前言:我们精心挑选了数篇优质剪力墙结构设计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
通常来说,一般剪力墙结构的建设规模较大,可实际厚度较小。因此,这种特点也决定了剪力墙结构的具体形状以及承受能力的大小。其中,剪力墙结构的组织形状相似于板状,自身具备了较高的承受能力,与柱子的受力程度非常相似。然而,在其他方面上,这两者有着十分明显的差异。并且,剪力墙结构是建筑结构中不可或缺的核心部分,设计人员在对其进行设计时,不仅要充分发挥剪力墙结构固有的承载力大和平面内刚度大的优点,还应该按照不同场所要求,设计出科学合理的剪力墙结构设计方案,使其发挥最大化的使用性能。
1.2剪力墙结构的分类
(1)虽然实体墙与截面剪力墙在某些方面,有着较大的差异。可是,这两者的开通面积与不开通面积是基本相同的。并且,这种剪力墙结构形式在发生变化时,也是呈现了曲线状态,是一种固定不变的形态。
(2)即使剪力墙开口不大,但因为剪力墙开通面积已经远远超出了规定范围。所以,此时的剪力墙结构呈现的是弯曲状态,并且无任何的阻挡点,从而导致其位置和形态均发生了不同程度的变化。
2.剪力墙建筑结构的厚度和长度的选取
剪力墙墙肢截面的高度就是剪力墙墙肢的长度,这个长度一般不应超过8m。在剪力墙结构设计中应确保剪力墙结构的延性,为了避免脆性的剪切破坏,可将高宽比大于2的细高剪力墙设计成弯曲破坏的延性剪力墙。但是有的墙体长度很长,为了确保墙体的高宽比值大于2,就要采取开设洞口的方法将长墙分成均匀的、长度较小的连肢墙,而其洞口则最好采用约束弯矩比较小的弱连梁。
3.剪力墙建筑结构设计计算的原则
设计人员在对剪力墙结构进行设计时,应该遵守相应的设计原则,真正做好考察工作,坚决不可以采用盲目的设计方法。只有这样,才能确保剪力墙结构设计的规范性,这也是保证建筑结构安全可靠性的重要表现。
3.1楼层之间最小剪力系数的调整原则
一般情况下,为了防止安全隐患的发生,减轻建筑结构的自身重量,设计人员在对建筑工程进行设计的过程中,可以采用减少剪力墙布置的方法。但是,这种设计形式有一个必要的前提条件,那就是短肢剪力墙的力矩必须保持在规范的标准要求内。同时还可以应用大开间的剪力墙结构,以此来提高建筑结构的强度,充分保证楼层剪力系数的安全性,并从一定程度上,大大降低了工程造价成本。
4.剪力墙结构优化设计的几点建议
我们知道,剪力墙结构作为建筑结构设计中至关重要的一个环节,其设计质量的好坏将会对建筑工程建设质量产生非常大的影响。而这种建筑结构形式因为具备较高的强度以及良好的延展性的优点,因此得到了十分广泛的应用,充分发挥了自身的有效价值。但是,在实际应用过程中,由于建筑工程存在很多的不确定性,当剪力墙结构发生明显的变化状态时,常常会受到一些外力因素的破坏,使得剪力墙结构的抗震性能遭到了一定的影响,同时也大大降低了建筑结构的稳定性。一般情况下,剪力墙结构最大的优点是具备了十分理想的承载能力。并且,在剪力墙结构的侧面部分,也拥有着较大的平面内刚度,这就充分保障了建筑物的安全性。另外,在建筑内部的剪力墙结构设计中,石柱与房梁都是隐蔽起来的,有效的提高了建筑室内的美感。但是,剪力墙结构也存在着较大的缺陷,无法为人们提供更多的可利用空间,经常会给人们的日常生活造成许多的不便。通过相关调查数据表明是刚韧性较强的剪力墙,在地震发生时,房屋所受到的损坏是最小的。但是,建筑设计人员一定要注意将其控制在合理的范围内,不允许其随意的扩散发展。从而确保剪力墙结构设计工作的质量和效率。其次,由于剪力墙结构成本费用较高,这无疑会对建筑工程建设成本上造成一定的压力。因此,建筑企业要采取及时有效的解决对策,尽可能减少工程成本的浪费,促剪力墙结构能够正常运行。
5.结束语
【关键词】建筑结构;剪力墙结构;应用分析
1引言
高层建筑是城市重要组成部分,建筑可以美化城市,而有一些标志性建筑甚至在某种意义上代表了这座城市城市,例如如广州的小蛮腰和上海的东方明珠塔,都是国际性大都市的标志。因此,城市和建筑互相依赖,彼此生存。如今,土地资源稀缺,高层建筑已成为城市建设的主体,是城市生活的主流建筑,也是当代建筑的发展趋势。随着人民生活水平的不断提高,对居住舒适性的要求也有所提高,特别是对住宅公寓的要求越来越高。剪力墙结构的壁厚与填充墙、平面的厚度是一致的,保证室内无框架柱突出,可有效提高空间利用率,因此,高层住宅剪力墙结构应用的十分广泛。
2建筑结构设计中剪力墙结构概念方案布置
剪力墙结构概念方案布置是进行剪力墙结构设计的前提,而布置设计的合理性与否对整个工程造价有很大的影响,下面对剪力墙结构布置进行简单的介绍。剪力墙布局应沿两个主轴方向双向进行布置,尽量做到分布均匀,这种安排,能够让两轴刚度尽可能接近。剪力墙集中布置会导致结构载荷中心和刚度中心偏移,造成较为严重的扭转效应。剪力墙的分散布置会导致梁板跨度加大和刚度分布不均匀,而在跨度增大时,会增加结构的重量,增加地震效应,从而增加工程造价;另一方面,剪力墙间距太大,以致于单片剪力墙承受荷载过大,增加了轴压比,从而对剪力墙延性设计产生影响。以及结构在不规则的地震扭转薄弱部位凸起后形成棱角。扭转大变形导致扭转破坏。因此,考虑剪力墙平面布置,应单独布置,并用对角线局部加强。在平面角部尽量布置L形墙肢,还可采取设置端柱及转角部位楼板中设置暗梁等构造措施进行加强,以达到提高其扭转刚度的目的。剪力墙竖向布置宜沿房屋高度通高布置、上下对齐、连续布置,墙厚及墙长沿高度宜均匀变化,以达到竖向刚度逐渐变小,从而能够有效避免竖向刚度发生突变情况。这样既经济又能满足承载力、侧向变形的要求。因此,剪力墙结构的布局对整个结构的合理性和经济性有直接的影响。目前,结构的经济性已成为结构设计中必须考虑的因素。在满足安全的前提条件下,最大限度地利用有限的资源,是结构工程师要去探索的问题。因此,在合理布置剪力墙的前提下,尽可能节约经济,降低工程造价。而对于结构的关键部分或者计算模型与实际情况不相吻合的部分,至少使用两种不同结构软件进行了分析计算,并进行了围护结构设计,加固了结构。在概念布局的早期阶段,结构设计师应与建筑师密切合作,确定合理的安排以避免不规则或严重的不规则的平面与立面。实现技术先进,安全适用,经济合理的总体设计,达到降低总成本的目的。
3剪力墙的特征及其种类
从整体上来说剪力墙的特点有下面几点,其侧向刚度很强。还有一个相对比较小的侧移,如果发生地震可以吸收更多的地震能量。在剪力墙结构的应用中,室内墙体很平整,但剪力墙结构,在施工的时候需要很多环节,所以造价相对较高。如果按照剪力墙结构开洞与否可分为以下几种:小开洞剪力墙、壁式框架、实体墙、双肢或多肢剪力墙等。这些剪力墙各有不同的应用特点,每个结构设计人员应针对具体的建筑结构,选择合适的剪力墙结构形式。
4建筑结构设计中剪力墙结构受力分析
剪力墙结构设计有自己的设计原理及其原则。由于剪力墙通常比普通墙的厚度大且宽,所以它的特征比较像板,但是还是有一定的区别,剪力墙通过压弯构件计算,板根据弯曲构件计算。因此有必要在结构设计分析中考虑到具体的设计差异。此外剪力墙墙肢长度,壁厚范围都有自己的特点,当高度和墙段比厚度小于或等于4,应按框架柱的结构设计;当墙肢截面高度与厚度之比大于8时,使用一般剪力墙;当墙肢截面高度与厚度之比在4~8之间时,则要使用短肢剪力墙,这些也是剪力墙的结构设计的基本原则。剪力墙结构由一系列纵向剪力墙和横向剪力墙以及由空间结构组成的梁板组成。在两种负荷的主要:一是竖向荷载,竖向荷载主要是梁板传来的活载、恒载、竖向地震作用及剪力墙身自重;其他主要是水平荷载,地震作用和水平风荷载。剪力墙内力和变形分析包括承载力极限状态和正常使用极限状态分析。在极限承载力状态下,剪力墙在各种工况下不受破坏,能安全承受重力荷载。在正常使用极限状态下,结构变形满足规范要求,在满足设计要求的基础上结构经久耐用。框架结构的变形主要是剪切变形,剪力墙的变形主要是弯曲变形。为了实现剪力墙的弯曲破坏的延性破坏模式。《高层建筑混凝土结构技术规程》中有规定,墙的长度最好不要超过8m。事实上,有两个主要因素影响剪力墙的破坏模式是轴压比和剪跨比,只要轴压比小于规定的限值而剪跨比大于2,可以实现延性破坏模式。当剪力墙的长度超过8m时,尽可能在墙体中部开洞,形成一个双墙肢,通过弱连梁连接,一般来说剪跨比也会大于2,可以满足延性破坏的要求。在地震作用下,通过连接梁的能量,梁端首先进入塑性变形,形成塑性铰,使梁成为抗震的第一道防线。
5连梁设计
高层住宅剪力墙结构,由于墙长较长时通过开洞或剪力墙平面内梁跨较小形成连梁,如果出现跨高比较小的连梁,在计算过程中,容易产生过度抗剪的连梁,通常有以下解决方案:①增大连梁的截面积,可以增强连梁本身的抗剪能力,但梁的刚度相应也会增加,吸收的地震力也会增加,只能增加有限的抗剪承载力。在梁宽固定的情况之下,可以使用加高梁高的方法;当梁高是一定的,可以扩大梁宽,增大断面的连接刚度,但宽度对连梁刚度贡献较小,仅是一个线性关系,使得分担剪力的增加值小于抗剪力的提高值。②调整设计内力,在提高连梁截面对提高抗剪承载力没有影响的状况下,可人为的降低连梁的刚度,来控制剪切力的分配比例,并解决了连梁的抗剪性能问题。最简单的控制方法是在计算参数选择时,通过调整连梁刚度折减系数,只有在采用内力配筋计算时才可以。在整个计算和非地震荷载作用下,连梁的刚度不会降低,连梁应具有足够的抗弯承载力和抗剪承载力,以满足正常使用的要求。对于跨高比大于5的连梁,应根据设计的框架梁,满足框架梁的要求。③可作水平缝从而形成双连梁、多连梁或其他结构措施,以提高抗剪承载力,如设置交叉暗支撑等措施,以提高连梁的抗剪承载力。
6结语
中国的国民经济和建筑结构设计整体水平与发展规模都在提升,高层建筑将成为现代建筑的主流。剪力结构在侧向刚度、侧向变形等方面具有一定的优势,在高层建筑中得到广泛应用。因此掌握剪力墙结构的特点,对剪力墙结构设计有很好的把握。我们要从设计的基本原则出发,设计更加经济合理的剪力墙结构。因此建筑结构设计人员要根据剪力墙结构设计原理有明确的认识,同时,不断从设计实践出发来推动中国建筑业整个工艺设计水平的提高。本文从剪力墙结构设计的概念开始。就建筑结构设计中剪力墙结构设计的应用进行了介绍,希望以此促进行业发展。
参考文献
[1]李捍文.剪力墙结构在建筑结构设计中的应用分析[J].科技创新与应用,2012(9).
[2]孙雪兰.浅谈高层剪力墙结构的优化设计[J].山西建筑,2010(8).
[3]林涛,张景祯.建筑结构设计要点及计算模型调整[J].科技传播,2011(17).
