前言:我们精心挑选了数篇优质剪力墙结构设计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
通常来说,一般剪力墙结构的建设规模较大,可实际厚度较小。因此,这种特点也决定了剪力墙结构的具体形状以及承受能力的大小。其中,剪力墙结构的组织形状相似于板状,自身具备了较高的承受能力,与柱子的受力程度非常相似。然而,在其他方面上,这两者有着十分明显的差异。并且,剪力墙结构是建筑结构中不可或缺的核心部分,设计人员在对其进行设计时,不仅要充分发挥剪力墙结构固有的承载力大和平面内刚度大的优点,还应该按照不同场所要求,设计出科学合理的剪力墙结构设计方案,使其发挥最大化的使用性能。
1.2剪力墙结构的分类
(1)虽然实体墙与截面剪力墙在某些方面,有着较大的差异。可是,这两者的开通面积与不开通面积是基本相同的。并且,这种剪力墙结构形式在发生变化时,也是呈现了曲线状态,是一种固定不变的形态。
(2)即使剪力墙开口不大,但因为剪力墙开通面积已经远远超出了规定范围。所以,此时的剪力墙结构呈现的是弯曲状态,并且无任何的阻挡点,从而导致其位置和形态均发生了不同程度的变化。
2.剪力墙建筑结构的厚度和长度的选取
剪力墙墙肢截面的高度就是剪力墙墙肢的长度,这个长度一般不应超过8m。在剪力墙结构设计中应确保剪力墙结构的延性,为了避免脆性的剪切破坏,可将高宽比大于2的细高剪力墙设计成弯曲破坏的延性剪力墙。但是有的墙体长度很长,为了确保墙体的高宽比值大于2,就要采取开设洞口的方法将长墙分成均匀的、长度较小的连肢墙,而其洞口则最好采用约束弯矩比较小的弱连梁。
3.剪力墙建筑结构设计计算的原则
设计人员在对剪力墙结构进行设计时,应该遵守相应的设计原则,真正做好考察工作,坚决不可以采用盲目的设计方法。只有这样,才能确保剪力墙结构设计的规范性,这也是保证建筑结构安全可靠性的重要表现。
3.1楼层之间最小剪力系数的调整原则
一般情况下,为了防止安全隐患的发生,减轻建筑结构的自身重量,设计人员在对建筑工程进行设计的过程中,可以采用减少剪力墙布置的方法。但是,这种设计形式有一个必要的前提条件,那就是短肢剪力墙的力矩必须保持在规范的标准要求内。同时还可以应用大开间的剪力墙结构,以此来提高建筑结构的强度,充分保证楼层剪力系数的安全性,并从一定程度上,大大降低了工程造价成本。
4.剪力墙结构优化设计的几点建议
我们知道,剪力墙结构作为建筑结构设计中至关重要的一个环节,其设计质量的好坏将会对建筑工程建设质量产生非常大的影响。而这种建筑结构形式因为具备较高的强度以及良好的延展性的优点,因此得到了十分广泛的应用,充分发挥了自身的有效价值。但是,在实际应用过程中,由于建筑工程存在很多的不确定性,当剪力墙结构发生明显的变化状态时,常常会受到一些外力因素的破坏,使得剪力墙结构的抗震性能遭到了一定的影响,同时也大大降低了建筑结构的稳定性。一般情况下,剪力墙结构最大的优点是具备了十分理想的承载能力。并且,在剪力墙结构的侧面部分,也拥有着较大的平面内刚度,这就充分保障了建筑物的安全性。另外,在建筑内部的剪力墙结构设计中,石柱与房梁都是隐蔽起来的,有效的提高了建筑室内的美感。但是,剪力墙结构也存在着较大的缺陷,无法为人们提供更多的可利用空间,经常会给人们的日常生活造成许多的不便。通过相关调查数据表明是刚韧性较强的剪力墙,在地震发生时,房屋所受到的损坏是最小的。但是,建筑设计人员一定要注意将其控制在合理的范围内,不允许其随意的扩散发展。从而确保剪力墙结构设计工作的质量和效率。其次,由于剪力墙结构成本费用较高,这无疑会对建筑工程建设成本上造成一定的压力。因此,建筑企业要采取及时有效的解决对策,尽可能减少工程成本的浪费,促剪力墙结构能够正常运行。
