美章网 精品范文 平台设计论文范文

平台设计论文范文

前言:我们精心挑选了数篇优质平台设计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

平台设计论文

第1篇

关键词计量;数据采集;网络系统

1引言

安钢计量信息平台系统设计包括系统总体设计和详细设计,包括硬件及软件两部分,主要描述的是该系统的组成与运行过程。按照计量信息需求及的实际情况,系统采用浏览器/Web/数据库服务器三层分布式结构。计量信息共享平台是一个人机对话系统,从物理机构上看,它主要是由计算机、硬件设备、软件、数据和用户组成。

为达到本系统设计目标,在设计中遵循以下几个原则:实用性,可用性,先进性,易用性,人机分工合理性几个方面。根据信息平台的实际情况,对各个具体功能和细节进行分析和系统开发,根据用户需求,在Windows环境下,采用当前最为流行的开发工具进行开发,建立人机友好,可视化的用户界面,输入方便快捷,输出信息易读易懂。

2体系结构设计

本信息共享平台采用三层B/S结构,B/S结构中只安装一个服务器,而客户端采用浏览器运行软件。在数据管理层和用户界面增加了一层结构,称为中间件,使整个体系结构分为三层。中间件主要提供以下功能:负责客户机与服务器、服务器与服务器间的连接与通讯,实现应用与数据库的高效连接。这种三层结构在层与层之间相互独立,任何一层的改变不会影响其它层的功能。

3系统总体设计

图1系统功能结构图

根据系统的要求,在建立计量信息共享平台之前,首先做好数据的采集工作。统一数据是建立信息共享平台的基础。在计量信息共享平台上,数据层是基础,通过数据的共享和交换处理形成信息,然后利用技术手段把信息总结、分类和归纳形成知识层,在此之上提供管理与决策支撑。根据系统的需求分析,确定系统的功能如下:基础数据、电能计量、动力量数据处理、轨道衡数据处理、工作计划、供应处数据、管理查询、权限管理、设备维护、设备信息、生产数据、实时监控、数据查询、数据维护、采集数据上传、原始数据查询、组织机构等功能。整个系统的功能结构图如图1所示。

4整体网络方案设计

安钢计量信息共享平台的建设,首先是网络系统的建设,整体网络采用千兆义太网技术,在硬件网络布线设计上采用了分层的结构,分为:核心层、汇聚层、接入层。

网络核心层采用2台高性能万兆路由交换机ExtremeAspen8810交换机组成,放置在数据中心机房作为核心设备,提供与四个汇聚交换机的互连和服务器的连接。网络汇聚层设置四个节点(网络交换中心),分别放置在回皮轨道衡、计控部、热送称、黑河路,每个汇聚层节点配置一台高性能的Extreme的SummitX450汇聚交换机。对于接入层,有的地方使用已有的DlinkDES系列交换机,有的地方节点数较少,甚至只有一个节点,就直接连到汇聚层交换机上。接交换机的地方有:回皮轨道衡交换中心在计控仓库、焦粉称、西站配置三台接入层交换机;计控部交换中心在250t/300t称配置一台接入层交换机;热送称交换中心在进厂称配置一台接入层交换机;黑河路交换中心在三炼轨道衡配置一台接入层交换机。四个交换中心共配置6台接入层交换机。其网络拓扑结构如图2所示。

图2安钢计量数据网络拓扑结构

5软件详细设计

5.1软件平台设计

操作系统:选用MSWindows2000高级服务器;数据库系统:选用MSSQL2000;系统采用三层B/S的逻辑体系结构,前端用户界面为浏览器。在数据库和前端业务界面之间为业务逻辑层。采用微软.NET框架开发。对外的服务功能以Web服务的形式提供。

5.2信息共享平台整体结构设计

从逻辑功能角度分析,把该系统分为应用系统和支撑系统两大部分。支撑系统是整个系统继承的物质基础,包括计算机系统、通讯网络系统、数据库系统和工具层。应用系统是建立在支撑系统之上,根据在子系统中的作用领域又分为计量数据管理系统和现场数据采集两个应用子系统,两者之间通过支撑系统的网络通讯系统实现物理集成,通过数据库系统实现信息集成。系统基本结构图如图3所示。