湖南株洲某住宅小区由多栋多层和9~15层小高层住宅组成,框剪结构,总建筑面积为120000m2。以地上9层小高层为例,标准1层结构单元见图1,层高3m;9层上有个跃层为第10层,局部突出屋面部分为电梯机房。建筑总面积为4337.18m2,建筑总高为27.600m。本工程建筑结构的安全等级为二级,抗震设防类别为丙类,按6度设防,地面粗糙度为C类,场地土类别为Ⅱ类。
2结构方案布置分析与选择
原结构方案采用一般的剪力墙结构,这种结构形式对于房屋高度不太大的小高层建筑来说,这种结构会造成刚度过大,重量增加,导致地震反应过强,使得上部结构和基础造价提高。所以,为了有效提高经济指标,经多方案论证,决定采用短肢剪力墙结构体系。
短肢剪力墙结构是指墙肢截面高度为厚度5~8倍的剪力墙结构,和一般剪力墙相比,这种结构型式的优点在于:
1)墙肢较短,布置灵活,可调整性大,容易满足建筑平面的要求。
2)减少了剪力墙而代之以轻质砌体,结构自重相应减轻,从而减小结构整体刚度,增大振动周期,降低地震作用力。
3)墙肢高宽比较大,延性较好,对抗震有利。
4)连梁跨高比较大,以受弯破坏为主,地震作用下首先在弱连梁两端出现塑性铰,能起到很好的耗能作用。
5)墙肢的承载力得到了较充分的发挥。
目前,《高层建筑混凝土结构技术规程》JGJ3-2002已对短肢剪力墙结构的设计作出了规定。
在本住宅结构平面布置中,尽量使结构平面形状和刚度均匀对称,短肢剪力墙双向布置,尽量拉通、对直,竖向布置中,力求规划均匀,避免有过大的外挑、内收,以及楼层刚度沿竖向突变,使整个房屋的抗侧刚度中心靠近水平荷载合力的作用线,以免房屋发生扭转。
根据建筑的平面布置,在房间、楼梯间、电梯间的四角,采用Z形、L形、T形或异形的墙肢。在设计过程中还应注意同周期的关系,使结构的第一自振周期避开场地土的卓越周期,以免地基与结构形成共振或类共振,既保证结构在风和地震荷载作用下的变形控制在规范允许的范围内,又要保证建筑物有相对合理的自振周期,做到结构设计经济、合理且实用。
本方案根据上述分析并经过多次调试,得到了4种结构方案,结构平面布置见图2。剪力墙截面厚度同相邻砌体填充墙厚度均为100mm。剪力墙、梁混凝土强度等级为C30。板的混凝土强度等级均为C25。主要连梁的尺寸大都为200mm×400mm。标准层楼板厚度为120mm,顶层楼板厚度为150mm,有别于肢长肢厚比不大于4.0的异形柱,短肢剪力墙的肢长肢厚比按规范要求控制在5~8范围内,一般剪力墙的肢长肢厚比均大于8。值得注意的是,对肢长肢厚比为4~5范围内的墙肢,目前规范尚无明确条文规定其构件类型,故设计时建议不要采用。
由于原方案的剪力墙过多,使底部剪力过大,使结构很不经济,同时布置了少量钢筋混凝土柱子,使结构不是很合理。故方案1在一般剪力墙结构的基础上去掉了构造柱并减少了少量的剪力墙(见图2a)。
在方案1基础上适当的减少一些剪力墙,从而使方案更经济,在调试过程中由于F轴剪力墙较少,从而使电梯间X方向的剪力墙承受过大的剪力造成超筋,故把电梯间X方向的剪力墙开洞口,使结构X向的刚度减少。(见图2b)
方案3是在方案2的基础上改善了Y方向的刚度,使两个方向的刚度相接近,使结构更合理且均匀对称(见图2c)。
在方案3的基础上把Y向的一些T型剪力墙变成一字型,虽然在多层、高层住宅设计中剪力墙结构应尽量避免一字型,但由于该结构的实际情况,所以采用了部分一字型(见图2d)。
3上部结构设计计算结果分析
3.1计算结果分析
从构件力学特性上来说,短肢剪力墙的肢长与肢厚比≥5.0,更接近于剪力墙,故计算时将短肢剪力墙作为剪力墙而不是柱考虑应更合理。因此,结构整体计算采用中国建筑科学研究院开发的SATWE程序(2003年版)进行。SATWE采用的是在每个节点有六个自由度的壳元基础上凝聚而成的墙元模拟剪力墙墙元不仅具有平面内刚度也具有平面外刚度,可以较好地模拟工程中剪力墙的真实受力状态,计算结果较精确;同时,对楼板SATWE可以考虑其弹性变形。虽然主楼结构平面较规则,立面也无刚度突变现象,但由于刚度较大的电梯井处筒体有点偏置,会产生扭转的影响,为了计算准确,地震作用计算考虑了结构的扭转耦联和5%偶然偏心的影响,取了27个振型计算。
1)自振周期的控制
考虑扭转耦联时的自振周期(计算时自振周期折减系数取0.8)如表1(只列了前6个)所示。从表1可得,方案4结构扭转为主的第一自振周期T3=0.9959s,平动为主的第一自振周期T1=1.1656s,T3/T1=0.854<0.9,满足(JGJ3-2002)
第4.3.5条的规定。
2)结构位移的控制
最大层间位移角(应≤1/1000)、最大水平位移与层平均位移的比值(不宜大于1.2,不应大于1.5)及最大层间位移与平均层间位移的比值(不宜大于1.2,不应大于1.5)见表2。从中可以看出,结构在风荷载和地震作用下的位移均能很好地满足规范限值。
3)剪重比控制
剪重比是反映结构承受地震作用大小的指标之一,地震力计算不能偏大,但也不能太小。因为短肢剪力墙本身抵抗地震的能力较差,如果短肢剪力墙分配的地震力太大,则很有可能不满足要求。本工程X方向的最小剪重比为4.50%,Y方向的最小剪重比为4.62%,根据“抗震规范”(5.2.5)条要求的X、Y向楼层最小剪重比均为3.20%,所以各层均满足要求。
4)轴压比是体现墙肢抵抗重力荷载代表值作用下的能力,“规范”对短肢剪力墙(尤其一字墙肢)要求更高一些。上述工程出现的短肢剪力墙轴压比在0.20~0.45之间,轴压比小于规范规定值。
3.2短肢剪力墙结构经济性分析
为了与工程实际情况相符,假设混凝土的成本与混凝土的体积成正比,钢筋的成本与钢筋的体积成正比。在总造价上,暂不考虑模板及楼板等工程的造价影响。材料的单方造价混凝土为430元/m3,钢筋4200元/t。表4为方案的经济指标汇总,由表4知,方案4比一般剪力墙结构在总造价上要节约17.8%,使材料得到了充分的发挥。
4结语
本文针对小高层住宅的结构特点,采用短肢剪力墙结构,在比普通剪力墙结构方案节省投资17.8%的情况下,使结构受力更合理,整体变形能力和结构吸能能力对抗震更为有利。本工程剪力墙结构的薄弱环节是建筑平面外边缘及角点处的墙肢,因而设计时在以上部位布置L型或一字型短肢墙,受条件所限也出现了少量一字型短肢墙,设计时严格控制其轴压比<0.6,且相差不应太悬殊,避免墙肢应力差异过大。高层建筑中的连梁是一个耗能构件,对抗震不利。多、高层结构设计中允许连梁的刚度有所下降。但应注意短肢剪力墙结构中,墙肢刚度相对较小,连接各墙肢的梁已类似普通框架梁,而不同于一般剪力墙间的连梁,不应在计算的总体中将连梁的刚度大幅下调,使其设计内力降低,应按普通框架梁的要求进行设计。
参考文献:
[1]高层建筑混凝土结构技术规程(JGJ3-2002)〔S〕1北京:中国建筑工业出版社,20021.
[2]建筑抗震设计规范(GB50011-2001)〔S〕1北京:中国建筑工业出版社,2001,1.
[3]李国胜.高层钢筋混凝土结构设计手册(第二版)〔M〕北京:中国建筑工业出版社,2003,1.
关键词:高层建筑 ;剪力墙 ;结构设计;
中图分类号:TU97 文献标识码:A
引言
随着建筑高层化的发展,对剪力墙性能及施工质量提出了更高要求。对于从事高层结构设计的工程师来说,只有对框架结构剪力墙结构的优缺点和技术要点全面把握,并能够吸收当代高层建筑结构设计的一些成功经验,并把结构的经济性、合理性与结构抗震的安全性等诸多因素加以统筹考虑,才能很好的与建筑师配合并设计出经济合理的高层建筑结构体系。
一、框架、剪力墙的受力特点
1 框架结构的受力特点
柱子是承重的关键,柱子上方架着横梁,横梁上面铺设楼板。框架结构的建筑物往往有粗大的柱子,这样才能够能够保证柱子有足够的强度支撑建筑物的重量。框架结构的这一受力特点导致采用框架结构的建筑物对横向受力的抵抗力不足,尤其是如果遇到地震,楼层间甚至可能出现移动。
2 剪力墙结构的受力特点
剪力墙结构是利用钢筋混凝土结构的墙体作为主要承重结构,比如建筑外墙,这些墙体有着抗震,抗侧刚度大,结构的整体性好的特点。尤其是现浇的钢筋混凝土,负载高,水平荷载大,抵抗水平力的作用明显。
3 框架一剪力墙结构的受力特点
框架一剪力墙结构是由梁柱搭建框架,再在部分框架间布置剪力墙,框架间填充加气混凝土轻型墙体,让剪力墙和框架一起承重,增加建筑物的承重能力。利用框架结构的灵活多变的特点划分建筑空间,利用水平荷载能力强的剪力墙抵抗水平方向的受力。框架一剪力墙结构把框架和剪力墙的优点结合在一起,相互弥补了对方的弱点。
二、设计计算中的几个问题
1 剪力墙的布置
原则上,布置剪力墙应该尽量保证对称、均匀、分散。剪力墙应该沿着房屋的方向,纵横布置,以外墙、电梯、楼梯、拐角剂周边等处为宜。在分布上尽量满足对称原则,这样的分布可以尽量使建筑物的刚度中心和质量中心接近。增加抵抗扭转的内力臂,最大化的加强建筑物的整体强度,提高抗扭转能力。在纵向方向布置的剪力墙应该从地基一直到房顶,保证墙体刚度。每片剪力墙的尺寸不要太长,最好不超过8m,尽量分散成多片,增加一片剪力墙就等于增加了一个抵抗水平力的结构。尤其是具有一定转折的剪力墙拥有更加优秀的抗侧力效果,比如L形、十字、圆形等形状。
2 剪力墙的厚度
框架一剪力墙结构中,对于带有边框的剪力墙厚度有一定的规范。如果该建筑处于震区,或者要考虑到抗震设计,那么剪力墙的高度大于等于建筑物层高的1/16,底部的剪力墙加强部位厚度应该大于等于200mm,无论是第一级还是第二级剪力墙都应该满足这个规范。如果不考虑抗震设计,那么剪力墙的高度应该大于等于建筑物层高的1/20,且厚度大于等于160mm。而边框的梁最合适的宽度就等于剪力墙的厚度,边框梁的高以剪力墙的2倍为宜。
3 重视屋面小塔楼的不利影响
现在的高层建筑物,在屋顶处常会设计小塔楼、电梯间、等突出屋顶的建筑结构。由于塔楼结构的质量和刚度比建筑物主体小很多,一旦发生地震,在鞭梢效应的影响下,小塔楼会产生水平位移。就算建筑物主体并未受到损坏,塔楼也可能会因为鞭梢效应的作用遭到破会。目前,大部分高层建筑物在设计的时候都将塔楼和建筑物主体分离设计,在抗震设计的时候也是分别进行计算。计算高层建筑物顶部小塔楼的地震作用非常重要,现在主流的计算方法是底部剪力法,计算顶部塔楼受到的地震作用需要考虑增大系数。由于底部剪力法计算比较复杂,为了简化计算方法,我们可以将小塔楼看做一个单独的结构,在地面计算小塔楼受到的地震作用,将得到的结果乘以增大系数就可以得到小塔楼在屋顶受到的地震作用了。由于设计建筑主体的时候一般都忽略塔楼对建筑主体的地震作用,仅仅计算和塔楼连接的部位。这样的算法还是存在缺陷,如果遇上强震,塔楼在鞭梢效应的影响下,必定会对建筑物主体产生不良作用。
4 框架剪力墙结构的抗震设计
在设计框架剪力墙结构的抗震性能时,必须符合相关规程。在水平力作用下,框架剪力墙结构底层的框架部分所承受的地震倾覆力矩与结构总地震倾覆力矩有一个比值(以下简称力矩比值),根据这个比值的不同,要采取不同的设计:当力矩比值小于lO%时,按剪力墙结构进行设计,其中的框架部分应按框架一剪力墙结构的框架进行设计。当力矩比值大于10%时,按框架一剪力墙结构设计,力矩比值在5O%至80%之间的,可以适当的增加框架剪力墙的最大高度。框架和剪力墙的部分应该按照各自的标准设计抗震等级及轴压比。当力矩比值大于80%时,框架剪力墙的最大高度必须按照框架结构设计,在抗震等级及轴压比的设计上也和前一种情况有所不同,框架部分按照框架结构设计,剪力墙按照框架剪力墙结构进行设计。
三、高层框剪结构抗震设计的技术要点
1 提高剪力墙的抗震能力
(1)提高剪力墙的抗震能力需要加强对倾斜方向裂缝的控制,我们可以利用边框剪力墙来实现这一目的。将梁柱设计在剪力墙的边上,增加拥有倾斜方向承载力的边框结构,这些边框能够阻拦倾斜的裂缝。如果剪力墙产生裂缝,边框结构可以减低附加剪应力,阻止裂缝衍伸到其他部位。
(2)合理的肢墙面积。
如果剪力墙纵向设计有洞口,那么这片剪力墙就变成了联肢墙,联肢墙的中间受到横梁的约束。联肢墙有双肢墙和多肢墙两种情况,双肢墙上只有一列洞口,多肢墙上有多列洞口。
这样的设计降低了剪力墙的刚度,增强抗震能力。即使出现裂缝也往往是在洞口或横梁部位,降低了对墙体的伤害。
2 改善框架的抗震能力
(1)强化角柱。要增强抗震能力就应该强化框架的角柱,提高抗剪应能力。作为框架结构的关键部分,角柱起到连接梁和柱子的作用只有强化了角柱才能从整体加强框架结构。
(2)增强框架的抗震能力需要提高整体框架对推力的抗性,降低横向的位移,尤其要注意减少楼层之间的移动。可以在框架内分散布置用钢筋混凝土浇筑的剪力墙。由于这样的设计没有良好的延展性,我们可以设计一些有延展性的墙体,降低刚度。比如在剪力墙的墙体上合理的增加开口,形成耗能结构,有效的将震能释放。
(3)在框架剪力墙结构中,设计赘余构件可以有效的抵消地震部分的能量。设计赘余构件时可以使用钢筋做骨架的混凝土作为支撑构件,发生地震时,震能会首先影响这些构件,当这些构件被破坏之后,建筑物的整体结构也会发生一定的改变,同时改变了自振频率,避免和形成共振。
3 改善整体抗震能力