5.结束语
【关键词】建筑结构;剪力墙结构;应用分析
1引言
高层建筑是城市重要组成部分,建筑可以美化城市,而有一些标志性建筑甚至在某种意义上代表了这座城市城市,例如如广州的小蛮腰和上海的东方明珠塔,都是国际性大都市的标志。因此,城市和建筑互相依赖,彼此生存。如今,土地资源稀缺,高层建筑已成为城市建设的主体,是城市生活的主流建筑,也是当代建筑的发展趋势。随着人民生活水平的不断提高,对居住舒适性的要求也有所提高,特别是对住宅公寓的要求越来越高。剪力墙结构的壁厚与填充墙、平面的厚度是一致的,保证室内无框架柱突出,可有效提高空间利用率,因此,高层住宅剪力墙结构应用的十分广泛。
2建筑结构设计中剪力墙结构概念方案布置
剪力墙结构概念方案布置是进行剪力墙结构设计的前提,而布置设计的合理性与否对整个工程造价有很大的影响,下面对剪力墙结构布置进行简单的介绍。剪力墙布局应沿两个主轴方向双向进行布置,尽量做到分布均匀,这种安排,能够让两轴刚度尽可能接近。剪力墙集中布置会导致结构载荷中心和刚度中心偏移,造成较为严重的扭转效应。剪力墙的分散布置会导致梁板跨度加大和刚度分布不均匀,而在跨度增大时,会增加结构的重量,增加地震效应,从而增加工程造价;另一方面,剪力墙间距太大,以致于单片剪力墙承受荷载过大,增加了轴压比,从而对剪力墙延性设计产生影响。以及结构在不规则的地震扭转薄弱部位凸起后形成棱角。扭转大变形导致扭转破坏。因此,考虑剪力墙平面布置,应单独布置,并用对角线局部加强。在平面角部尽量布置L形墙肢,还可采取设置端柱及转角部位楼板中设置暗梁等构造措施进行加强,以达到提高其扭转刚度的目的。剪力墙竖向布置宜沿房屋高度通高布置、上下对齐、连续布置,墙厚及墙长沿高度宜均匀变化,以达到竖向刚度逐渐变小,从而能够有效避免竖向刚度发生突变情况。这样既经济又能满足承载力、侧向变形的要求。因此,剪力墙结构的布局对整个结构的合理性和经济性有直接的影响。目前,结构的经济性已成为结构设计中必须考虑的因素。在满足安全的前提条件下,最大限度地利用有限的资源,是结构工程师要去探索的问题。因此,在合理布置剪力墙的前提下,尽可能节约经济,降低工程造价。而对于结构的关键部分或者计算模型与实际情况不相吻合的部分,至少使用两种不同结构软件进行了分析计算,并进行了围护结构设计,加固了结构。在概念布局的早期阶段,结构设计师应与建筑师密切合作,确定合理的安排以避免不规则或严重的不规则的平面与立面。实现技术先进,安全适用,经济合理的总体设计,达到降低总成本的目的。
3剪力墙的特征及其种类
从整体上来说剪力墙的特点有下面几点,其侧向刚度很强。还有一个相对比较小的侧移,如果发生地震可以吸收更多的地震能量。在剪力墙结构的应用中,室内墙体很平整,但剪力墙结构,在施工的时候需要很多环节,所以造价相对较高。如果按照剪力墙结构开洞与否可分为以下几种:小开洞剪力墙、壁式框架、实体墙、双肢或多肢剪力墙等。这些剪力墙各有不同的应用特点,每个结构设计人员应针对具体的建筑结构,选择合适的剪力墙结构形式。
4建筑结构设计中剪力墙结构受力分析
