼容的数据库软件可能是计算生物学所面临的最困难问题,一些制药公司和数据库仓库最近资助了一项用OCRBA链接不同的数据库的计划[2,3]。
四、制药先导的发现
Burgess(Sturcturalbioinformatics,SanDiego,CA,USA)讨论了填补基因组学和药物设计之间鸿沟的蛋白质结构中的计算问题。在缺乏主要疾病基因或药物靶的精确描述数据的情况下,药物设计者们不得不采用大规模表达蛋白质筛选方法;而结构生物信息学则采用一种更为实用有效的计算方法直接从序列数据中确定靶蛋白质的活性位点的精细结构特征,它利用一种集成专家系统从现实的或虚拟的化学文库中进行迅速的计算筛选,可以达到一个很大的规模。
Elliston(Genelogic,Columbia,MD,USA)讨论了治疗药物开发中发现新的分子靶的过程,着重讨论了基因发现方法。他认为,随着日益临近的人类基因组测序的完成,几乎全部基因的特征将在序列水平得到揭示。但是,对基因的认识将有赖于更多的信息而不仅仅是序列,需要考虑的第一类信息是转录表达水平信息,而Genelogic公司的GeneExpress就是一个由mRNA表达谱、转录因子位点、新基因和表达序列标签组成的数据库。
Liebman(Vysis,Downessgrove,IL,USA)介绍了Vysis公司开发的计算和实验方法,这些主法不仅用于管理序列数据,而且被用于以下用途:分析临床数据库和自然—突变数据库;开发新的算法以建立功能同源性(区别于序列同源性)模拟生物学通路以进行风险评估;药物设计的靶评估;联系复杂的通路特性以便识别副作用;开发疾病发展的定性模型并解释临床后果。
随着发现的新基因的日益增多,这个问题显得格外重要:基因的功能是什么?Escobedo(Chirontechnologies,Emeryville,CA,USA)提出了这个问题的一种方法:将分泌蛋白质的基因的功能克隆与筛选这些克隆(可能的药物靶)结合起来。在这种方法中,在微粒体cDNA文库池中进行体外翻译避免了劳动密集的克隆、表达和纯化步聚,对文库池中的翻译产物在细胞水平进行筛选,测试其在细胞增殖和分化中的作用。例如,在用这种方法识别的111个克隆中,56个属于已知的分泌蛋白质,25个为膜相关蛋白,另外30个功能未知,可能是新的蛋白质。一种相似的方法在转移到小鼠模型系统中的基因传导载体中构建分泌蛋白质的cDNA文库来克隆特定的功能基因。
Ffuchs(Glaxowellcome,ResearchTrianglePark,NC,USA)讨论了生物信息学更为广义的影响:它不仅影响到新药物靶基的发现,还对改善药物开发的临床前期和临床期的现状极具重要性。众所周知,涉汲数以千计病人的临床试验(可能是药物开发最为花钱的部分)的设计不论多么仔细,也不能为正确的药物选择正确的病人。而在基因组水平划分病人群体的方法可以大大改善发现新药的效率。Fuchs介绍了一种将病人的基因型和表型标志结合起来以改善临床前期和临床期药物开发过程的系统GeneticinformationSystem.他强调将遗传学和生物信息学数据同化学、生物化学、药理学和医学数据连接起来的集成信息管理和分析方法是极其重要的。
Green(HumanGenomeSciences,Rockville,MD,USA)介绍了他的测序工作中采用的数据管理工具。基于EST的测序方法所面临的挑战是,在对几百个cDNA克复测序之后,产生的数据堆积如山。由于大多数人类基因都是用这种方法发现并在么有数据库中分类编排的,面临的识别开放读框、重叠序列的重叠图谱、组织特异表达和低丰度mRNA基因的任务是令人生畏的。HumangenomeSciences公司开发了一些可用户化数据库工具,在同一个数据库中可包括以下功能:WWW上访问和检索数据,序列拼接,临视潜在药物靶基因的研究进展等。这些能够管理多项任务——从注释基因序列到成功开发基因产物进入药物发现的流程——的软件工具,极其可望从一种基于基因组知识的药物发现方法中得到新的药物靶。