( 1)如果在框架剪力墙结构中的梁端和柱端安装“塑性铰”,可以在框架剪力墙结构中形成耗能结构。由于塑性铰能够承受、传递一定的弯矩,地震发生时,即使纵向钢筋发生屈服也不会瞬间破坏结构,而是在塑性铰的作用下承载。水平的构件会先于纵向构件发生屈服,
避免建筑物发生垮塌。
( 2)依照建筑物的实际情况,在框架剪力墙整体结构的刚度和承载能力之间寻求平衡。由于地震发生时,建筑物会的自振周期容易和地震产生共振,如果使用了过多的剪力墙就会减小自振周期,增加建筑物的刚度。那么,加大自振周期就可以有效减少地震作用。在设计的时候布置数量合理的剪力墙,适当的使用短肢墙来减少剪力墙的面积,既可以减轻建筑物的整体重量,有能够有效的防御地震的影响。
( 3)由于框架和剪力墙的材料,制造工艺不相同,两者的结构也不一样,他们存在着刚度、弹性和延展性等多种差异。有可能导致框架剪力墙结构的构件之前无法有效的合作,构件之前缺乏协调,降低了建筑物的抗震能力。只有在考虑协调性的基础上,经过严密的计算和设计,在结构的刚度、弹性和延展性之间做好平衡才能够最大程度抵抗地震力。
四.结语
尽管在高层建筑中框架剪力墙已经得到广泛的应用,并且也取得了前所未有的高度和成就,但是该结构复杂的受力特性使得在抗震性能上还有很大的改进空间。在进行转换层的设计构造时,严格遵循本文提到的结构设计要求,特别是抗震概念要求,在转换层附近适当提高其构造等级要求,增强整体抗震能力,使得框架剪力墙结构更好地应用到高层建筑中。
【参考文献】
[1] 文伟 剪力墙结构在建筑结构设计中的应用分析 [期刊论文] 《城市建设》 -2010年35期
[2] 刘仲臣 剪力墙结构在建筑结构设计中的应用分析 [期刊论文] 《城市建设理论研究(电子版)》 -2012年1期
关键词:高层住宅,结构体系,工程造价
1.问题产生
随着房地产市场由粗犷型向集约型方向的发展,业主对工程造价的重视程度大为提高,甚至超越了建筑专业功能、外观等苛刻要求。论文格式。工程设计造价的高低成为承接工程设计的先决条件,因此根据建筑功能选择结构受力特性良好、经济性能优越的结构体系方案,成为结构设计人员必须面对的课题。
所谓小高层住宅,通常是指十一层加跃层(2006住宅设计规范规定十一层)以下的高层住宅。对结构设计来说有如下可行的结构体系方案:剪力墙结构、框架剪力墙结构、短肢剪力墙结构、异型柱框架剪力墙结构。本文结合实际工程,对以上四种结构形式的受力分析,经济造价进行综合比较,为类似工程的设计,提供了值得借鉴的有益经验。
以某位于沿海地区大型城市,地下一层、地上11层小高层住宅为例,高度35米,设计风荷载按C类地面粗糙度,基本风压0.5KN/m2设计,抗震设防烈度为七度第一组,设计基本地震加速度值0.1g,建筑抗震类别为乙类,结构安全等级为二级, 建筑场地土类别为II类,设计使用年限为50年。
2.各结构体系受力性能
2.1 剪力墙结构:
剪力墙结构通常是指布置的墙体其剪力墙肢肢长和肢厚比大于8的结构,特点是整体性能好,侧向刚度大,水平力下侧向位移小,并且由于没有梁柱等外露与凸出,便于房间布置。是一种传统、成熟、受力性能良好的结构形式,其缺点是结构墙体相对多、刚度和自重较大,一段时间以来应用减少。随着2002新规范的应用,该结构又显示出无穷的生命力。现在小高层住宅剪力墙结构,不再是以往大面积的墙体布置,而是紧扣规范条文,适当控制墙肢肢长和肢厚比的限值,使之稍微大于8,从而减少结构刚度和地震力,避开高规对短肢剪力墙结构近乎苛刻的限值,达到减少造价的目的。
2.2 框架剪力墙结构:
是指由普通框架柱和一般剪力墙共同组成的一种结构形式,由框架和剪力墙共同承担竖向和水平荷载,它结合框架和剪力墙受力的优点,又能获得较大空间房屋,但是由于现在建筑平面布置的灵活性,框架布置非常复杂,很难形成规则的受力体系,并且随着房间布局的变化,容易产生柱楞和凸出的大梁,影响外观和使用功能,同时由于多次受力转换,降低梁板受力性能,增加了结构造价。论文格式。因此除特别规则住宅建筑采用外,目前小高层住宅设计中较少采用。
2.3 短肢剪力墙结构:
短肢剪力墙结构是十多年前由南方沿海发展开来的一种结构形式,为避免剪力墙结构刚度太大的缺点,适当减少墙体长度,使剪力墙墙体肢长和肢厚比取5~8倍。在设计之初,由于没有明确国家规范,设计理论、计算方法和构造措施均参照剪力墙结构设计进行,因此设计随意性较大,不够科学严谨。在2002年新修订的高层建筑混凝土结构规程(JGJ3-2002)才明确了具体设计方法。由于该结构在地震区经验不多,为安全起见,对这种结构设计的最大适用高度、使用范围、抗震等级、一般剪力墙承受的地震倾覆力矩、墙肢厚度、轴压比、截面剪力设计值、纵向钢筋配筋率都作了非常严格规定。尤其是高规7.1.2.2规定:抗震设计时,筒体和一般剪力墙承担的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的50%;高规7.1.2.3规定:短肢剪力墙的抗震等级比一般剪力墙提高一级采用;高规7.1.2.4规定:短肢剪力墙轴压比提高0.1到0.2;高规7.1.2.5规定:短肢剪力墙根据抗震等级不同,剪力设计值乘以1.4和1.2增大系数;高规7.1.2.6规定:短肢剪力墙全部纵向钢筋配筋率对底部加强区不宜小于1.2%,其它部位不宜小于1.0%;高规7.1.2.7规定:墙肢厚度不应小于200。一系列规范条文的限制,使结构造价直线提高,因此此类结构形式在小高层住宅中的运用迅速减少。论文格式。
2.4 异型柱框架剪力墙结构:
异型柱框架剪力墙结构,是由天津市异型柱规程(DB29-16-98)和广东省异型柱规程(DBJ/T15-15-95)等地方规程发展起来的新型结构形式,墙体肢高和肢厚比不大于4,柱肢受力特性复杂,由于该结构形式抗震性能存在很多争议,过去由于一直没有得到国家规程承认,在很多地方因需通过超限审查而受到限值。经过近几年不懈试验研究,终于通过国家抗震规范审查,今年八月一日正是以国家规程(JGJ149-2006)的形式生效,从而使结构设计人员有了可靠权威的设计依据。对这种结构形式,规程对其最大适用高度、使用范围、抗震等级、一般剪力墙承受的地震倾覆力矩、墙肢厚度、轴压比、截面剪力设计值、纵向钢筋配筋率、体积配箍率等也都作了严格规定。同时由于结构断面较小,规范5.3.1强制条文规定应进行梁柱核心区受剪承载力计算。该结构是发展了框架剪力墙结构,同时避免了框剪结构适用性不好的缺点,受到业主和用户欢迎,但是必须明确,由于异型柱断面很小,梁柱节点核心区钢筋密集,施工振捣困难,从而使之力学性能和抗震性能受到削弱,需仔细进行核心区计算。这种结构形式是我国目前迎合中国经济还不是很富裕、渴望减少土建造价的国情的独创,随着综合国力的提高,其发展前景必然会受到一定限制。
各结构体系经济比较
本文以一个实际工程,按上面三种结构布置形式,通过实际计算,进行工程结构造价比较,结果如下表所示。
【关键词】高层建筑;结构设计;剪力墙结构;构造设计
中图分类号:TU318文献标识码: A
1.项目实例
某高层住宅办公楼,地下为两层地下车库,地上为 30 层公寓住宅,建筑总高度为 95.8m,建筑长宽比为 3.6,高宽比为 2.7。 该建筑经过论证最终采用剪力墙结构类型, 由剪力墙结构来直接承受建筑物的水平以及竖向荷载。 由于剪力墙结构其墙体全部由钢筋混凝土所构成,因此其自身平面内具有较大的抗侧刚度,能够有效地抵抗较大的水平侧向力。在水平荷载作用下,剪力墙结构将主要产生弯曲型的变形。 以下将结合该项目来进一步探讨剪力墙结构的设计及其技术要点。
2.高层建筑剪力墙结构设计
2.1 剪力墙结构布置技巧
合理地剪力墙布置将决定剪力墙结构计算计算结果是否能满足规范要求,而且将决定着结构是否为最优结构体系,这一切又决定着结构的整体经济效益。 对于一般剪力墙布置来说,其应当主要沿主轴方向布置,而针对巨型、L 形、T 形等建筑平面,则可采用沿两个轴线方向布置。同时在布置剪力墙时,应尽量避免出现只有单向有墙的情况,同时对内外剪力墙采取拉通对直设置。另外对于剪力墙的布置并不是剪力墙越多越好,合理地布置剪力墙数目是关键, 同时还应当满足结构质量中心与刚度中心的重合,避免结构出现过大的扭转。 这就要合理充分掌握剪力墙布置间距来体现。 剪力墙布置间距适中将有助于发挥剪力墙抗侧力构件作用,而且还可以合理地增大结构的利用空间。 对于剪力墙布置间距过少,则会导致结构的侧向刚度过大,造成结构的不经济性。再次,对于剪力墙上难以避免的洞口,鉴于洞口大小、位置以及数量对高层建筑剪力墙的受力影响很大,因此对于剪力墙上的门窗洞口布置应当上下对齐,明确墙肢和连梁的位置,且刚度相差不大,应避免三个以上的洞口集中于同一个十字交叉墙附近。 另外,由于剪力墙中的连梁刚度较弱,不宜将楼面主梁支承载在连梁上。对于本项目来说,本项目建筑用途为住宅公寓,抗震设防烈度为8 度,设计地震分组为一组,建筑场地类别为二类,设计基本地震加速度为 0.20g,基本风压(50 年一遇)为 0.65kN/㎡,地面粗糙度为 A 类,结构设计合理使用年限为 50 年,建筑结构安全等级为二级,结构抗震等级为二级,主楼地基基础设计等级为甲级。 该建筑体型对住宅平面布置有利,对底部公共建筑设施也易于布置,经反复分析和试算,最终确定采用短肢剪力墙结构体系。
2.2 剪力墙结构设计要点
剪力墙作为一种具有较大刚度、整体性好、抗侧力好的结构类型,从工程实践表明,对于不合理的剪力墙结构设计将会造成结构成本的增加以及结构的不安全性。 结合实践经验,笔者提出剪力墙结构设计中重要的几点设计要点如下:(1)对于地震效果较大的情况下,单纯地提高剪力墙结构的抗侧刚度,这将造成基础以及剪力墙结构的成本增加。(2)应合理布置剪力墙数量,过多的剪力墙数量将增加结构主体重量同时造成工程浪费。 (3)严格按照规范要求来进行剪力墙的构造配筋,配筋率的过低将会造成剪力墙结构延性较差。(4)合理设计剪力墙的墙长及其墙厚,避免出现墙肢承载力得不到有效发挥。综上所述,对于剪力墙结构设计一方面要保证结构具有足够的抗侧刚度,同时还需兼顾结构成本的优化。
2.3 剪力墙结构的构造设计
对于剪力墙结构设计来说, 不仅仅应满足结构的计算结果要求,同时还应满足规范的构造要求,构造要求对于保证剪力墙结构的延性等具有重要意义。本高层结构在构造设计上,根据《高规》规定,还应在结构设计时采取如下措施:
(1)除注明者外,剪力墙墙体水平钢筋放在外侧;墙体钢筋网之间设直径 8@600x600 拉筋; 剪力墙墙体水平钢筋不得代替暗柱箍筋的设置。 当墙或墙的一个墙肢全长按暗柱设计时,则此墙或墙肢不再设墙体水平筋,配置暗柱箍筋即可。
(2)连梁应沿整个梁高设置侧面纵筋(腰筋);除特殊标注外,连梁腰筋按墙体水平筋拉通。
(3)楼板内设备预埋管上方无板上部钢筋时,沿预埋管走向设置板面附加钢筋网带,钢筋网带取直径 6@150x200,最外排预埋钢管中心至钢丝网带边缘水平距离 150。
(4)当电梯基坑未落在结构底板(或基础)上,且基坑板下未设置实心柱墩延伸到结构底板(或基础)时,基坑厚度应不小于 250mm;对于落地导轨,其每处支撑点各设置 300x300x250(厚)的 C30 钢筋混凝土垫块,罩面钢筋网直径 12@100x100 且往下弯折至基坑板顶面。
(5)梁上部纵向钢筋水平方向的净距,不应小于 30 和 1.5d(d 为较大钢筋直径);下部纵向钢筋水平方向的净距不应小于 25 和 d。 下部纵向钢筋多于两层时,两层以上钢筋的水平中距比下面两层的中距离增大一倍。 各层钢筋之间的竖向净间距取 25 和 d 之中的较大值;
(6)当上部墙柱伸入地面与土体接触、或其中一段墙柱临水时,无论其外表面是否设置了建筑防水层,墙柱迎水面、接触土体面的纵筋保护层应按上部结构的保护层厚度增加 30(墙)、20(柱)。
3.剪力墙结构计算分析
对本工程剪力墙结构通过采取 SATWE 有限元分析程序对结构的内力与位移进行分析。对框架-剪力墙结构中跨高比较大的与柱墙相接梁以及某些连梁, 该梁的重力作用效应比水平风或水平地震作用效应更加明显,此时需考虑梁刚度的折减,以控制正常使用时梁裂纹的发生和发展。 另外,高层建筑楼层的侧向刚度不宜小于相邻上部楼层侧向刚度的 70%或其上相邻点层侧向刚度平均值的 80%。 经过采取一系列的计算,计算结果表明,本结构各项结果均应在正常范围之内,既满足规范要求,又符合以下三点规律:(1)柱、剪力墙的轴力设计值均为压力;(2)柱、剪力墙基本为构造配筋:(3)梁基本无超筋,剪力墙、连梁均满足界面抗剪扭的要求。
4.结语
高层建筑剪力墙结构设计的主旨是发挥这种结构刚度大、美观等特点,且又能解决高建筑成本等问题。 随着建筑不断的复杂化以及建筑高度的不断提升,剪力墙结构成为了现代建筑结构设计中较为常用的结构类型之一,其被广泛应用在住宅和旅馆建筑结构中。 文章通过结合高层结构设计实例, 借此探讨了剪力墙结构设计的基本要求、布置原则等,同时提出高层建筑混凝土剪力墙设计的相关要点,为同行提供实例借鉴。科
【参考文献】
[1]周浪.高层住宅剪力墙结构优化设计研究[D].武汉理工大学硕士学位论文,2011:95-182.