.3数据采集层系统设计

数据采集层完成现场数据的采集,包括能源量采集系统的升级,物资量采集软件的编制与更新,它是信息共享平台的数据来源。

能源量采集网络采用”893”单总线结构。硬件上把所有能源量计量网络划分为四个小的子网络,每个网络设一个数据采集子站,由子站完成各子网内的数据采集,子站就近通过光纤在义太网上进行数据交换和网络控制,同时设立一个中心站完成数据的汇总、分析和网络传输。软件使用北京亚控公司的组态王软件对能源量采集系统进行开发。对电量采集数据,使用自编的数据采集软件把全部电站的结算电表数据实时采入计算机数据库,并进入数据中心数据平台,由数据中心按不同用户的需要对授权用户提供数据查询与监控。物资量采集程序开发工具使用Delphi6.0+MSDE数据库进行开发,完成数据采集任务,并存入本地采集站的数据库中,由远程数据库服务器通过“存储过程”完成将本地的数据上传到数据库服务器,经过加工、处理后提供和授权用户查询。

系统采用上传模型:(采集上传的数据主要包括:能源量数据、轨道衡计量数据、汽车衡计量数据、皮带称计量数据、在线称计量数据、电量计量数据。)

图3系统基本结构图

5.4管理层系统设计

管理层完成对现场计量数据的采集和管理、分析与应用等功能,整个系统采用三层B/S模式结构,数据存储部分由SQLServer2000完成,业务逻辑层使用开发完成,表示层使用完成开发。系统主要完成系统中提供的能源量及物资量数据的归类、处理、及相关功能的实现,是信息共享平台的主要部分。

5.5支撑系统设计

被分为四个层次:计算机层、通讯网络层、数据库层、工具层。

工具层介于应用系统和计算机网络/数据库系统之间的软件工具的集合。包括开发工具和集成工具。数据库层是计量数据网络系统中所使用的数据库系统,处于通讯网络层之上,在计算机网络的支持下,为应用系统提供信息存储、管理、共享和集成的手段。本系统涉及数据采集系统的本地数据库及管理信息系统的数据库。计量信息共享平台均采用关系模型。数据库的设计关键是表的设计,信息共享平台应用的数据库表有两种:本地数据库表;管理层数据库表。通讯网络层是计量数据网络系统中数据通讯的载体和枢纽,计量信息共享平台通过完落系统,是计算机之间、计算机与计量设备之间连接,实现了整个系统的网络集成,支持和保障了计量数据网络系统的信息集成。采用混合型网络拓扑结构,TCP/IP协议。计算机层是支撑系统的底层。本系统要求客户端计算机为PⅢ以上,安装Windows2000Professionnal;服务器设计为双冗余、群集方式,运行MicrosoftWindows2000AdvanceServer。

5.6人机监控界面设计

监控画面是人机交互的界面,一个软件系统是否成功,最终的检查标准是它能否使用户感到满意。本系统人机交互包括两个方面:一方面是人对系统的输入,包括向系统下达的命令,提供的命令参数和系统所需要的其它输入信息;另一方面是系统向人提供信息,即输出。输出信息一般有三种:提示信息;系统向人报告的计算或处理结果;系统对输入操作的反馈信息。本着使用简便、界面一致、及时反馈与美观的原则,结合计量信息共享平台的功能需求,应用面向对象的方法进行系统的人机界面设计。

6结束语

以上详细论述了安钢计量信息平台的总体设计和详细设计,将整个系统按照横向和纵向分层介绍,采用具体的方案设计了安钢信息计量平台。该系统在实际中得以很好的应用。

参考文献

[1]杨海鹰,,陆婉珍.信息管理系统应用设计.现代科学仪器[M],1996(1):32~45

[2]黄梯云,李一军.管理信息系统[M].北京:高等教育出版社,1999.34~40

[3]做好能源计量工作的三点意见[J].中国计量,2006(12):4~5

[4]陈燕.重庆大学人事管理系统的设计与开发:[硕士论文].[D]保存地点:重庆大学图书馆,2002.