剪力墙结构设计有自己的设计原理及其原则。由于剪力墙通常比普通墙的厚度大且宽,所以它的特征比较像板,但是还是有一定的区别,剪力墙通过压弯构件计算,板根据弯曲构件计算。因此有必要在结构设计分析中考虑到具体的设计差异。此外剪力墙墙肢长度,壁厚范围都有自己的特点,当高度和墙段比厚度小于或等于4,应按框架柱的结构设计;当墙肢截面高度与厚度之比大于8时,使用一般剪力墙;当墙肢截面高度与厚度之比在4~8之间时,则要使用短肢剪力墙,这些也是剪力墙的结构设计的基本原则。剪力墙结构由一系列纵向剪力墙和横向剪力墙以及由空间结构组成的梁板组成。在两种负荷的主要:一是竖向荷载,竖向荷载主要是梁板传来的活载、恒载、竖向地震作用及剪力墙身自重;其他主要是水平荷载,地震作用和水平风荷载。剪力墙内力和变形分析包括承载力极限状态和正常使用极限状态分析。在极限承载力状态下,剪力墙在各种工况下不受破坏,能安全承受重力荷载。在正常使用极限状态下,结构变形满足规范要求,在满足设计要求的基础上结构经久耐用。框架结构的变形主要是剪切变形,剪力墙的变形主要是弯曲变形。为了实现剪力墙的弯曲破坏的延性破坏模式。《高层建筑混凝土结构技术规程》中有规定,墙的长度最好不要超过8m。事实上,有两个主要因素影响剪力墙的破坏模式是轴压比和剪跨比,只要轴压比小于规定的限值而剪跨比大于2,可以实现延性破坏模式。当剪力墙的长度超过8m时,尽可能在墙体中部开洞,形成一个双墙肢,通过弱连梁连接,一般来说剪跨比也会大于2,可以满足延性破坏的要求。在地震作用下,通过连接梁的能量,梁端首先进入塑性变形,形成塑性铰,使梁成为抗震的第一道防线。
5连梁设计
高层住宅剪力墙结构,由于墙长较长时通过开洞或剪力墙平面内梁跨较小形成连梁,如果出现跨高比较小的连梁,在计算过程中,容易产生过度抗剪的连梁,通常有以下解决方案:①增大连梁的截面积,可以增强连梁本身的抗剪能力,但梁的刚度相应也会增加,吸收的地震力也会增加,只能增加有限的抗剪承载力。在梁宽固定的情况之下,可以使用加高梁高的方法;当梁高是一定的,可以扩大梁宽,增大断面的连接刚度,但宽度对连梁刚度贡献较小,仅是一个线性关系,使得分担剪力的增加值小于抗剪力的提高值。②调整设计内力,在提高连梁截面对提高抗剪承载力没有影响的状况下,可人为的降低连梁的刚度,来控制剪切力的分配比例,并解决了连梁的抗剪性能问题。最简单的控制方法是在计算参数选择时,通过调整连梁刚度折减系数,只有在采用内力配筋计算时才可以。在整个计算和非地震荷载作用下,连梁的刚度不会降低,连梁应具有足够的抗弯承载力和抗剪承载力,以满足正常使用的要求。对于跨高比大于5的连梁,应根据设计的框架梁,满足框架梁的要求。③可作水平缝从而形成双连梁、多连梁或其他结构措施,以提高抗剪承载力,如设置交叉暗支撑等措施,以提高连梁的抗剪承载力。
6结语
中国的国民经济和建筑结构设计整体水平与发展规模都在提升,高层建筑将成为现代建筑的主流。剪力结构在侧向刚度、侧向变形等方面具有一定的优势,在高层建筑中得到广泛应用。因此掌握剪力墙结构的特点,对剪力墙结构设计有很好的把握。我们要从设计的基本原则出发,设计更加经济合理的剪力墙结构。因此建筑结构设计人员要根据剪力墙结构设计原理有明确的认识,同时,不断从设计实践出发来推动中国建筑业整个工艺设计水平的提高。本文从剪力墙结构设计的概念开始。就建筑结构设计中剪力墙结构设计的应用进行了介绍,希望以此促进行业发展。
参考文献
[1]李捍文.剪力墙结构在建筑结构设计中的应用分析[J].科技创新与应用,2012(9).
[2]孙雪兰.浅谈高层剪力墙结构的优化设计[J].山西建筑,2010(8).
[3]林涛,张景祯.建筑结构设计要点及计算模型调整[J].科技传播,2011(17).