【关键词】高层建筑;梁式转换层;施工
随着我国经济的持续快速发展,高层建筑一般上部需要较多的墙体来分隔空间以满足住宅户型的需要;而下部则希望有较大的自由灵活空间,大柱网、少墙体,以满足公共使用要求。这样的建筑上部楼层部分竖向构件(剪力墙、框架柱)不能直接连续贯通落地时,为了满足建筑要求就必须在上下不同结构体系转换的楼层设置转换层,在结构转换层布置转换结构构件。
1 梁式转换层结构形式
高层建筑结构下部受力比上部大,按常理来说,在高层建筑结构的设计中就要考虑下部的刚度要大于上部结构;采用的措施就是下部增加墙体、增加柱网,而上部逐渐减少墙柱的密度。显然,这在高层建筑设计中是不现实的,因为高层建筑的使用功能对空间要求却是下部大空间,往上部逐渐减小,因此对高层建筑结构的设计就要考虑反常规设计方法。
1.1 梁式转换层结构形式
实际工程中应用的梁式转换层结构有多种形式,主要原理就是利用下部的转换大梁来支托上部结构。
1.2 梁式转换结构受力机理分析
梁式转换层结构的传力途径为墙—梁—柱(墙)的形式,传力直接,便于分析计算。转换大梁的受力主要受上部剪力墙刚度、剪力墙与转换大梁的相对刚度和转换大梁与下部支撑结构的相对刚度影响。为弄清转换梁结构与上部墙体共同工作的性能,对转换梁承托层数对其内力的影响用有限元程序进行了分析,从分析结果中我们知道,对一般结构转换大梁,上部墙体考虑三层与考虑4层、5层内力的设计控制内力差异不大于5%,故在分析计算时可只考虑计算3层。从计算分析不论转换大梁上部墙体的形式如何,只要墙体有一定长度,转换大梁中的弯矩就会比不考虑上部墙体作用要小,同时转换大梁也会有一段范围出现受拉区。
2 梁式转换层的结构设计
2.1 结构竖向布置
高层建筑的侧向刚度宜下大上小,且应避免刚度突变。然而带转换层的高层建筑结构显然有悖于此,因此对转换层结构的侧向刚度作了专门规定。对该工程而言,属于“高位转换”。转换层上下等效侧向刚度比宜接近于1,不应大于1.3。在设计过程中,应把握的原则归纳起来,就是要强化下部,弱化上部。可以采用的方法有以下几种:1)与建筑专业协商,使尽可能多的剪力墙落地,必要时甚至可在底部增设部分剪力墙(不伸上去)。除核心筒部分剪力墙在底部必须设置外,还与建筑专业协商后,让两侧各有一片剪力墙落地。这些无疑都大大增强了底部刚度。
2)加大底部剪力墙厚度。转换层以下剪力墙中,核心筒部分的厚度取为 600mm,其余部分的厚度取为 400mm。
3)底部剪力墙尽量不开洞或开小洞,以免刚度削弱太大。
4)提高底部柱、墙混凝土强度等级,采用 C50 混凝土。
5)适当减少转换层上部剪力墙数目,控制剪力墙厚度,并可在某些较长剪力墙中部开结构洞,以弱化上部刚度。弱化上部刚度不仅对控制刚度比有利,还可减轻建筑物重量,减小框支梁承受的荷载;增大结构自振周期,减小地震作用力。工程综合采用上述几种方法后,转换层上下刚度比在 X 方向为 0.725,在 Y 方向为 0.813,满足规范要求,效果良好。虽然上下部刚度比满足要求,但毕竟工程仍属于竖向不规则结构,转换层及其下各层为结构薄弱层,因而应将该两层的地震剪力乘以 1.15 的增大系数。
2.2 结构平面布局
工程底部为框架—剪力墙结构,体型简单、规则;上部为纯剪力墙结构。在剪力墙平面布置上,东西向完全对称,南北向质量中心与刚度中心偏差不超过 2m,结构偏心率较小。除核心筒外,其余剪力墙布置分散、均匀;且尽量沿周边布置,以增强抗扭效果。查阅计算结果,扭转为主的第一自振周期与平动为主的第一自振周期之比为0.85,各层最大水平位移与层间位移比值不大于 1.3,均满足平面布置及控制扭转的要求。可见工程平面布局规则合理,抗扭效果良好。
3 梁式转换层结构的设计与构造
由框支主梁承托转换次梁及次梁上的剪刀墙,其传力途径多次转换,受力复杂。框支主梁除承受其上部剪力墙的作用外,还需要承受梁传给的剪力,扭矩和弯矩,框支主梁易受剪破坏。对于有抗震设防要求的建筑,为了改善结构的受力性能,提高其抗震能力,在进行结构平面布置时,可以将一部分剪力墙落地,并贯通至基础,做成落地剪力墙与框支墙协同工作的受力体系。
3.1 转换梁的设计与构造要求
转换梁的截面尺寸一般宜由剪压比计算确定,以避免脆性破坏和具有合适的含箍率。转换梁不宜开洞,若需要开洞,洞口宜位于梁中和轴附近。洞口上、下弦杆必须采取加强措施,箍筋要加密,以增强其抗剪能力。上、下弦杆箍筋计算时宜将剪力设计值乘放大系数 1.2。当洞口内力较大时,可采用型钢构件来加强。
转换梁的混凝土强度等级不应低于 C30。转换梁上、下主筋的最小配筋率非抗震设计时为 0.3%,转换梁中主筋不宜有接头,转换梁上部主筋至少应有 50%沿梁全长贯通,下部主筋应全部贯通伸入柱内。
3.2 框支柱的设计与构造要求
框支柱截面尺寸一般系由其轴压比计算确定。地震作用下框支柱内力需调整。抗震设计时,框支柱的柱顶弯矩应乘以放大系数,并按放大后的弯矩设计值进行配筋;剪力调整——框支柱承受的地震剪力标准值应按下列规定采用:框支柱的数目不多于 10 根时,当框支层为 1~2 层时,每层每根柱承受的剪力应至少取基底剪力的 2%;当框支层。为 3 层及 3 层以上时,各层每根柱所受的剪力应至少取基底剪力的 3%;框支柱的数目多于 10 根时,当框支层为 1~2 层时,每层每根柱承受的剪力之和应取基底剪力的 20%;当框支层为 3 层及 3 层以上时,每层框支柱承受剪力之和应取基底剪力的 30%;框支柱剪力调整后,应相应调整框支柱的弯矩及柱端梁的剪力、弯矩,框支柱轴力可不调整。
3.3 转换梁的截面设计方法
目前国内结构设计工作普遍采用的转换梁截面设计方法。主要有:应力截面设计方法。对转换梁进行有限元分析得到的结果是应力及其分布规律,为能直接应用转换梁有限元法分析后的应力大小及其分布规律进行截面的配筋计算,假定不考虑混凝土的抗拉作用,所有拉力由钢筋承担钢筋达到其屈服强度设计值。受压区混凝土的强度达到轴心抗压强度设计值。
3.4 转换梁截面设计方法的选择
托柱形式转换梁截面设计。当转换梁承托上部普通框架时,在转换梁常用截面尺寸范围内,转换梁的受力基本和普通梁相同,可按普通梁截面设计方法进行配筋计算。当转换梁承托上部斜杆框架时,转换梁将承受轴向拉力,此时应按偏心受拉构件进行截面设计。
4 结语
通过高层建筑转换层结构设计的工程实践,体会如下:根据建筑平面及功能要求合理选择转换层形式,正确选择建筑抗震类别是转换层设计的关键点,结合结构布置,正确选择各分部的抗震等级,构件设计应注重抗震延性设计的概念,对主要构件进行加强是设计的重点。
参考文献
关健词:概念设计 结构设计 框—剪结构
中图分类号:S611文献标识码:A 文章编号:
一、概念设计的涵义
概念设计就是从结构总体方案设计一开始,就运用人们对建筑结构抗震已有的正确知识去处理好结构设计中将遇到的问题,诸如:房屋体形、结构体系、刚度分布、构件延性等等。从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施。从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。也就是说概念设计是工程师运用思维和判断力,根据从大量震害经验得出的结构抗震原则,从宏观上确定结构设计中的基本问题。因此,工程师必须从主体上了解结构抗震特点,振动中结构的受力特征,抓住要点,突出主要矛盾,用正确的概念来指导概念设计,才会获得成功。由于概念设计包括的范围极广,因此不仅仅要分析总体方案确定的原则,还要顾及非材料的正确使用和关键部位的细部构造。但是首先和最重要的还是结构总体概念设计、材料选型和细部构造等问题,这些设计原则和结构概念中,较为重要的是结构总体设计。
二、结构总体设计的注意要点
1.延性耗能
在建筑结构的整体设计上要注意加强薄弱环节,尽量做到等强度。同时,应使建筑结构在一个恰当的部位能消耗大量的能量,在具体设计中即为各式各样的梁,如框架梁、联肢墙的连肢梁等。结构延性一般用延性系数表示,它表示的是结构极限变形(位移、转角、曲率)与屈服变形的比值,也可以分别用位移延性系数,转角延性系数等来表示,该比值越大,结构的延性越好。在设计上为提高钢筋混凝土梁的延性,一般采取以下措施:(1)首先应选取合适的梁截面尺寸,以获得合适的配筋率,避免梁受拉筋过多或出现超筋。因此,对地震区梁的配筋率要大大低于一般梁的最高配筋率。(2)梁上部(跨中)和下部(端部)配置适量的受压筋。(3)提高梁混凝土强度等级,采用中低级钢筋对延性有利。(4)T形梁比矩形梁延性好。(5)注意加密箍筋。地震区钢筋混凝土梁的位移延性系数一般要求不得低于4。
2.多道防线设计
现在有一种新的抗震概念:当建筑结构受到强烈地震动主脉冲卓越周期的作用时,一方面利用结构中增设的赘余杆件的屈服和变形,来耗散地震输入能量;另一方面利用赘余杆件的破坏和退出工作,使整个结构从一种稳定体系过渡到另一种稳定体系,实现结构周期的变化,以避开地震动卓越周期长时间持续作用所引起的共振效应。这种通过对结构动力特性的适当控制,来减轻建筑物的破坏程度,是对付高烈度地震的一种经济有效的方法。
3.妥善处理非结构部件
非结构部件一般是指在通常结构分析中不考虑承受重力荷载以及风、地震等侧力荷载的部件,如内隔墙,框架填充墙,建筑处围墙板,楼梯等。实际上,在地震作用下,高层建筑中的这些部件或多或少地参与工作,从而改变了整个结构或局部构件的刚度,承载力和传力路线。造成未曾估计到的局部震害。在钢筋混凝土框架体系的高层建筑中,这些影响最为普遍。(1)砌体填充墙的抗震作用:①使结构刚度增大,自振周期缩短,水平地震力增大30%~50%。②改变了结构的地震剪力分布状况。③砌体填充墙具有较大的抗推刚度,限制了框架的变形,从而减小了整个结构的地震侧移幅值。 (2)柱端震害,在地震中,角柱上端被嵌砌于框架间的砖墙顶断。这是典型的柱端震害。在框架体系设计中必须考虑,并采取恰当的预防措施。(3)形成短柱破坏。采用钢筋混凝土框架的高层建筑,就框架柱的受力状况和破坏形态而言,一般情况下属于长柱。由于窗裙墙对框架柱的刚性约束,减短了柱的有效长度,使它变成了短柱,承担的地震力大增,发生剪切破坏。因此,采用贴砌围护方案或墙、柱柔性连接方案都是防止短柱破坏的有效手段。否则沿柱的全高,柱身箍筋的配置均应符合短柱的规定。这一点,在施工图中,应当说明清楚。
三、案例讨论
某项目情况:地上34层共120m,地下共3层,其中地下第3层为5级人防。该结构为超高层结构,框架-剪力墙结构体系。其中在地上第三层有局部框值转换。在方案设计阶段,框架的轴线尺寸己经由建筑确定,梁柱截面尺寸根据竖向荷载及粗估的水平地震作用效应确定。最后问题是剪力墙如何布置、数量多少。这是一个关系到结构安全和技术经济合理性,并体现出体系优越性的关键性环节。所以结构工程师在方案设计阶段都积极参与,并根据适宜刚度概念算出剪力墙的面积,结合建筑要求设计出经济合理的方案。
1.剪力墙的布置。一般情况下,剪力墙应在纵横两个方向同时布置,并使两个方向的自振周期比较接近。在非抗震设计的条件下,也允许只设横向剪力墙而不设纵向剪力墙,这时,纵向风力全部由纵向框架承受。剪力墙的一般布置原则是“均匀、分散、对称、周边”。均匀、分散是要求剪力墙的片数多,每片的刚度不要太大,也就是说布置很多片短的剪力墙;并且在楼层平面上均匀布开不要集中在某一局部区域。一方面,剪力墙对称布置可以避免和减少建筑物受到的扭矩。另一方面,剪力墙沿周边布置可以最大幅度地加大抗扭转的内力臂,提高整个结构的抗扭能力。经过讨论,大家一致同意剪力墙沿周边布置。
2.剪力墙的平面位置。一般情况下,剪力墙宜布置在下述的各个部位:(1)竖向荷载较大处。这样可以获得三点好处:①较大重力荷载引起的较大地震作用,可以直接传到剪力墙上;②剪力墙承受很大的弯矩和剪力,有了较大轴向压力来平衡,可以减小墙体的拉应力,并提高墙体的受剪力承载力;③可以避免使用较大截面梁、柱的框架来承担较大的竖向荷载。(2)平面形状变化处或楼盖水平刚度剧变处。这样可以消除地震时在该部位楼板中引起的应力集中效应。(3)楼梯间、电梯间以及楼板较大洞口的两侧。根据本工程特点,剪力墙的平面位置布置在竖向荷载较大处。
3.剪力墙最大间距。在框—剪体系中,剪力墙是主要抗震构件,承担着80%以上的地震力;框架是次要抗震构件,仅承担加%以下的地震力。要保持框一剪体系这一结构特性,以剪力墙为侧向支撑的各层楼盖,在地震力作用下的水平变形就需控制在很小数值范围以内,使框架的侧向变形与剪力墙大致相同。否则,就需要通过空间分析来考虑楼盖水平变形所引起的框架剪力增值。在实际工程中,剪力墙间距一般在2.5B及30m以内。有30m长的一段无剪力墙的自由布置空间,完全可以满足建筑功能的要求。
参考文献:
[1]小谷俊川.日本基于性能结构抗震设计方法的发展.建筑结构,2000,6.
