前言:我们精心挑选了数篇优质高速铁道技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
【关键词】高速铁路 平面控制 控制测量 布设等级 测量精度
中图分类号:U238文献标识码: A 文章编号:
一.引言
随着我国经济的快速发展,我国的高速铁路已经进入了大规模的建设阶段。我们所说的高速铁路,就是指那些能够使旅客列车的最高运行速度高于200千米每小时的铁路。在我国当前主要是依据铁道部在2003年制定颁布的《京沪高速铁路测量暂行规定》来进行高速铁路平面测量工作的。在我国高速铁路的发展相对较晚,可以说还是一个新的事物。因为高速铁路使得旅客列车的行车速度大大提高,所以就会给铁路的建设带来一些新的挑战和问题,理所当然对高速铁路平面的工程测量工作也带来了新的挑战。在我国,高速铁路工程测量的标准和规范还没有正式的制定,其中还有许多的问题要进一步的研究和探讨。所以本文就针对一些具体的问题作了简单的探讨。
二.高速铁路平面控制测量布设的原则
我国《京沪高速铁路测量暂行规定》中的相关条文指出,高速铁路的测量全过程为:通过我国国家三等大地点测量加密GPS点,在GPS点的基础上做铁路五等导线测量,利用导线点测设线路中线控制点和铺设轨道。
当前如果是新建铁路,那么在其勘测中,一些铁路的勘察设计部门也正在努力的寻求一些方法来改进铁路勘测的流程,这个过程中提出了一次布网的方法,这种方法就是把各个阶段的控制点一次性的布设成为同一个等级,与此同时统一其平差测量的控制网,使的初测、航测、定测以及施工各个阶段的测量都可以在同一控制网的控制下,这样可以大大的减少工序,大幅度的提高测量效率。
当铁路在运行阶段的时候,为了使轨道的结构保持着良好的状态,就必须加强对轨道的平顺度以及整体几何形状进行定期的检测。所以,控制测量还必须能够满足运行阶段的高速铁路检测的标准和要求。
我国的高速铁路一般采用GPS测量法进行首级平面控制测量,也就是在沿线路大概每隔5m左右的距离设置一对互通视点,在定位时必须要保证其长期有效且稳定。如果在线路的定测和初测阶段时,要尽可能的利用GPS RTK来进行控制点的加密以及线路的中线测量。如果有一些不方便采用GPS RTK测量的路段,则可以采用GPS测量加密之后,再来布设线路初测以及定测的导线,集中来进行高速铁路中线的测量。对于一些大中型的构筑物,如果要布设其施工控制网,那么构筑物的轴线位置必须满足线路的整体形状的一些要求。也就是说要在其铺轨之前,布设精度较高的导线,以此来满足测量轨道的整体形状的要求。
三.高速铁路平面控制测量的精度要求
根据德国实践的经验,影响以及控制行车速度的原因有:线路平纵断面以及线路的平顺性。为此,德国铁路对于轨道不平顺限速的管理标准比较严。而且,国内外一些专家的看法基本一致。这样能够有效保证其安全性和舒适度。
线路的平顺度和控制测量精度有联系,相对于线路形状而言,平顺度是局部的误差。虽然采用测量的方法不容易达到高速铁路对于线路平顺度的要求。但是,也不能够依据线路平顺度的要求来作为控制测量精度的标准。下面分析一下线路平顺度误差对线路位置误差的影响。
用直线路来讨论,图1中AB为设计直线线路位置,当在10米处产生2mm不平顺度时,线路将出现β角的转折,使直线B移至B点。其中不平顺度有偶然性,所以,由各段不平顺度产生的B点位移可利用直伸等边支导线终点的横向中误差公式计算:
假定AB=200m,则S=190m,n=19,按式(1)计算得199mm。