Summer-Smith(Base4bioinformatics,Mississauga,Ontario,Canada)描述了一种相关的策略。药物发现阶段中所要求的软件工具的任务是多样化的,要能注释基因,并阐明它的生理和病理功能及其商业潜质。对这样多种来源的信息的集成与分析,在派生的、项目取向的数据库(project-specificdatabase,PSD)中可以很好完成。由于项目贯穿于发现到开发全过程,其间又不断加入背景的成员,PSD在项目的管理与发展中成为一种关键性的资源。
按照Smith(Bostonuniversity,Boston,MA,USA)的观点[2],我们并不需要更快捷的计算机或更多的计算机科学家,而是需要更的生物学家和生物化学家来解释序列的功能。这对有些软件或硬件专家来说是个打击,但生物学系统的复杂性是令人生畏的,并且对基因功能的认识可能需要生物学方法和计算方法的结合。探索基因的功能很可能要花费生物学家们数十年的时间,本次会议表明没有任何单一的方法可以得出一个答案;但是,将计算生物学同大规模筛先结合起来识别一种化学靶物(hit)是一种产生化学工具来探索基因功能的方法,这些化学工具接下来就可以用作理解基因功能的“探针”。这种方法在Butt(GeneTranscriptionTechnologies,Philadelphia,PA,USA)的描述中,既是一种检查基因功能的简单方法,也是为潜在的药物靶发现化学先导物的简单方法,他描述了一种可以在酵母中重建人类基因功能的酵母大规模筛选系统。在此系统中,可以迅捷地在一个化学文库中发现配基。这种技术的重要特征是它不仅仅是发现一种药物靶的配基的筛板(screen),相反,由于该系统的高速度,它也是发现先导靶基因的一种筛板。过去,世界上的制药公司通常在某一时间内仅能对有限数目(约20多个)的药物靶基因进行工作,鉴于此,我们需要根本不同的方法如基因组学来打开通向“新”生物学的通路。由于机器人和合成化学的进步,药物发现中最关键的问题不再是得到一种先导化合物(leadcompound),而是得到导向靶基因。此次会议为从计算和实验方法中发展出的新生物学迈出很好的一步。
参考文献
1LimHA,BatttR.TIBTECH,1998;16(3)):104
关键词:推荐系统;生物信息学
推荐系统(RecommenderSystem)[1]是个性化信息服务的主要技术之一,它实现的是“信息找人,按需服务”;通过对用户信息需要、兴趣爱好和访问历史等的收集分析,建立用户模型,并将用户模型应用于网上信息的过滤和排序,从而为用户提供感兴趣的资源和信息。生物信息学(Bioinformatics)[2,3]是由生物学、应用数学和计算机科学相互交叉所形成的一门新型学科;其实质是利用信息科学的方法和技术来解决生物学问题。20世纪末生物信息学迅速发展,在信息的数量和质量上都极大地丰富了生物科学的数据资源,而数据资源的急剧膨胀需要寻求一种科学而有力的工具来组织它们,基于生物信息学的二次数据库[4]能比较好地规范生物数据的分类与组织,但是用户无法从大量的生物数据中寻求自己感兴趣的部分(著名的生物信息学网站NCBI(美国国立生物技术信息中心),仅仅是小孢子虫(Microsporidia)的DNA序列就达3399种),因此在生物二次数据库上建立个性化推荐系统,能使用户快速找到自己感兴趣的生物信息。特别是在当前生物信息数据量急剧增长的情况下,生物信息学推荐系统将发挥强大的优势。
1推荐系统的工作流程
应用在不同领域的推荐系统,其体系结构也不完全相同。一般而言,推荐系统的工作流程[5]如图1所示。
(1)信息获取。推荐系统工作的基础是用户信息。用户信息包括用户输入的关键词、项目的有关属性、用户对项目的文本评价或等级评价及用户的行为特征等,所有这些信息均可以作为形成推荐的依据。信息获取有两种类型[6],即显式获取(Explicit)和隐式获取(Implicit),由于用户的很多行为都能暗示用户的喜好,因此隐式获取信息的准确性比显式高一些。
(2)信息处理。信息获取阶段所获得的用户信息,一般根据推荐技术的不同对信息进行相应的处理。用户信息的存储格式中用得最多的是基于数值的矩阵格式,最常用的是用m×n维的用户—项目矩阵R来表示,矩阵中的每个元素Rij=第i个用户对第j个项目的评价,可以当做数值处理,矩阵R被称为用户—项目矩阵。