[2]建筑抗震设计规范.(GBJfl一89).
关键词:高层建筑;结构设计;布置原则;控制参数
中图分类号:TU2文献标识码:A
1 引言
1.1高层建筑的定义
超过一定层数或高度的建筑将成为高层建筑。高层建筑的起点高度或层数,各国规定不一,且多无绝对、严格的标准。
(1) 我国对高层定义 。在我国,旧规范规定:8层以上的建筑都被称为高层建筑,而目前,接近20层的称为中高层,30层左右接近100m称为高层建筑,而50层左右200m以上称为超高层。在新《高规》即《高层建筑混凝土结构技术规程》(JGJ3-2002)里规定:10层及10层以上或高度超过28m的钢筋混凝土结构称为高层建筑结构。当建筑高度超过100m时,称为超高层建筑。我国的房屋一般8层以上就需要设置电梯,对10层以上的房屋就有提出特殊的防火要求的防火规范,因此我国的《民用建筑设计通则》(GB 50352—2005)、《高层民用建筑设计防火规范》(GB 50045-95)将10层及10层以上的住宅建筑和高度超过24m的公共建筑和综合性建筑划称为高层建筑。(2) 国外对高层定义。在美国,24.6m或7层以上视为高层建筑;在日本,31m或8层及以上视为高层建筑;在英国,把等于或大于24.3m得建筑视为高层建筑。
1.2高层建筑的发展
1885年出现第一幢高层建筑-----芝加哥家庭保险大楼,框架结构,10层55M。到1989年,全世界10幢超过300M的高层建筑中,美国有9幢。英、法两国高层建筑占城市建筑的40%左右。据国外有关资料介绍,9--10层的建筑比5层的节约占地23—28%,16—17层的建筑比5层的节约用地32—49%。
由于高层建筑的受力和变形状态十分复杂,因此其设计与施工需要考虑的因素很多,涉及许多学科和部门,而且随着层数和高度的逐渐增加,它的建筑难度也越来越大。高层建筑的高度竞争,实际是整个建筑科学技术和人才的竞争,它不仅反应一个国家科学技术水平,而且也反应一个国家精神文明、物质文明和经济发展程度和水平。与此同时,高层建筑的高度竞争,必将不断推动和促进整个建筑科学、建筑材料和设备的发展,改变传统的设计概念、计算理论和施工方法,从而使现代高层建筑日臻完善,适应世界城市化的发展,满足人们的需求。现在,高层建筑的发展已成为历史的必然和时代的潮流。
1.3我国高层建筑的特点
(1)层数增多,高度加大。
(2)结构体系日益多样化。 悬挑结构、巨型框架结构。
(3)平面布置与竖向体型更加复杂。常用不对称、曲线型平面(城市规划、建筑功能的要求,计算机的广泛应用)。在竖向布置上,一方面竖向体型趋于多变,阶梯形内收、上部楼层外挑
2 高层建筑结构体系简介
目前,高层建筑基本上都是采用钢筋混凝土结构,其结构体系有框架结构、剪力墙结构、框架剪力墙结构等,其中在高层住宅建筑中剪力墙结构和框架剪力墙结构使用较多。
2.1 剪力墙结构
剪力墙结构是用钢筋混凝土墙板来代替框架结构中的梁柱,作为竖向承重和抵抗侧力的结构,这种用钢筋混凝土墙板来承受竖向和水平力的结构称为剪力墙结构。该结构通常采用平面布置形式,由于剪力墙受竖向荷载和水平荷载共同作用,剪力墙应双向或多向布置。由于该结构全部由剪力墙组成,其刚度比框架剪力墙结构更好,常用于 40 层以下的高层住宅建筑等。该结构高宽比不宜大于6,其高度应考虑抗震要求。
2.2 框架剪力墙结构
框架剪力墙结构是由框架和剪力墙组合而成的结构体系。其中剪力墙承受绝大部分水平荷载,框架承受竖向荷载,两者共同受力,合理分工。剪力墙应均匀布置在建筑物的周边、电梯间、平面形状变化较大和竖向荷载较大等部位。由于该结构以框架结构为主,剪力墙为辅助,因此,该结构体系适用于 25 层以下的建筑,最高不宜大于 30 层。
3高层建筑各部位设计要点
3.1梁柱受力主筋位置的设计 一是节点设计原则:框架结构设计的原则是“强剪弱弯、强柱弱梁”,首先保证框架受力主筋的位置。 二是解决方法:(1)框架梁主筋在框架柱内侧通过。(2)为保证框架梁的截面尺寸,在框架梁靠近柱侧四角增加4根钢筋作为架立钢筋。
3.2墙梁节点钢筋设计
一是节点设计的原则。根据固定端框架梁的弯距形式,框架梁在支座位置上铁受拉,下铁受压;墙体暗梁或过梁受扭,尽量保证暗梁或连梁箍筋的完整性。
二是解决方法:(1)过梁下铁设置不超过六根主筋分为两排布置,框架梁下铁布置在过梁下铁第一排和第二排钢筋之间且框架梁的接头位置全部位于支座附近,接头按照50%的比例错开。(2)框架梁上铁直接搁置在过梁上铁上,保证框架梁主筋的锚固长度满足规范要求。根据GB50204-2000规范中规定,过梁的箍筋尺寸取负误差,框架梁箍筋的尺寸取正误差,从而保证过梁和框架梁保护层厚度。(3)将过梁或暗梁截面降低或减小5cm,框架梁上铁直接锚固在过梁上,保证框架梁及楼板钢筋的保护层的厚度。 3.3主梁论文秘籍网
· 沥青混凝土路面施工质量控制浅析
· 混凝土裂缝成因及预防方法
· 浅谈高层建筑混凝土施工要点
· 企业论文_高层建筑混凝土工程施工技术探讨
· 在论文秘籍网搜索混凝土
论文秘籍网
· 浅析桥梁施工中裂缝出现的原因及控制措施
· 半刚性基层裂缝成因分析与防治对策
· 浅析《裂缝》中的诗性智慧
· 混凝土桥梁裂缝问题的若干思考
· 在论文秘籍网搜索裂缝
论文秘籍网
· 框架结构施工常见问题与防治对策
· 钢筋混凝土框架结构的加固方法初探
· 高层框架结构施工存在的现实问题及控制措施
· 浅谈多层框架结构的组成与布置方法
· 在论文秘籍网搜索框架结构
和次梁节点注意的问题 在框架剪力墙结构中,主梁和次梁的节点非常重要,主次梁钢筋的设计位置就成为我们关注的焦点。根据常规做法,次梁上铁钢筋在主梁钢筋之上,板筋在次梁主筋之上,如果主次梁节点钢筋设计不合理,就会造成板筋或次梁上铁钢筋保护层厚度过小,不利于结构的抗震。 3.4高层建筑结构的防火设计
高层建筑的防火设计,必须遵循“预防为主,防消结合”的消防工作方针,针对高层建筑发生火灾的特点,立足自防自救,采用可靠的防火措施,做到安全适用、技术先进、经济合理。
4高层建筑结构设计的控制参数
高层建筑结构设计中各控制参数的选取直接影响结构的安全性、合理性等。因此。合理的选取各控制参数,有助于提高结构整体控制的效率,也有助于使结构设计更加安全、经济合理。
4.1 轴压比
限制结构的轴压比,以保证结构的延性要求。当不满足规范要求时可以通过增大该墙、柱截面或提高该楼层墙、柱混凝土强度的办法调整。
4.2 剪重比
限制各楼层的最小水平地震剪力,确保周期较长的结构的安全。当偏小且与规范限值相差较大时,可通过增强竖向构件,加强墙、柱等竖向构件的刚度的办法调整。 4.3 刚重比:规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。当不满足规范下限要求时,可以通过调整增强竖向构件,加强墙、柱等竖向构件的刚度的办法调整。
4.4 层间位移角
限制结构在正常使用条件下的水平位移,确保高层结构应具备的刚度,避免产生过大的位移而影响结构的承载力、稳定性和使用要求。当不满足规范要求时,只能通过调整增强竖向构件,加强墙、柱等竖向构件的刚度的办法调整。
4.5 层间位移比
限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。当不满足规范要求时,可以改变结构平面布置,减小结构刚心与质心的偏心距达到规范要求。
4.6 周期比
限制结构的抗扭刚度不能太弱,使结构具有必要的抗扭刚度,减小扭转对结构产生的不利影响。当不满足规范要求时,只能通过调整改变结构布置,提高结构的抗扭刚度。
4.7 刚度比
主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。当不满足规范要求时,可以适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度以满足要求。
[论文摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。
我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。
一、高层建筑结构设计的特点
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:
(一)水平力是设计主要因素
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
(二)侧移成为控指标
与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:
1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
2.使居住人员感到不适或惊慌。
3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。
4.使主体结构构件出现大裂缝,甚至损坏。
(三)抗震设计要求更高
有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
(四)减轻高层建筑自重比多层建筑更为重要
高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。
地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。
(五)轴向变形不容忽视
采用框架体系和框架——剪力墙体系的高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。
(六)概念设计与理论计算同样重要
抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,在设计中把握好高层建筑的概念设计也是很重要的。
二、高层建筑的结构体系
(一)高层建筑结构设计原则
1.钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。
2.高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系与平、立面布置方案,并注意加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。
(二)高层建筑结构体系及适用范围
目前国内的高层建筑基本上采用钢筋混凝土结构。其结构体系有:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构等。
1.框架结构体系。框架结构体系是由楼板、梁、柱及基础四种承重构件组成。由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构体系优点是:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。
框架结构的缺点是:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
框架结构的适用范围:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺与使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。
2.剪力墙结构体系。在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。 转贴于
剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较轻微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观。
剪力墙结构墙体较多,不容易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。
在框支剪力墙中,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大内力及塑性变形,因此,在地震区不允许采用这种框支剪力墙结构。
3.框架—剪力墙结构体系。在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。
4.筒体结构体系。随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主抵抗水平力的结构称为筒体结构。通常筒体结构有:
(1)框架—筒体结构。中央布置剪力墙薄壁筒,由它受大部分水平力,周边布置大柱距的普通框架,这种结构受力特点类似框架—剪力墙结构,目前南宁市的地王大厦也用这种结构。
(2)筒中筒结构。筒中筒结构由内、外两个筒体组合而成,内筒为剪力墙薄壁筒,外筒为密柱(通常柱距不大于3米)组成的框筒。由于外柱很密,梁刚度很大,门密洞口面积小(一般不大于墙体面积50%),因而框筒工作不同于普通平面框架,而有很好的空间整体作用,类似一个多孔的竖向箱形梁,有很好的抗风和抗震性能。目前国内最高的钢筋混凝土结构如上海金茂大厦(88层、420.5米)、广州中天广场大厦(80层、320米)都是采用筒中筒结构。
(3)成束筒结构。在平面内设置多个剪力墙薄壁筒体,每个筒体都比较小,这种结构多用于平面形状复杂的建筑中。
(4)巨型结构体系。巨型结构是由若干个巨柱(通常由电梯井或大面积实体柱组成)以及巨梁(每隔几层或十几个楼层设一道,梁截面一般占一至二层楼高度)组成一级巨型框架,承受主要水平力和竖向荷载,其余的楼面梁、柱组成二级结构,它只是将楼面荷载传递到第一级框架结构上去。这种结构的二级结构梁柱截面较小,使建筑布置有更大的灵活性和平面空间。
除以上介绍的几种结构体系外,还有其他一些结构形式,也可应用,如薄壳、悬索、膜结构、网架等,不过目前应用最广泛的还是框架、剪力墙、框架—剪力墙和筒体等四种结构。
[参考文献]
[1]GB50011-2001建筑抗震设计规范.