湖南株洲某住宅小区由多栋多层和9~15层小高层住宅组成,框剪结构,总建筑面积为120000m2。以地上9层小高层为例,标准1层结构单元见图1,层高3m;9层上有个跃层为第10层,局部突出屋面部分为电梯机房。建筑总面积为4337.18m2,建筑总高为27.600m。本工程建筑结构的安全等级为二级,抗震设防类别为丙类,按6度设防,地面粗糙度为C类,场地土类别为Ⅱ类。
2结构方案布置分析与选择
原结构方案采用一般的剪力墙结构,这种结构形式对于房屋高度不太大的小高层建筑来说,这种结构会造成刚度过大,重量增加,导致地震反应过强,使得上部结构和基础造价提高。所以,为了有效提高经济指标,经多方案论证,决定采用短肢剪力墙结构体系。
短肢剪力墙结构是指墙肢截面高度为厚度5~8倍的剪力墙结构,和一般剪力墙相比,这种结构型式的优点在于:
1)墙肢较短,布置灵活,可调整性大,容易满足建筑平面的要求。
2)减少了剪力墙而代之以轻质砌体,结构自重相应减轻,从而减小结构整体刚度,增大振动周期,降低地震作用力。
3)墙肢高宽比较大,延性较好,对抗震有利。
4)连梁跨高比较大,以受弯破坏为主,地震作用下首先在弱连梁两端出现塑性铰,能起到很好的耗能作用。
5)墙肢的承载力得到了较充分的发挥。
目前,《高层建筑混凝土结构技术规程》JGJ3-2002已对短肢剪力墙结构的设计作出了规定。
在本住宅结构平面布置中,尽量使结构平面形状和刚度均匀对称,短肢剪力墙双向布置,尽量拉通、对直,竖向布置中,力求规划均匀,避免有过大的外挑、内收,以及楼层刚度沿竖向突变,使整个房屋的抗侧刚度中心靠近水平荷载合力的作用线,以免房屋发生扭转。
根据建筑的平面布置,在房间、楼梯间、电梯间的四角,采用Z形、L形、T形或异形的墙肢。在设计过程中还应注意同周期的关系,使结构的第一自振周期避开场地土的卓越周期,以免地基与结构形成共振或类共振,既保证结构在风和地震荷载作用下的变形控制在规范允许的范围内,又要保证建筑物有相对合理的自振周期,做到结构设计经济、合理且实用。
本方案根据上述分析并经过多次调试,得到了4种结构方案,结构平面布置见图2。剪力墙截面厚度同相邻砌体填充墙厚度均为100mm。剪力墙、梁混凝土强度等级为C30。板的混凝土强度等级均为C25。主要连梁的尺寸大都为200mm×400mm。标准层楼板厚度为120mm,顶层楼板厚度为150mm,有别于肢长肢厚比不大于4.0的异形柱,短肢剪力墙的肢长肢厚比按规范要求控制在5~8范围内,一般剪力墙的肢长肢厚比均大于8。值得注意的是,对肢长肢厚比为4~5范围内的墙肢,目前规范尚无明确条文规定其构件类型,故设计时建议不要采用。
由于原方案的剪力墙过多,使底部剪力过大,使结构很不经济,同时布置了少量钢筋混凝土柱子,使结构不是很合理。故方案1在一般剪力墙结构的基础上去掉了构造柱并减少了少量的剪力墙(见图2a)。
在方案1基础上适当的减少一些剪力墙,从而使方案更经济,在调试过程中由于F轴剪力墙较少,从而使电梯间X方向的剪力墙承受过大的剪力造成超筋,故把电梯间X方向的剪力墙开洞口,使结构X向的刚度减少。(见图2b)
方案3是在方案2的基础上改善了Y方向的刚度,使两个方向的刚度相接近,使结构更合理且均匀对称(见图2c)。
在方案3的基础上把Y向的一些T型剪力墙变成一字型,虽然在多层、高层住宅设计中剪力墙结构应尽量避免一字型,但由于该结构的实际情况,所以采用了部分一字型(见图2d)。
3上部结构设计计算结果分析
3.1计算结果分析