(3)个性化推荐。根据形成推荐的方法的不同可以分为三种,即基于规则的系统、基于内容过滤的系统和协同过滤系统。基于规则的推荐系统和基于内容过滤的推荐系统均只能为用户推荐过去喜欢的项目和相似的项目,并不能推荐用户潜在感兴趣的项目。而协同过滤系统能推荐出用户近邻所喜欢的项目,通过用户与近邻之间的“交流”,发现用户潜在的兴趣。因此本文所用的算法是基于协同过滤的推荐算法。
(4)推荐结果。显示的任务是把推荐算法生成的推荐显示给用户,完成对用户的推荐。目前最常用的推荐可视化方法是Top-N列表[7],按照从大到小顺序把推荐分值最高的N个事物或者最权威的N条评价以列表的形式显示给用户。
2生物信息学推荐系统的设计
综合各种推荐技术的性能与优缺点,本文构造的生物信息学推荐系统的总体结构如图2所示。
生物信息学推荐系统实现的主要功能是在用户登录生物信息学网站时,所留下的登录信息通过网站传递到推荐算法部分;推荐算法根据该用户的用户名从数据库提取出推荐列表,并返回到网站的用户界面;用户访问的记录返回到数据库,系统定时调用推荐算法,对数据库中用户访问信息的数据进行分析计算,形成推荐列表。
本系统采用基于近邻的协同过滤推荐算法,其结构可以进一步细化为如图3所示。算法分为邻居形成和推荐形成两大部分,两部分可以独立进行。这是该推荐系统有别于其他系统的优势之一。由于信息获取后的用户—项目矩阵维数较大,使得系统的可扩展性降低。本系统采用SVD矩阵降维方法,减少用户—项目矩阵的维数,在计算用户相似度时大大降低了运算的次数,提高了推荐算法的效率。
(1)信息获取。用户对项目的评价是基于用户对某一个项目(为表示简单,以下提及的项目均指网站上的生物物种)的点击次数来衡量的。当一个用户注册并填写好个人情况以后,系统会自动为该用户创建一个“信息矩阵”,该矩阵保存了所有项目的ID号以及相应的用户评价,保存的格式为:S+编号+用户评价,S用于标记项目,每个项目编号及其评价都以“S”相隔开;编号是唯一的,占5位;用户评价是用户点击该项目的次数,规定其范围是0~100,系统设定当增加到100时不再变化。这样做可防止形成矩阵时矩阵评价相差值过大而使推荐结果不准确。(2)信息处理。信息处理是将所有用户的信息矩阵转换为用户—项目矩阵,使用户信息矩阵数值化,假设系统中有M个用户和N个项目,信息处理的目的就是创建一个M×N的矩阵R,R[I][J]代表用户I对项目J的评价。
(3)矩阵处理。协同过滤技术的用户—项目矩阵的数据表述方法所带来的稀疏性严重制约了推荐效果,而且在系统较大的情况下,它既不能精确地产生推荐集,又忽视了数据之间潜在的关系,发现不了用户潜在的兴趣,而且庞大的矩阵增加了计算的复杂度,因此有必要对该矩阵的表述方式做优化,进行矩阵处理。维数简化是一种较好的方法,本文提出的算法应用单值分解(SingularValueDecomposition,SVD)技术[8],对用户—项目矩阵进行维数简化。
(4)相似度计算。得到降维以后的用户矩阵US,就可以寻找每个用户的近邻。近邻的确定是通过两个用户的相似度来度量的。本文采用Pearson相关度因子[9]求相似度。(5)计算用户邻居。该方法有两种[10],即基于中心的邻居(Center-BasedNeighbor)和集合邻居(AggregateNeighbor)。本系统采用了第一种方法,直接找出与用户相似度最高的前N个用户作为邻居,邻居个数N由系统设定,比如规定N=5。
(6)推荐形成。推荐形成的前提是把当前用户的邻居ID号及其与当前用户的相似度保存到数据库中,而在前面的工作中已找出各用户的邻居以及与用户的相似度,推荐形成部分只需要对当前登录用户进行计算。推荐策略是:对当前用户已经访问过的项目不再进行推荐,推荐的范围是用户没有访问的项目,其目的是推荐用户潜在感兴趣的项目;考虑到系统的项目比较多,用户交互项目的数量很大,所以只筛选出推荐度最大的N个项目,形成Top-N推荐集,设定N=5。
3生物信息学推荐系统的实现
生物信息学推荐系统的实现可以用图4来表示。数据库部分主要存储用户信息和项目信息,用SQLServer2000实现。