可见高速铁路控制测量不是控制线路局部的平顺度,而是控制整体线路的形状。这里提出:高速铁路在5公里范围内,无论是直线段或曲线段线路平面位置偏离设计位置最大不超出50毫米,偏离幅度不超出100毫米,线路平面位置偏离设计位置的中误差为25毫米。因此,高速铁路线路平面位置不仅要满足局部平顺度的要求,同时需要满足在5公里范围内的一个直线段或曲线段中,线路偏离幅度最大不超出100毫米的要求。
由以上分析,高速铁路平面控制测量的点位中误差在线路的垂直方向不大于25毫米。如果在铺轨前,布设铁路五等导线,并适当提高测角精度,假定测角中误差为3.5,按等边直伸导线计算,导线最弱点的横向中误差为:
式中,S=5000m,n=10,则m=24.5mm。
高速铁路的首级平面控制测量采用GPS测量方法,其精度等级应相当于国家四等大地点。GPS点每隔5公里左右布设互相通视的一对点,作为附合导线的方位边。因此,GPS控制网应布设成带状网连式网,相邻同步图形之间以通视的一对点作为公共基线连接,需要有4台或更多的GPS接收机观测。国家三角测量规范中规定:四等三角测量最弱边的方位角不大于4.5。假定,按GPS网相邻两点的横向误差等于基线长度的精度,则可由式(3)计算一对通视点之间的最短长度:
式中,d为GPS网一对通视点之间的长度,a为固定误差,b为比例误差系数。设a=10mm,b=10,则d=520m。可见,GPS点每隔5公里左右布设互相通视的一对点,其距离不应短于600米。
四.五等导线测设轨道中心精度的分析
在高速铁路铺轨前布设五等导线测量,利用全站仪在导线点上直接测设轨道中心点。假如忽略由导线点测设轨道中心点的误差,可以把导线点之间的相对误差认为是轨道中心点之间的误差。五等导线可看作为在GPS点之间的直伸附合导线,导线点的相对横向中误差可按下式计算:
其中:
假定k=5,f=7,两点相隔1000米;k=4,f=8,两点相隔2000米;k=3,f=9,两点相隔3000米,如图3所示,分别计算导线点的相对横向中误差,其结果列于表1:
由以上分析可知:布设五等导线点测设轨道中心点,其线路偏离幅度可满足不超出100毫米的要求。这里需要指出的是,当较长的曲线位于两个GPS跨段时,应在曲线的两端加密GPS点,使曲线段处于同一条五等导线内。
五.结论
铁道部2003年颁布的《京沪高速铁路测量暂行规定》,对高速铁路平面控制测量布设等级和精度的规定可满足工程测量要求,但建议适当提高五等导线的测角精度,测角中误差为±3.5。考虑到一次布网的优点和不同阶段对测量精度的要求,采用GPS测量法进行首级平面控制测量,也就是在沿线路大概每隔5m左右的距离设置一对互通视点,在定位时必须要保证其长期有效且稳定。如果在线路的定测和初测阶段时,要尽可能的利用GPS RTK来进行控制点的加密以及线路的中线测量。如果有一些不方便采用GPS RTK测量的路段,则可以采用GPS测量加密之后,再来布设线路初测以及定测的导线,集中来进行高速铁路中线的测量。对于一些大中型的构筑物,如果要布设其施工控制网,那么构筑物的轴线位置必须满足线路的整体形状的一些要求。也就是说要在其铺轨之前,布设精度较高的导线,以此来满足测量轨道的整体形状的要求。如在运行阶段仍需保持高速铁路轨道的整体形状,应根据检测的需要,进行控制测量的定期复测工作。
参考文献:
[1]潘正风 徐立 肖进丽Pan ZhengfengXu LiXiao Jinli高速铁路平面控制测量的探讨 [期刊论文] 《铁道勘察》 -2005年5期
[2]汪晓英 高速铁路平面控制测量的探讨 [期刊论文] 《科海故事博览・科技探索》 -2011年4期
[3]李林 潘正风 徐立 肖进丽 高速铁路平面控制测量的探讨 [会议论文],2005 - 2005现代工程测量技术发展与应用研讨交流会