[5]王鹏,董群.数据库技术及其应用.[M]北京:人民邮电出版社,2000.1:101~171

[6]王春海,张晓莉,王金珠.企业网络应用解决方案——从需求分析到配置管理.[M]北京:兵器工业出版社,2006.79~99

第2篇

校园是学生学习的地方,要培养出适应社会发展的新人才。校园自身也要与时俱进。当前,计算机网络技术迅猛发展,应用广泛。能够提供资源的共享,节省时间与空间对应的资源。校园发展当然要把计算机网络技术纳入其中,让计算机网络技术发挥作用。缩短师生间的距离,节省人力资源,实现网络化平台的科学管理。从应用角度说,开放性的校园工作平台可以设置多种功能。校园工作功能,使得领导和教师以及行政人员,快速沟通,提高工作效率;考试功能,随时可以根据考试要求,准备考试内容,开放服务器端允许登录,实现各种考试;学习功能:提供多方面交流,作业、讨论、答疑都可在此进行;留言与论坛功能:实现学生间的沟通,获取需要的信息。教务功能:让学生可以了解本学期课程情况,同时有更充裕的时间进行课程选修。

2校园平台应用情况与存在问题研究

在高等院校中,校园网络化平台的搭建工作还是覆盖率较高的。基本上都能够实现校园网络互通,使用如教务平台的网络式平台。能够实现网络选修,网络成绩基于PAGERANK算法的校园平台系统设计研究孙丽丽哈尔滨信息工程学院150028姜海红哈尔滨应用职业技术学院150078查询等基本功能。可以说取得了一定的成绩。但成绩不能让前进的步伐停滞。校园平台还是存在很多问题的。首先,高校使用的网络校园平台,设计开发的企业不同造成水平相差较多。有些网络平台经不住长期使用的考验,同时在设计时没有预留拓展空间,不能满足教育改革进程中的新需要新要求。其次,网络平台中的资源陈旧,不能及时更新。学生找不到适合课程的好的学习资源。校园平台实时性差。

3校园平台开发工具与开发模式

由于校园平台集成功能较多,对于安全性要求相对高。所以服务器端操作系统使用微软系列的2003版本。后台数据库使用成熟的SQLSEVER,作为校园平台的开发,当然是以网站互动的模式呈现给使用者,所以脚本语言不可少,ASP。NET是不错的选择。工作模式选择为浏览器、服务器模式,客户端、服务器端交互模式。

4pagerank算法的体现

精研计算机技术的人员应该熟悉这种算法,此算法在2000年之前就已经提出了,属于网页级算法。作用是通过计算二级、三级等分页的链接数量,判断相应时间,然后进行优先权限的分配工作。在大型网站的建设过程中,这种算法常常应用于搜索功能实现当中。通过分级页数的多少?通过页面被访问数以及重要性来设计算法。这个网页的重要性,经常用一个专有名词。上面就是一个该算法使用排名因子进行计算的典型公式。算法的优点在于它对互联网上的网页给出了一个全局的重要性排序,并且算法的计算过程是可以离线完成的,这样有利于迅速响应用户的请求。不过,其缺点在于主题无关性,没有区分页面内的导航链接、广告链接和功能链接等,容易对广告页面有过高评价;另外,PageRank算法的另一弊端是,旧的页面等级会比新页面高,因为新页面,即使是非常好的页面,也不会有很多链接,除非他是一个站点的子站点。这就是PageRank需要多项算法结合的原因。HITS算法的优点在于它能更好地描述互联网的组织特点,由于它只是对互联网中的很小的一个子集进行分析,所以它需要的迭代次数更少,收敛速度更快,减少了时间复杂度。但HITS算法也存在如下缺点:中心网页之间的相互引用以增加其网页评价,当一个网站上的多篇网页指向一个相同的链接,或者一个网页指向另一个网站上的多个文件时会引起评分的不正常增加,这会导致易受“垃圾链接”的影响;网页中存在自动生成的链接;主题漂移,在邻接图中经常包括一些和搜索主题无关的链接,如果这些链接自身也是中心网页或权威网页就会引起主题漂移:对于每个不同的查询算法都需要重新运行一次来获取结果。这使得它不可能用于实时系统,因为对于上千万次的并发查询这样的开销实在太大。