数据访问层实现了与用户交互必需的存储过程以及触发器,也使用SQLServer2000,主要完成以下功能:初始化新用户信息矩阵;插入新项目时更新所有用户的信息矩阵;用户点击项目时更新该用户对项目的评价;删除项目时更新所有用户的信息矩阵。用户访问层主要涉及网页与用户的交互和调用数据访问层的存储过程,在这里不做详细的介绍。
推荐算法完成整个个性化推荐的任务,用Java实现。(1)数据连接类DataCon。该类完成与SQLServer2000数据库的连接,在连接之前必须要下载三个与SQLServer连接相关的包,即msutil.jar、msbase.jar和mssqlserver.jar。
(2)数据操作类DataControl。该类负责推荐算法与数据库的数据交换,静态成员Con调用DataCon.getcon()获得数据库连接,然后对数据库进行各种操作。把所有方法编写成静态,便于推荐算法中不创建对象就可以直接调用。
(3)RecmmendSource与CurrentUserNeighbor。这两个类作为FCRecommand类的内部类,RecmmendSource用于保存当前用户的推荐列表,包括推荐项目号和推荐度;CurrentUserNeighbor用于保存邻居信息,包括邻居ID号、相似度及其访问信息。
(4)协同过滤推荐算法FCRecommand。该类实现了整个推荐算法,主要分为邻居形成方法FCArithmetic和推荐形成方法GenerateRecommend。
下面给出方法FCArithmetic的关键代码:
Matrixuser_item=this.User_Item_Arry();//获取用户—项目矩阵
user_item=this.SVD_Calculate(user_item);//调用SVD降维方法
Vectorc_uservector=newVector();//当前用户向量
Vectoro_uservector=newVector();//其他用户向量
Vectorc_user_correlate_vector=newVector();
//当前用户与其他用户之间相似度向量
for(inti=0;ifor(intj=0;jc_uservector.addElement(user_item.get(i,j));
//1.获得当前用户向量
for(intk=0;ko_uservector.clear();
for(intl=0;lo_uservector.addElement(user_item.get(k,l));
//2.获得其他用户的向量
//3.计算当前用户与其他用户的相似度
usercorrelativity=this.Correlativity(c_uservector,o_uservector);
c_user_correlate_vector.addElement(usercorrelativity);
}
//4.根据当前用户与其他用户的相似度,计算其邻居
this.FindUserNeighbor(i,c_user_correlate_vector);
}
根据邻居形成方法FCArithmetic,可以得到每个用户的邻居。作为测试用例,图6显示用户Jack与系统中一部分用户的相似度,可以看出它与自己的相似度必定最高;并且它与用户Sugx访问了相同的项目,它们之间的相似度也为1,具有极高的相似度。
4结束语
在传统推荐系统的基础上,结合当前生物信息学网站的特点,提出一个基于生物信息平台的推荐系统,解决了传统生物信息网站平台信息迷茫的缺点,为用户推荐其感兴趣物种的DNA或蛋白质序列。
优点在于协同过滤的推荐算法能发现用户潜在的兴趣,能促进生物学家之间的交流;推荐算法的邻居形成与推荐形成两部分可以单独运行,减少了系统的开销。进一步的工作是分析生物数据的特点及生物数据之间的关系,增加用户和项目数量,更好地发挥推荐系统的优势。
参考文献:
[1]PAULR,HALRV.Recommendersystems[J].CommunicationsoftheACM,1997,40(3):56-58.