从构件力学特性上来说,短肢剪力墙的肢长与肢厚比≥5.0,更接近于剪力墙,故计算时将短肢剪力墙作为剪力墙而不是柱考虑应更合理。因此,结构整体计算采用中国建筑科学研究院开发的SATWE程序(2003年版)进行。SATWE采用的是在每个节点有六个自由度的壳元基础上凝聚而成的墙元模拟剪力墙墙元不仅具有平面内刚度也具有平面外刚度,可以较好地模拟工程中剪力墙的真实受力状态,计算结果较精确;同时,对楼板SATWE可以考虑其弹性变形。虽然主楼结构平面较规则,立面也无刚度突变现象,但由于刚度较大的电梯井处筒体有点偏置,会产生扭转的影响,为了计算准确,地震作用计算考虑了结构的扭转耦联和5%偶然偏心的影响,取了27个振型计算。
1)自振周期的控制
考虑扭转耦联时的自振周期(计算时自振周期折减系数取0.8)如表1(只列了前6个)所示。从表1可得,方案4结构扭转为主的第一自振周期T3=0.9959s,平动为主的第一自振周期T1=1.1656s,T3/T1=0.854<0.9,满足(JGJ3-2002)
第4.3.5条的规定。
2)结构位移的控制
最大层间位移角(应≤1/1000)、最大水平位移与层平均位移的比值(不宜大于1.2,不应大于1.5)及最大层间位移与平均层间位移的比值(不宜大于1.2,不应大于1.5)见表2。从中可以看出,结构在风荷载和地震作用下的位移均能很好地满足规范限值。
3)剪重比控制
剪重比是反映结构承受地震作用大小的指标之一,地震力计算不能偏大,但也不能太小。因为短肢剪力墙本身抵抗地震的能力较差,如果短肢剪力墙分配的地震力太大,则很有可能不满足要求。本工程X方向的最小剪重比为4.50%,Y方向的最小剪重比为4.62%,根据“抗震规范”(5.2.5)条要求的X、Y向楼层最小剪重比均为3.20%,所以各层均满足要求。
4)轴压比是体现墙肢抵抗重力荷载代表值作用下的能力,“规范”对短肢剪力墙(尤其一字墙肢)要求更高一些。上述工程出现的短肢剪力墙轴压比在0.20~0.45之间,轴压比小于规范规定值。
3.2短肢剪力墙结构经济性分析
为了与工程实际情况相符,假设混凝土的成本与混凝土的体积成正比,钢筋的成本与钢筋的体积成正比。在总造价上,暂不考虑模板及楼板等工程的造价影响。材料的单方造价混凝土为430元/m3,钢筋4200元/t。表4为方案的经济指标汇总,由表4知,方案4比一般剪力墙结构在总造价上要节约17.8%,使材料得到了充分的发挥。
4结语
本文针对小高层住宅的结构特点,采用短肢剪力墙结构,在比普通剪力墙结构方案节省投资17.8%的情况下,使结构受力更合理,整体变形能力和结构吸能能力对抗震更为有利。本工程剪力墙结构的薄弱环节是建筑平面外边缘及角点处的墙肢,因而设计时在以上部位布置L型或一字型短肢墙,受条件所限也出现了少量一字型短肢墙,设计时严格控制其轴压比<0.6,且相差不应太悬殊,避免墙肢应力差异过大。高层建筑中的连梁是一个耗能构件,对抗震不利。多、高层结构设计中允许连梁的刚度有所下降。但应注意短肢剪力墙结构中,墙肢刚度相对较小,连接各墙肢的梁已类似普通框架梁,而不同于一般剪力墙间的连梁,不应在计算的总体中将连梁的刚度大幅下调,使其设计内力降低,应按普通框架梁的要求进行设计。
参考文献:
[1]高层建筑混凝土结构技术规程(JGJ3-2002)〔S〕1北京:中国建筑工业出版社,20021.
[2]建筑抗震设计规范(GB50011-2001)〔S〕1北京:中国建筑工业出版社,2001,1.
[3]李国胜.高层钢筋混凝土结构设计手册(第二版)〔M〕北京:中国建筑工业出版社,2003,1.