[2]GB50010-2002混凝土结构设计规范.
【关键词】钢筋混凝土,建筑工程,结构设计,优化研究
中图分类号:TU37 文献标识码:A 文章编号:
一.前言
伴随着我国建筑行业的迅速发展,工程建筑行业日渐成为了我国国民经济新的经济增长点,不仅仅在国民经济的增长中占据着越来越重要的地位,而且在改善居民生活方式,提高居民的生活质量方面有着巨大的推动作用。随着钢筋混凝土建筑结构在建筑行业中的广泛应用,建筑结构的设计和施工都有了新的标准和要求,在钢筋混凝土结构的设计施工中,不仅仅要使得结构的平面,立面布置符合相关规则,更要使得建筑结构的各种构件的强度和变形能够达到相关的标准,同时,要在满足建筑设计基本目标的基础上,更加重视建筑结构的抗震设计,提高建筑结构的抗震能力,保证整个建筑结构的质量。
二.钢筋混凝土建筑结构设计的优化措施
1.严格控制钢筋混凝土建筑结构设计中的各种材料设计
(一)在掺合料选择方面上。选择一些增加混凝土强度性能的一些掺合料。
(二)沙,沙石,水泥的配合比上面,优化三者配合比。
(三)在水泥的选择方面上。根据工程的需要,选择相对应的水泥。
(四)在钢筋的选型上面。比如,用U型钢,工字钢代替圆形钢。
2.结构体系的选型方面
由于大开间剪力墙结构体系,可以做到房间不露出梁柱,有效空间大、隔音效果较好,当采用钢制模板时,墙面和楼板表面平整并且不需要在湿作业的情况下抹灰。另外该结构体系不但用钢量少,施工周期短、造价低,还具有整体性强、侧向刚度大等优点,有利于抗风抗震,所以自九十年代起建筑结构体系基本上都采用大开间现浇钢筋混凝土剪力墙结构。随着经济的发展,为了进一步降低建筑造价,近几年来部分地区越来越多地采用短肢剪力墙与简体或一般剪力墙组成的结构体系。这个结构体系也属于剪力墙结构的一种。它的特点是建筑平面布置更具灵活性,并且又能节省钢筋和混凝土用量,减轻建筑的总重量,从而降低地基基础造价。
3.建筑结构的基础设计方面
在建筑的基础设计中,要综合考虑建筑场地的地质情况以及水位、使用功能、上部结构类型、施工条件和相邻建筑的相互影响,以保证建筑物不会过量沉降或倾斜,而且还能满足正常使用要求。另外还要注意相邻地下建筑物及各类地下设施的位置,以保证施工的安全。
4.建筑结构设计的抗震方面
(一)房建结构设计要从建筑的全局出发
全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破坏,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。
(二)要严格选择地基选址
地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。
(三)采用合理的建筑平立面
建筑物的动力性能基本上取决于其建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,通过无数次的实验表明,简单、规则、对称的建筑结构抗震能力强,对延缓地震烈度范围延伸,消耗地震的能量,减少地震对整体结构的破坏,而且,对称结构容易准确计算其地震反应。
5. 加强对连梁的设计优化
(一)对连梁的刚度进行折减
连梁由于跨高比较小与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,在连梁遇到外力发生屈服的过程中,主要有几个表现,比如出现裂缝,连梁的刚度减弱,内力发生重新分布,因此,一般而言,在进行建筑结构设计之前,要对连梁的刚度实施折减,从高规中的相关条款解释而言,是要对整个混凝土建筑结构的各个环节的刚度和弹性进行比较科学合理的分析,但是,在具体实际的操作过程中,各个部分的构件都需要承担比较大的弯矩和剪力,并且配筋设计具有很大的难度,因而,在笔者多年的建筑结构设计过程中,可以减少对竖向荷载能力的考虑,而更多的进行适当的开裂设计,将内力转移到墙体上去,如此,可以更好的实现建筑结构设计的优化。
(二)在设计过程中适当的减少连梁的高度
在进行连梁的设计中,为了达到降低连梁刚度,减少地震影响效果的目的,可以在保证整个建筑功能的基础上,让连梁的总体的跨度不断增加,如此,可以很大程度的让连梁的整体高度降低,一定程度而言,也使得可以讲整个连梁的整体承载能力控制在一定的范围之内,既可以让设计得到优化,又可以让建筑的功能得到正常发挥。
(三)在连梁设计过程中适当增加厚度
在进行连梁设计,在做好各种构件的设计优化的基础上,可以让连梁的整体截面的宽度进一步扩大,如此,不仅仅可以让建筑结构整体的刚度变大,也能够让整个地震过程中产生的各种内力作用相对而言变得更大。而且,由于连梁的抗剪承载力与连梁宽度的增加成正比。通过剪力墙的厚度增加,也有可能达到让连梁抗剪承载力符合限度的目的。
(四)提高混凝土等级
为了让连梁的抗剪承载能力不会超过规定个标准,可以合理的提高剪力墙的混泥土的等级,当混泥土的等级得到提升,混泥土的弹性模量增加比例会小于抗剪承载力的提升比例,从而,可以达到控制目标。
6.建筑结构设计的施工方面
为满足结构承载力的需求,通常在结构设计中柱与梁板选择不同强度等级的混凝土。施工规范规定柱的施工缝宜留设在梁底标高以下20mm-30mm处,其原则是施工缝宜留在结构受力小且便于施工的位置。施工时,为方便柱身混凝土的下料与振捣,在梁内钢筋未绑扎之前进行浇注。按施工规范的要求,当梁柱的混凝土强度等级不同时,节点处应按。弱梁强柱”的原则。在实际施工中,施工班组制定合理的节点保证措施,监理人员加强对浇注质量的监管和提高整体结构的抗震性能十分重要。
三.结束语
钢筋混凝土建筑结构设计是一项专业性极强的工作,必须综合考虑到多种因素,既要满足居民的生活生产多种需要,更要从地震防护,防水防渗漏等各种因素对建筑结构做出性能设计,同时,从城市整体的人文自然,交通政治等各方面的因素出发,选择合理的建筑结构体系,做出科学严谨的设计,实现实用价值和美学价值的统一,为整个建筑业的发展和居民生活质量的提高,奠定基础。
参考文献:
[1]刘利峰 钢筋混凝土建筑结构设计优化研究 [期刊论文] 《科技资讯》 -2010年20期
[2]张红标 建筑结构设计成本优化研究--以深圳高层钢筋混凝土建筑结构为例 [学位论文] 2011 - 浙江大学:企业管理
[3]张民 钢筋混凝土框架-剪力墙结构设计的优化研究 [学位论文]2008 - 同济大学土木工程学院 同济大学:结构工程
[4]洪叶 空间钢筋混凝土框架结构优化研究 [学位论文]2007 - 上海大学:结构工程
关键词:剪力墙,结构,设计,探讨
[前言]随着社会的发展,城市的扩展空间越来越向高处发展,高层建筑设计也随之增多。国内高层设计(百米以下)结构类型以框架剪力墙及纯剪力墙为主,而以上结构常见以剪力墙受力为主,所以墙肢、连梁设计及配筋显得极为重要,现对高层建筑设计中剪力墙连梁的设计和配筋做如下探讨。
在剪力墙结构和框架—剪力墙结构中,连接墙肢与墙肢 ,墙肢与框架柱的梁称为连梁。
连梁一般具有跨度小、截面大,与连梁相连的墙体刚度又很大等特点。一般在风荷载和地震荷载的作用下 ,连梁的内力往往很大。此外 ,高层建筑中 ,由于连梁两端墙肢的不均匀压缩 ,会引起连梁两端的竖向位移差 ,这也将在连梁内产生内力。论文参考,结构。
在设计时 ,即使采取降低连梁内力的各种措施。如:增大剪力墙的洞口宽度、在连梁中部开水平缝、在计算内力和位移时对连梁刚度进行折减、对局部内力过大层的连梁进行调整等 ,仍难使连梁的设计符合要求。
基于这种情况,本文将提供连梁设计的几个建议,并且讨论连梁设计时的配筋计算。
1 连梁的工作和破坏机理
在风荷载和地震荷载作用下 ,墙肢产生弯曲变形 ,使连梁产生转角 ,从而使连梁产生内力。同时连梁端部的弯矩、剪力和轴力又反过来减少了墙肢的内力和变形 ,对墙肢起到了一定的约束作用,改善了墙肢的受力状态。高层建筑剪力墙中的连梁在水平荷载作用下的破坏可分两种 ,即脆性破坏 (剪切破坏 )和延性破坏 (弯曲破坏 )。
连梁在发生脆性破坏时就丧失了承载力 。在沿墙全高所有连梁均发生剪切破坏时 ,各墙肢丧失了连梁对它的约束作用 。将成为单片的独立梁。这会使结构的侧向刚度大大降低 ,变形加大 ,墙肢弯矩加大 。并且进一步增加P—Δ效应 (竖向荷载由于水平位移而产生的附加弯矩 )。并最终可能导致结构的倒塌。连梁在发生延性破坏时 ,梁端会出现垂直裂缝。受拉区会出现微裂缝 ,在地震作用下会出现交叉裂缝 。并形成塑性绞 ,结构刚度降低。变形加大 ,从而吸收大量的地震能量 ,同时通过塑性铰仍能继续传递弯矩和剪力 。论文参考,结构。对墙肢起到一定的约束作用 ,使剪力墙保持足够的刚度和强度。在这一过程中。论文参考,结构。连梁起到了一种耗能的作用 ,对减少墙肢内力 。延缓墙肢屈服有着重要的作用。但在地震反复作用下 ,连梁的裂缝会不断发展、加宽,直到混凝土受压破坏。
2 设计的探讨
在墙肢和连梁的协同工作中 ,剪力墙应该具有足够的刚度和强度。在正常的使用荷载和风荷载作用下 ,结构应该处于弹性工作状态。连梁不应该产生塑性铰。在地震作用下。结构允许进入弹塑性状态 ,连梁可以产生塑性铰。根据抗震设计规范总则的要求 。建筑物在遭受低于本地区设防烈度的多遇地震影响时 ,一般不损坏或不需修复仍可使用,当遭受高于本地区设防烈度的罕遇地震时 ,不致倒塌或发生危及生命的严重破坏。因此 ,剪力墙的设计应该保证不发生剪切破坏 ,也就是要求墙肢和连梁的设计符合强剪弱弯的原则。同时要求连梁的屈服要早于墙肢的屈服 ,而且要求墙肢和连梁具有良好的延性。因此在实际工程中要使连梁设计满足强剪弱弯的原则就必须考虑以下几个方面:
1) 关于连梁刚度的折减。连梁由于跨高比小 ,与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大。连梁屈服时表现为梁端出现裂缝 ,刚度减弱 ,内力重分布。论文参考,结构。因此在开始进行结构整体计算时 ,就需对连梁刚度进行折减。论文参考,结构。根据《钢筋混凝土高层建筑结构设计与施工规程》第 4.1.7条规定 :“在内力与位移计算中 ,所有构件均可采用弹性刚度 。在框架—剪力墙结构中 ,连梁的刚度可予以折减 ,折减系数不应小于 0.55。”一般在实际设计中我们考虑在 0.55— 1之间取值。以符合截面设计的要求.