[2]陈新.生物信息学简介[EB/OL].(2001).166.111.68.168/bioinfo/papers/Chen_Xin.pdf.
[3]林毅申,林丕源.基于WebServices的生物信息解决方案[J].计算机应用研究,2005,22(6):157-158,164.[4]邢仲璟,林丕源,林毅申.基于Bioperl的生物二次数据库建立及应用[J].计算机系统应用,2004(11):58-60.
[5]AIRIAS,TAKAHISAA,HIROYAI,etal.Personalizationsystembasedondynamiclearning:InternationalSemanticWebConference[C].Sardinia:[s.n.],2002.
[6]BREESEJS,HECKERMAND,KADIEC.Empericalanalysisofpredictivealgorithmsforcollaborativefiltering:proceedingsoftheFourteenthConferenceonUniversityinArtificialIntelligence[C].Madison:WI,1998:43-52.
[7]SCHAFERJB,KONSTANJ,RIEDLJ.Recommendersystemsine-commerce:proceedingoftheACMConferenceonElectronicCommerce[C].Pittsburgh:PA,1999:158-166.
[8]PRYORMH.Theeffectsofsingularvaluedecompositiononcollaborativefiltering[EB/OL].(1998).cs.dartmouth.edu/reports/TR98-338.pdf.
关键词:医学检验;生物信息学;课程教学
近年来,生物信息学在各医药院校越来越受到重视,多所院校相继在研究生教学中开设了生物信息学课程[1]。而对于医学本科层次是否需要开设生物信息学课程这一问题,虽然目前各方面的观点不一,但是已经有一些院校开始进行尝试。目前医学检验专业(五年制,毕业时授予医学学士学位)已调整为医学检验技术专业(四年制,毕业时授予理学学士学位),而生物信息学作为一门新课程,在医学检验(技术)专业学生培养中的作用正日益受到关注,逐步被某些院校选择作为必修课或者选修课。
一、开设课程的必要性
空前繁荣的生物医学大数据的产出,及其蕴含的重大生命奥秘的揭示,将决定现代生命科技和医药产业研发的高度,决定人们对疾病的认识和掌控能力,也将对主导生物医学大数据存储、管理、注释、分析全过程,解决生命密码的关键手段———现代生物信息学技术的发展带来前所未有的机遇和挑战[2]。对于医学专业学生而言,通过学习生物信息学,从而掌握利用各种网络信息资源来检索和获取生物信息数据,并选择和使用各种生物信息学软件来分析数据。在当今大数据时代,这方面的知识和技能的培养对于医学生今后从事医学科研工作是非常重要的。因此,在医学专业学生中开设生物信息学课程非常必要。我校从2010年开始将生物信息学设置为研究生教学的必修课;从2013年开始在医学检验专业中开设生物信息学选修课,自2015年开始转为医学检验技术专业。在医学检验技术专业中开设生物信息学课程,能够为该专业学生的临床和科研方面的素质积累提供必要的支持,更重要的是增强了在医学和信息科学交叉领域解决问题的技能,其意义几乎等同于在研究生教学中的设课意义。
二、教学内容的安排