5结束语

第3篇

风机吊装平台由浮箱标准箱模块拼组而成。设计时考虑了主吊机与辅助吊机的放置与作业位置、风机部件的存放、辅助器具的放置等。吊装作业时可考虑先进行风机塔筒吊装,再进行机舱与发电机吊装,最后进行轮毂与风机叶片组装及吊装作业。轮毂与风机叶片组装作业时如果空间不够,可在局部加拼浮箱模块对平台进行局部扩展。浮箱风机吊装平台主尺度为75m×40m,由84只浮箱标准箱模块构成;其中主吊装平台是徐工650t履带吊作业平台,由64只浮箱模块构成,承受荷载最大,取其进行结构分析。锚定方式采用投锚固定和锚桩固定相结合。投锚固定采用四爪锚或者犁锚,对平台整移进行基本控制;锚桩固定可以对平台水平位移精确控制,同时桩可以在固桩架中上下移动,适应潮位的变化。

2浮箱模块设计

浮箱模块为全封闭箱形结构,主尺度为:沿通道纵向长2.5m,沿通道横向宽12.5m,模块高度1.8m。浮箱纵向与横向均采用铰接接头连接,每个浮箱重量约为140kN。浮箱由6mm钢板构成主体框架,通过边缘角钢焊接在一起,甲板下和底板上都焊有T型横梁、纵梁、纵肋、横肋;侧板和端板焊有角钢型水平肋、T型竖肋和竖梁。模块内部由横向隔舱板分隔为两个水密舱,一侧模块端板以及横向隔舱板上开设有人孔以便维护与维修;为了提高箱体坐滩承压能力,在模块内部横向设置3道承压桁架;为了纵、横向传力纵总强度需要,模块内部与接头相连的纵、横梁截面设计的较大,其它肋骨设计则以局部强度控制,其截面比纵、横梁的截面小,模块甲板及底板以纵、横梁与肋骨组成正交异性板结构。模块壳板材料为CCSB,内部结构材料为Q345,单双支耳连接件材料为30CrMnTi。

3浮式吊装平台结构分析

利用大型结构分析软件ANSYS对主吊装平台坐滩承压工况和浮游工况进行了仿真分析,为平台的设计提供了理论依据。结构分析时考虑到吊装平台结构庞大,采用了ANSYS结构分析中有限元子结构法,能够较好地模拟拼装式吊装平台这种特殊拼装式结构。吊装平台为临时性结构,以下结构分析中的容许应力均根据《军用桥梁设计准则》(GJB1162—91)选用。

(1)坐滩承压:根据技术参数要求,采用温克勒弹性地基模型,地基承载力为0.02MPa。吊装作业时,考虑吊臂方向和风机、塔筒的重量,经计算得平台承受的最大荷载为8000kN。浮箱模块子结构、吊装平台母结构,吊机的两个履带作用在30号和42号子结构上。经计算分析,最不利的浮箱为30号子结构。浮箱内部各部件的最大应力及最大接头力。内部结构最大应力为104.42MPa,小于Q345的弯曲应力292MPa。平台的最大沉降量为48.59mm。

(2)浮游工况:此工况为生存工况。由于水很浅,总体分析中浮游工况只考虑静力分析,平台承受的最大荷载为8000kN。浮箱模块子结构建模、吊装平台母结构,母结构由64个子结构组成,吊机的两个履带作用在30号和42号单元。经计算分析,最不利的浮箱为42号子结构。浮箱内部各部件的最大应力及最大接头力如表1所示。由表1中知,内部结构最大应力为134.07MPa,小于Q345的弯曲应力292MPa。平台的最大吃水为573.05mm,静载吃水为311.11mm,总吃水884.16mm,则干舷为915.84mm,满足要求。

(3)考虑到施工拼组大面积作业平台需要,浮箱连接纵横向均采用单双耳。为了模拟分析接头的受力情况,采用ANSYSWorkbench软件分析,分析时考虑接头间隙、连接部件之间的接触特性以及弹塑性影响,采用Solidworks分别进行单双支耳的建模,然后装配建立实体模型并导入Workbench中,单支耳模拟结果,双支耳模拟结果,耳孔边缘有应力集中现象,均小于30CrMnTi的屈服应力1176MPa。在销中亦有应力集中,最大等效应力为1301.1MPa,小于30CrMnTi的局部承压应力1412MPa,因此接头的设计是合理的。

4结束语