2) 加连梁跨度减少高度。在连梁设计中 ,刚度折减后 ,仍可能发生连梁正截面受弯承载力或斜截面受剪承载力不够的情况 ,这时可以增加洞口的宽度 ,以减少连梁刚度。减少了结构的整体刚度 ,也就减少了地震作用的影响 ,使连梁的承载力有可能不超限。如果只是部分连梁超筋或超限 ,则可采取调整连梁内力来解决。调整的幅度不宜大于2 0 %,且连梁必须满足“强剪弱弯”的要求。
3) 增加剪力墙厚度。亦即增加连梁的截面宽度 ,其结果一方面由于结构整体刚度加大,地震作用产生的内力增加 ,另一方面连梁的受剪承载力与宽度的增加成正比。由于该片墙厚增加以后 ,地震所产生的内力并不按墙厚增加的比例分配给该片剪力墙,而是小于这个比例 ,因此有可能使连梁的受剪承载力不超限。
4) 提高混凝土等级。混凝土等级提高后 ,结构的地震作用影响增加的比例远小于混凝土受剪承载力提高的比例 ,有可能使连梁的受剪承载力不超限。
5) 地震区高层建筑的剪力墙连梁 ,在进行了上述调整后 ,仍有部分不符合承载力要求时 ,可取连梁截面的最大剪压比限值确定剪力。然后按“强剪弱弯”的要求 ,配置相应的纵向钢筋。论文参考,结构。此时 ,如果不能保证连梁在大震时的延性要求,应重新计算整个结构 ,必要时调整结构布置 ,使连梁的承载力符合要求。上述各种措施中 ,在能满足整体刚度的情况下 ,可先采用刚度折减 ,如仍超限可采用其余各种措施。
3 连梁的配筋计算
根据《钢筋混凝土高层建筑结构设计和施工规程》 ,在连梁设计方面 ,对于连梁非抗震设计 ,抗震设计时跨高比大于 2.5及小于 2.5两种情况 ,在截面受剪承载力及配筋方面均有不同规定。在结构计算时这类连梁往往发生受剪承载力的超限 ,这时可以将受力筋均匀布置 ,同时考虑到连梁以承载水平荷载为主 ,支座弯矩主要由水平荷载引起,在反复的水平荷载作用下支座截面上、下受拉筋面积相近 ,可以采用截面对称配筋。在连梁配筋中,配置平行筋往往导致斜向受拉破坏或由于箍筋过量而发生剪切滑移破坏 ,这些破坏将导致连梁的滞回曲线变坏,耗能能力下降。若采用菱形配筋方式 ,可以克服这些不足之处。
4 结 语
高层建筑剪力墙连梁的设计受很多因素的制约。连梁的内力和剪力墙的多少、每片剪力墙的水平力大小、连梁的刚度、与之相连的墙肢刚度等都有关。因此在设计时 ,问题是比较复杂的 ,设计时要把互相制约的因素统一协调 ,以取得比较理想的结果。由于水平有限,错误之处难免,热忱欢迎同行指出,已达到共同提高之目的。
【关键词】钢筋混凝土,建筑工程,结构设计,优化研究
中图分类号:TU37 文献标识码:A 文章编号:
一、前言
伴随着我国建筑行业的迅速发展,工程建筑行业日渐成为了我国国民经济新的经济增长点,不仅仅在国民经济的增长中占据着越来越重要的地位,而且在改善居民生活方式,提高居民的生活质量方面有着巨大的推动作用。随着钢筋混凝土建筑结构在建筑行业中的广泛应用,建筑结构的设计和施工都有了新的标准和要求,在钢筋混凝土结构的设计施工中,不仅仅要使得结构的平面,立面布置符合相关规则,更要使得建筑结构的各种构件的强度和变形能够达到相关的标准,同时,要在满足建筑设计基本目标的基础上,更加重视建筑结构的抗震设计,提高建筑结构的抗震能力,保证整个建筑结构的质量。
二、钢筋混凝土建筑结构设计的优化措施
1.做好结构体系的选型设计与优化
由于大开间剪力墙结构体系,可以做到房间不露出梁柱,有效空间大、隔音效果较好,当采用钢制模板时,墙面和楼板表面平整并且不需要在湿作业的情况下抹灰。另外该结构体系不但用钢量少,施工周期短、造价低,还具有整体性强、侧向刚度大等优点,有利于抗风抗震,所以自九十年代起建筑结构体系基本上都采用大开间现浇钢筋混凝土剪力墙结构。随着经济的发展,为了进一步降低建筑造价,近几年来部分地区越来越多地采用短肢剪力墙与简体或一般剪力墙组成的结构体系。这个结构体系也属于剪力墙结构的一种。它的特点是建筑平面布置更具灵活性,并且又能节省钢筋和混凝土用量,减轻建筑的总重量,从而降低地基基础造价。
2.加强混凝土建筑结构的施工设计
为满足结构承载力的需求,通常在结构设计中柱与梁板选择不同强度等级的混凝土。施工规范规定柱的施工缝宜留设在梁底标高以下20mm-30mm处,其原则是施工缝宜留在结构受力小且便于施工的位置。施工时,为方便柱身混凝土的下料与振捣,在梁内钢筋未绑扎之前进行浇注。按施工规范的要求,当梁柱的混凝土强度等级不同时,节点处应按。弱梁强柱”的原则。在实际施工中,施工班组制定合理的节点保证措施,监理人员加强对浇注质量的监管和提高整体结构的抗震性能十分重要。
3.建筑结构的基础设计方面
在建筑的基础设计中,要综合考虑建筑场地的地质情况以及水位、使用功能、上部结构类型、施工条件和相邻建筑的相互影响,以保证建筑物不会过量沉降或倾斜,而且还能满足正常使用要求。另外还要注意相邻地下建筑物及各类地下设施的位置,以保证施工的安全。
4.建筑结构设计的抗震方面
(一)房建结构设计要从建筑的全局出发
全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破坏,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。
(二)要严格选择地基选址
地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。
(三)采用合理的建筑平立面
建筑物的动力性能基本上取决于其建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,通过无数次的实验表明,简单、规则、对称的建筑结构抗震能力强,对延缓地震烈度范围延伸,消耗地震的能量,减少地震对整体结构的破坏,而且,对称结构容易准确计算其地震反应。
5. 加强对连梁的设计优化
(一)对连梁的刚度进行折减
连梁由于跨高比较小与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,在连梁遇到外力发生屈服的过程中,主要有几个表现,比如出现裂缝,连梁的刚度减弱,内力发生重新分布,因此,一般而言,在进行建筑结构设计之前,要对连梁的刚度实施折减,从高规中的相关条款解释而言,是要对整个混凝土建筑结构的各个环节的刚度和弹性进行比较科学合理的分析,但是,在具体实际的操作过程中,各个部分的构件都需要承担比较大的弯矩和剪力,并且配筋设计具有很大的难度,因而,在笔者多年的建筑结构设计过程中,可以减少对竖向荷载能力的考虑,而更多的进行适当的开裂设计,将内力转移到墙体上去,如此,可以更好的实现建筑结构设计的优化。
(二)在设计过程中适当的减少连梁的高度
在进行连梁的设计中,为了达到降低连梁刚度,减少地震影响效果的目的,可以在保证整个建筑功能的基础上,让连梁的总体的跨度不断增加,如此,可以很大程度的让连梁的整体高度降低,一定程度而言,也使得可以讲整个连梁的整体承载能力控制在一定的范围之内,既可以让设计得到优化,又可以让建筑的功能得到正常发挥。
(三)在连梁设计过程中适当增加厚度
在进行连梁设计,在做好各种构件的设计优化的基础上,可以让连梁的整体截面的宽度进一步扩大,如此,不仅仅可以让建筑结构整体的刚度变大,也能够让整个地震过程中产生的各种内力作用相对而言变得更大。而且,由于连梁的抗剪承载力与连梁宽度的增加成正比。通过剪力墙的厚度增加,也有可能达到让连梁抗剪承载力符合限度的目的。
(四)提高混凝土等级
为了让连梁的抗剪承载能力不会超过规定个标准,可以合理的提高剪力墙的混泥土的等级,当混泥土的等级得到提升,混泥土的弹性模量增加比例会小于抗剪承载力的提升比例,从而,可以达到控制目标。
三.、结束语
混凝土建筑结构设计是一项专业性极强的工作,必须综合考虑到多种因素,既要满足居民的生活生产多种需要,更要从地震防护,防水防渗漏等各种因素对建筑结构做出性能设计,同时,从城市整体的人文自然,交通政治等各方面的因素出发,选择合理的建筑结构体系,做出科学严谨的设计,实现实用价值和美学价值的统一,为整个建筑业的发展和居民生活质量的提高,奠定基础。
参考文献:
[1]刘利峰 钢筋混凝土建筑结构设计优化研究 [期刊论文] 《科技资讯》 -2010年20期
[2]张红标 建筑结构设计成本优化研究--以深圳高层钢筋混凝土建筑结构为例 [学位论文] 2011 - 浙江大学:企业管理
[3]张民 钢筋混凝土框架-剪力墙结构设计的优化研究 [学位论文]2008 - 同济大学土木工程学院 同济大学:结构工程
关键词:异形柱 短肢剪力墙 结构设计
现代住宅建筑要求大开间,平面及房间布置灵活、方便,室内不出现柱楞、不露梁等。异形柱与短肢剪力墙结构能较好地满足现代住宅建筑的要求,因而逐渐得到了推广应用。
目前,现行国家规范或规程中尚未给出有关异形柱与短肢剪力墙结构设计的条款,因此,结构设计人员在设计中常会遇到一些规范或规程尚未论及的问题,需要设计人员积累经验,利用正确的概念进行设计。
本文旨在对异形柱与短肢剪力墙结构设计中的一些问题进行探讨,提出个人看法,供结构设计人员参考。
1 异形柱结构型式及其计算
异形柱结构型式有异形柱框架结构、异形柱框架—剪力墙结构和异形柱框架—核心筒结构。
异形柱结构自身的特点决定了其受力性能、抗震性能与矩形柱结构不同。由于异形柱截面不对称,在水平力作用下产生的双向偏心受压给承载力带来的影响不容忽视。因此,对异形柱结构应按空间体系考虑,宜优先采用具有异形柱单元的计算程序进行内力与位移分析。因异形柱和剪力墙受力不同,所以计算时不应将异形柱按剪力墙建模计算。
当采用不具有异形柱单元的空间分析程序(如TBSA 5.0)计算异形柱结构时,可按薄壁杆件模型进行内力分析。
对异形柱框架结构,一般宜按刚度等效折算成普通框架进行内力与位移分析。当刚度相等时,矩形柱比异形柱的截面面积大。一般,比值(A矩/A异)约在1.10-1.30之间[1]。因此,用矩形柱替换后计算出的轴压比数值不能直接应用于异形柱,建议用比值(A矩/A异)对轴压比计算值加以放大后再用于异形柱。
对有剪力墙(或核心筒)的异形柱结构,由于异形柱分担的水平剪力很小,由此产生的翘曲应力基本可以忽略,为简化计算,可按面积等效或刚度等效折算成普通框架—剪力墙(或核心筒)结构进行内力与位移分析。按面积等效更能反映异形柱轴压比的情况,且面积等效计算更为简便。但应注意,按面积等效计算时,须同时满足下面两式:
(1)A矩=A异;(2)b/h=(Ix异/Iy异)1/2
式中,A矩、A异——分别为矩形柱和异形柱的截面面积;
b、h——分别为矩形截面的宽和高;
Ix异 、Iy异——分别为异形柱截面x、y向的主形心惯性矩。
一般,按面积等效计算时,矩形柱的惯性矩比异形柱的小。但对有剪力墙(或核心筒)的异形柱结构,计算分析表明[2],按面积等效与按刚度等效的计算结果是接近的。
异形柱的截面设计,可根据上述方法得出的内力,采用适合异形柱截面受力特性的截面计算方法进行配筋计算。
2 短肢剪力墙结构及其计算
短肢剪力墙结构是适应建筑要求而形成的特殊的剪力墙结构。其计算模型、配筋方式和构造要求均同于普通剪力墙结构。在TAT、TBSA中,只需按剪力墙输入即可,而且TAT、TBSA更适合用来计算短肢剪力墙结构。TAT、TBSA所用的计算模型都是杆件、薄壁杆件模型,其中梁、柱为普通空间杆件,每端有6个自由度,墙视为薄壁杆件,每端有7个自由度(多一个截面翘曲角,即扭转角沿纵轴的导数),考虑了墙单元非平面变形的影响,按矩阵位移法由单元刚度矩阵形成总刚度矩阵,引入楼板平面内刚度无限大假定减少部分未知量之后求解,它适用于各种平面布置,未知量少,精度较高。但是,薄壁杆件模型在分析剪力墙较为低宽、结构布置复杂(如有转换层)时,也存在一些不足,主要是薄壁杆件理论没有考虑剪切变形的影响,当结构布置复杂时变形不协调。而短肢剪力墙结构由于肢长较短(一般为墙厚的5-8倍),本身较高细,更接近于杆件性能,所以,用TAT、TBSA计算短肢剪力墙结构能较好地反映结构的受力,精度较高。
对设有转换层的短肢剪力墙结构,一般都只是将电梯间、楼梯间、核心筒和一少部分剪力墙落地,其于剪力墙框支。框支剪力墙是受力面向受力点过渡,由于薄壁杆件的连接处是点连接,所以用薄壁杆件模型不能很好地处理位移的连续和力的正确传递。因此,带有转换层的短肢剪力墙结构宜优先采用墙元模型软件(如SATWE)进行计算。当然,从整体上的内力(特别是下部支承柱的内力)分布情况来看,如果将剪力墙加以适当的处理,还是可以用TAT、TBSA对结构进行整体计算的[3]。