医学检验技术专业的教学任务非常紧张,几乎将原来医学检验专业前八个学期(最后两个学期为实习阶段)课程压缩到六个学期来完成,学生学习压力可想而知。我校为了减轻学生负担,各课程的课时数都比医学检验专业有所减少。但生物信息学并未改变,仍然为16学时。为了在较短的学时内实现教学效果的最大化,我们结合该专业学生的特点和需求,将授课内容分为理论课和实践课两部分,实践课不占学时。理论课主要介绍基本的生物信息学理论、资源和数据的获取、分析方法和工具的使用;实践课则通过布置作业,课后上机操作来解决问题。理论课主要内容包括:生物信息学导论、DNA测序技术、序列的获取、双序列比对、多序列比对、蛋白质结构分析和预测共计六个专题。实践课主要内容包括:cDNA及基因组参考序列的获取;常见序列格式的释义与转换;双序列比对(局部比对);多序列比对(全局比对);蛋白质综合信息查询;蛋白质基本性质、疏水区、亚细胞定位、信号肽、跨膜区、模体及结构域分析与二级结构预测;蛋白质三级结构预测。在理论课实施过程中,注重将与生物信息学相关的生命科学和医学前沿的一些最新进展和最新成果引入理论知识讲授中,让学生在有限学时内能够进一步认识生物信息学的内涵和课程的价值,追踪前沿学科的动态,开拓视野。
三、教学方法的设计
生物信息学涉及多个学科领域,交叉性强,在较短的学时内学好这门课程的难度很大。学生的学习兴趣与教学内容和手段关系密切,除了精心选择教学内容外,教学方法上也有很多需要革新乃至创新的地方。在教学过程中,我们形成了颇具特色的教学经验,由授课教师独创的授课———实践———演示(Teaching-Practicing-Showing,TPS)教学模式已应用于教学。TPS教学模式着力于以实际问题为引线,将理论授课与上机实践有机地融为一体,逐步介绍生物数据分析的各项技能,并指导学生将其融会贯通以真正掌握相关的基本方法与常用工具。首先,在教学内容上引入具体实例来进行教学,比如讲解生物信息数据库(Gene、Nucleotide、UniProt、PDB等)时,通过给出检索某个人类疾病基因数据的例子来学习数据库的使用方法。课堂上教学实例的设计需要任课教师在备课时投入大量精力来完成,还需要教师具备多学科交叉的知识。教学实践表明,与医学相关的生物信息学分析实例可以让学生更好地认识该课程的作用,大幅度提高学生的学习兴趣和学习的主动性。此外,课堂教学手段也应该丰富多彩,多媒体教学中可以充分使用图片、动画等元素。其次,举例分析时可以进行一定的现场演示,比如讲解检索Unigene数据库时可以一边上网演示一边解释说明。
四、考核方式的变革
生物信息学作为选修课,既要遵循学校相关的考试制度,也要通过对考试方式的变革来提高考试效果。我们将理论考核与学生的实践能力考核联系起来,结合学生课外实践任务的完成情况和开卷考试成绩进行综合评定。在课程中安排一次课外实践任务,要求每位学生独立完成相关分析并提交书面分析报告,该部分占考核成绩的20%。具体内容为自行选择一个人类细胞外功能蛋白:1.利用ClustalX对各物种参考蛋白序列进行多序列比对(输出PS格式结果);2.分析分子量、等电点、分子式、稳定性、亲疏水性及亚细胞定位;3.预测二级结构并模拟三维结构。课程结束后进行开卷考试,内容包括基础知识和综合分析,尽量采取灵活的出题方式,并控制题量,该部分占考核成绩的80%。近年来的教学实践表明,这种综合评定的方式能够反映学生对该课程的掌握程度,体现学生利用生物信息学知识解决问题的能力。
五、展望
实践表明,生物信息学课程教学能够给学生提供所需要的生物信息学知识和技能,但是在教学内容安排、教学方法设计、教学手段使用和教学效果评价等诸多环节都需要进一步探讨。在这个过程中,我们既需要吸收传统教学模式中的优点和精髓,做到严谨和切合实际,又需要更新教学理念,突出医学特色,大胆尝试新的教学方法和手段,最终形成本课程别具一格的教学特色。
作者:伦永志 单位:大连大学
参考文献