3 异形柱的受力性能及其轴压比控制
天津大学的试验研究结果表明[4]:异形柱的延性比普通矩形柱的差。轴压比、高长比(即柱净高与截面肢长之比)是影响异形柱破坏形态及延性的两个重要因素。
异形柱由于多肢的存在,其剪力中心与截面形心往往不重合,在受力状态下,各肢产生翘曲正应力和剪应力。由于剪应力,使柱肢混凝土先于普通矩形柱出现裂缝,即产生腹剪裂缝,导致异形柱脆性明显,使异形柱的变形能力比普通矩形柱降低。
作为异形柱延性的保证措施,必须严格控制轴压比,同时避免高长比小于4(短柱)。控制柱截面轴压比的目的,在于要求柱应具有足够大的截面尺寸,以防止出现小偏压破坏,提高柱的变形能力,满足抗震要求。广东《规程》按建筑抗震设计规范(GBJ11—89)中所规定的柱子轴压比降低0.05取用(按截面的实际面积计算);天津《规程》则根据箍筋间距与主筋直径之比、箍筋直径及抗震等级共同确定,其要求比广东《规程》严格,例如,对s/d=5、4(即箍筋间距s=100mm,纵筋直径d分别为20mm、25mm的情况),箍筋直径dv=8mm,抗震等级为三级的L形截面,其轴压比限值分别为0.60,0.65。异形柱是从短肢剪力墙向矩形柱过渡的一种构件,柱肢截面的肢厚比(即肢长/肢宽)不大于4。《高规》(JGJ3—91)第5.3.4条,“抗震设计时,小墙肢的截面高度不宜小于3bw”,“一、二级剪力墙的小墙肢,其轴压比不宜大于0.6”。根据上述分析,为便于应用,建议在6度设防区,对于异形柱框架结构,L形截面柱的轴压比不应超过0.6(按截面的实际面积计算,下同),T形截面柱的的轴压比不应超过0.65,十字形截面柱的轴压比不应超过0.8;对于异形柱框架—剪力墙(或核心筒)结构,由于框架是第二道抗震防线,所以框架柱的轴压比限值可放宽到0.65(L形)、0.70(T形)、0.90(+字形),但对于转换层下的支承柱,其轴压比仍不应超过0.60。
短柱在压剪作用下往往发生脆性的剪切破坏,设计中应尽量避免出现短柱。根据高长比不宜小于4,在梁高为600mm的前提下,当标准层层高为3.0m时,异形柱的最大肢长可为600mm;底层层高为4.2m时,肢长可为900mm。
4 短肢剪力墙结构中转换层的设置高度及框支柱
在现代高层住宅的地下室和下部几层,由于停车和商业用房需较大空间,就得通过转换层来实现。在短肢剪力墙结构中,一般都只将电梯间、楼梯间、核心筒和一少部分剪力墙落地,其于剪力墙框支。
据研究表明[5],“框支剪力墙结构当转换层位置较高时,转换层附近层间位移角及内力分布急剧突变,内力的传递仅靠转换层一层楼板的间接传力途径很难实现;转换层下部的‘框支’结构易于开裂和屈服,转换层上部几层墙体易于破坏。这种结构体系不利于抗震。高烈度区(9度及9度以上)不应采用;8度区可以采用,但应限制转换层设置高度,可考虑不宜超过3层;7度区可适当放宽限制。”因此,建议在6度抗震设防区,短肢剪力墙结构中转换层设置高度不宜超过5层,避免高位转换。转换层上下的层刚度比γ宜接近1,不宜超过2。转换层位置较高时,宜同时控制转换层下部“框支”结构的等效刚度(即考虑弯曲剪切和轴向变形的综合刚度),使EgJg与EcJc接近。EgJg为剪力墙结构的等效刚度,剪力墙结构高度取框支层的总高度,其平面和层高与转换层上部的剪力墙结构相同;EcJc为转换层下部“框支”结构的等效刚度。研究表明[5],“控制转换层下部‘框支’结构的等效刚度对于减少转换层附近的层间位移角和内力突变是十分必要的,效果也很显著。”
规范对框支柱的内力、轴压比、配筋等的要求都严于普通柱。框支剪力墙结构当转换层位置较高时,如何定义框支柱,涉及到安全与经济的问题。根据圣维南原理,局部处理的影响只限于局部范围,所以当转换层位置较高(如高位转换)时,除转换层附近楼层的内力较复杂外,下面的结构受到的影响很小,应与普通框架结构基本一样,不必按框支柱处理。文献[6]计算了两个28层的结构,一为内筒外框架结构,一为内筒外框支结构,转换层设在18层。计算结果表明,转换层下二层的内力影响很大,下三层的内力误差最大为15%,下五层的内力已比较接近(最大误差小于10%),下八层的内力已基本一样(最大误差小于5%)。这说明框支柱只需在五层范围内加以考虑,其它层的柱子按普通框架柱处理即可。因此,建议当转换层位置不超过五层时,转换层下的各层柱均按框支柱处理;当转换层位置超过五层时,转换层下相邻的五层柱按框支柱处理,而其它层的柱按普通框架柱处理。由于高位转换对抗震不利,所以结构设计中应尽量避免高位转换。
转贴于 5 短肢剪力墙结构的抗震薄弱环节及概念设计
振动台模拟地震试验结果表明[7],建筑平面外边缘及角点处的墙肢、底部外围的小墙肢、连梁等是短肢剪力墙结构的抗震薄弱环节。当有扭转效应,建筑平面外边缘及角点处的墙肢会首先开裂;在地震作用下,高层短肢剪力墙结构将以整体弯曲变形为主,底部外围的小墙肢,截面面积小且承受较大的竖向荷载,破坏严重,尤其“一”字形小墙肢破坏最严重;在短肢剪力墙结构中,由于墙肢刚度相对减小,使连梁受剪破坏的可能性增加。因此,在短肢剪力墙结构设计中,对这些薄弱环节,更应加强概念设计和抗震构造措施。例如,短肢剪力墙在平面上分布要力求均匀,使其刚度中心和建筑物质心尽量接近,以减小扭转效应;适当增加建筑平面外边缘及角点处的墙肢厚度(宜取250mm,对底部外围的小墙肢根据需要可取用300mm),加强墙肢端部的暗柱配筋,严格控制墙肢截面的轴压比不超过0.6,以提高墙肢的承载力和延性;高层结构中连梁是一个耗能构件,连梁的剪切破坏会使结构的延性降低,对抗震不利,设计时应注意对连梁进行“强剪弱弯”的验算,保证连梁的受弯屈服先于剪切破坏;短肢剪力墙宜在两个方向均有梁与之拉结,连梁宜布置在各肢的平面内,避免采用“一”字形墙肢;短肢剪力墙底部加强部位的配筋应符合规范要求;等。
参考文献
[1]戴教芳.多层框架异形柱设计探索[J].工业建筑,1996,26(1):33-35.
[2]龙卫国.异形柱受力性能及结构设计有关问题探讨[J].四川建筑,2000,20(2):50-52.
[3]赵玉祥.钢筋混凝土高层建筑设计中若干问题的探讨[J].建筑结构学报.1998,19(2):12-22.
[4]赵艳静等.钢筋混凝土异形截面双向压弯柱延性性能的理论研究[J].建筑结构.1999,29(1):16-21.
[5]徐培福等.转换层设置高度对框支剪力墙结构抗震性能的影响[J].建筑结构.2000,30(1):38-42.
关键词:短肢剪力墙;异形柱;抗震等级;延性;弯曲变形
中图分类号:TU74文献标识码:A
1.结构特点分析
1.1短肢剪力墙结构
短肢剪力墙结构指的是墙肢的宽厚比为5-8之间的剪力墙结构,常用的有“T”字型、折线型、“十”字型、“L”型、 “Z”字型、 “一”字型等。它具有:在结构形式上肢长长短变化多,有利于调整刚度中心;连接各墙的梁可以隐蔽在短肢墙内,空间利用性好;刚度控制灵活,有利于抗震性能的提高等特点。
1.2异形柱结构
异形柱结构是指柱肢的宽厚比在3-5之间,相对于正方形与矩形柱而言是为不规则柱子,包括异形柱框架和异形柱框架剪力墙,常用的有“L”型、“T”型、“十”字型,一般角柱为L型,边柱为T型,中柱为十字型。它具有:由于截面的差异特性,墙肢平面内的刚度差异大,从而具有不同的各向承载力;弯曲变形性能有限,延性较差;较普通截面柱变形能力低,脆性破坏明显;其受力性能的复杂,设计中必须通过可靠的计算和必要的构造措施来保证其强度和延性等特性。
2.结构设计分析:
对短肢剪力墙结构的设计计算时,因为剪力墙开口大,所以基本上与普通剪力墙结构分析相同,可采用空间杆-墙组元分析方法或三维杆-系簿壁柱空间分析方法,最为常用的是空间杆墙组元分析方法,因为它计算精度高,计算模型更符合实际情况。在进行了结构分析以后,根据工程的各项指标和设计要求,确定工程的整体结构平面布置,如下图3-1。然后再进行短肢剪力墙和异形柱的设计分析。
图3-1 异形柱布置平面图
图3-2短肢剪力墙结构平面图
1).结构和理性判断
根据《建筑抗震设计规范》GB50011-2001的规则要求,对于短肢剪力墙的不规则结构设计的数量要控制,不宜全部采取短肢剪力墙的结构体系。并且由于短肢剪力墙的墙肢较短,刚度比一般剪力墙要小,所以短肢剪力墙的设计要考虑侧移、自振周期和数量、水平地震的剪力系数(剪重比)等因素。其中剪重比是水平地震剪力和重力载荷的比值,受自振周期影响,结构楼层的剪力应满足下式要求:
表3-1 楼层最小地震剪力系数表
注:括号内数字为设计地震基本加速度为0.20g和0.30g的地区
2) 因为短肢剪力墙结构的抗震性差,结构布置时要加强抗震薄弱环节:连梁布置要有两个方向的梁和每道短肢剪力墙相接,短肢剪力墙两个方向上都有连接,在另一个方向设置翼缘,避免出现“一”字型短肢剪力墙;可采用强墙柱和弱连梁体系;均匀布置短肢剪力墙,墙的轴向应力不可有过大的差别,刚度中心要跟建筑物的型心保持一致,提高短肢剪力墙的抗震功能;适当增加长墙的数量,或者利用楼梯、电梯等结构形成刚度较大的核心筒增强短肢剪力墙的刚度,避免强烈冲击时结构产生较大变形;加大配筋量和墙肢的厚度、减小轴压比、增大箍筋和纵筋的配筋率等措施,以提高抗震性能。
3)剪力墙体系的设计受实际受力状况的影响,加上地震作用时很多不确定因素,因此设计时要采取一些构造措施:带有筒体和剪力墙的剪力墙体系混凝土强度等级要大于C25,墙肢截面全部纵筋的配筋率,底部的加强部位要大于1.2%,其他部位也要大于1.0%,见表3-3,结构的第一振型底部地震倾覆力矩要大于结构总底部地震倾覆力矩的50%,以此限制短肢墙的数量。为达到抗震要求,短肢墙的高厚比不能小于5,短肢墙的相对受压区高度和轴压比超限时,要设置边缘构件,短肢墙的厚度由层高来控制,底部加强部位的厚度不小于层高的1/16,其他部位不小于1/20(本工程中底部的厚度要300mm,其他的厚度为200mm)。
表3-2框架梁的受拉钢筋最大配筋率
4)剪力墙洞口的布置时,要满足要求:1)开洞要规则,洞口位置要规范,应力分布就比较规则,成排或成列的洞口,形成明确的墙肢和连梁,减少了洞口设置使墙肢刚度的差异。2)在洞口设置时尽量避免错洞剪力墙和叠合错洞墙,避免因为洞口错开距离小或者叠合,墙肢不规则,洞口之间形成薄弱部位,使构造和应力分布复杂。3)采用多种模型简化处理不规则洞口,合理准确地计算和校核分析判断洞口的布置。
5) 确定剪力墙的加强部位时,要注意剪力墙顶层和楼梯间墙不能作为加强部位,抗震结构中塑性铰部位应该为加强部位,并且在剪力墙的底部塑性铰的范围内加强措施,以提高剪力墙的延性和抗剪切破坏的能力。
2.异形柱的结构设计
1)异形柱框架的计算
异形柱的不规则界面形决定了在柱截面对称轴内受水平力作用时,其翘曲应力很小,在6度以上烈度区在Ⅲ类场地,在水平力较大,这时水平力作用在非主轴方向,按平截面假定翘曲应力则误差较大,应对异形柱框架结构进行有异形柱计算功能的计算软件有限元分析,决定内力和配筋位置及大小(配筋率见表3-1),能有效地满足结构安全性要求。
2)配筋构造
在确定结构和进行计算后,截面内钢筋的构造也是保证异形柱受力性能的重要因素。由于异形柱一般越靠肢端应力越大,因此在异形柱配筋时,应在肢端设暗柱,离端部厚度范围内设2Ф14的构造纵筋和箍筋,以此限制柱肢的砼裂缝的开展,提高异形柱局部抗压抗剪强度及变形能力。相同配箍率下,箍筋直径越大,其延性指标越好,因而箍筋选用Ф8、Ф10,其间距可比普通柱箍筋间距小。
3)轴压比控制
轴压比是影响砼柱延性的一个关键指标,对框-剪结构、框架结构中,柱的延性对于耗散地震能量,防止框架的倒塌,起着十分重要的作用。,增加箍筋用量在高轴压比情况下对提高柱的延性作用已很小,因此,要对轴压比进行合理设计。当高层建筑的高度达到35米以上时,水平力的影响会愈来愈显著,就提高了延性要求。可按不同的截面形式(L、T、十字型)与不同的抗震等级两项指标从严控制,对低烈度地区的这类结构是能够满足其延性要求的
参考文献:
[1] 赵云龙,胡国亮.高层建筑短肢剪力墙与异形柱结构受力分析与设计探讨[A]. 河南省土木建筑学会2009年学术大会论文集[C]. 2009
[2] 胡欣,乔清朝.关于短肢剪力墙的若干问题[A]. 河南省土木建筑学会2010年学术大会论文集[C]. 2010