[4]安国栋AN Guo-dong高速铁路精密工程测量技术标准的研究与应用 [期刊论文] 《铁道学报》 ISTIC EI PKU -2010年2期
[5]党军宏 雷旭华 陈龙 平面控制测量方案设计在高铁专线中的应用 [期刊论文] 《山西建筑》 -2012年29期
[6]陈新焕 高速铁路控制测量的精度研究 [期刊论文] 《铁道勘察》 -2004年1期
【关键词】高速铁路 工程测量 模式
一、引言
铁路对于我国经济发展具有重要的意义,铁路是我国国民经济发展的重要基础。随着我国经济快速发展,国民的生活、工作以及社会的发展都对铁路运输事业提出了更高的要求,高速铁路应运而生。高铁是一个具有时代特点的概念,其涉及的专业方面十分广泛,高铁工程包含了先进的铁路技术、管理方式、运营方式、资金筹措等多方面的内容,是一项复杂的系统性工程。我国高速铁路的建设是保证我国交通事业发展的重要基础,也是我国运输事业发展的必然结果。现代工业化中,运输化已经成为实现经济活动的重要内容。我国经济发展迅速,铁路的运输水平已经成为了制约我国经济发展的一个重要的方面,我国铁路事业必须要提高铁路运输生产力发展的水平,加强高速铁路的深化改革,适应我国经济发展需求。
二、高速铁路工程测量精度标准的相关问题
要想提高铁路工程测量标准,就必须大力的投入资金、人力、物力、时间等多方面的资源。在测量标准的制定上,要经过大量的实验与严谨的论证,从而保证测量精度得到有效的保证。与此同时,在测量精度标准的制定上,要做好权衡,避免出现提高测量精度未能满足工程实际需求,从而造成工程的质量事故出现。我国关于高速铁路测量的相关规定中已经对于工程测量精度有所提及,相关规定对于工程测量的规定为:“高速铁路自身运行速度比较快,对于整体线路的平顺性要求较传统铁路更高,所以要提高高速铁路的工程测量精度水平”。但是,相关规定当中,并未对铁路工程测量的精度提出具体的要求,也未对具体的原因进行相应的解释。在不同的设计院进行铁路测量细则的拟定以及相关论文的撰写时,采用国际二、三等平面高程控制精度进行工程的测量,也有人考虑建立独立的控制网。相关设计院的工程测量人员对于工程测量精度控制上,存在着一定的困难。首先,从工期方面分析,控制测量量的增长直接增加了观测时间,并且造成工期项目的工期增长。与此同时,工程观测量的层级增长也会造成工程经费的大幅增长。其次,对于二三等控制网精度标准来讲,其标准是对于十几到几十公里作为长边条件,其精度难以满足高速铁路的自身测量要求。在进行高等级控制网时,经常会遇到很多问题,例如控制点不足、平差计算过于复杂、对于特殊测试上需要借助专业测量部门。最后,对于建设独立的高速铁路控制网难以得到有效的实行。独立的高铁坐标系统只适用于小范围的地区,难以在长大铁路上进行应用。独立控制网缺乏对天文、重力等方面的测量能力,难以控制大范围的线形区域的精度。另外,国家现有比例尺以及地形图都是进行统一的定位管理,铁路的独立控制网难以得到有效的应用。
三、铁路工程测量模式
铁路工程的测量模式的水平直接决定了测量工作的效率,影响了测量结果的精度。铁路工程的测量精度是工程中的重要内容,良好的测量精度可以有效的保证铁路设计、施工、运营等多个环节的工作。现有铁路测量工作的问题主要是体现在测量结果错误、测量资料处理不当等方面。要想提高工程测量精度,就必须对现有测量模式进行该技能,通过科学合理的手段,简化测量环节,提高测量工作的规范性。与此同时,提高测量内容的可控性,提高测量质量,保证工程顺利进行。工程测量人员需要制定先进的测量方式,采用先进的测量方法,对精度标准进行合理的制定,改善现有的铁路测量方式与测量流程。
现行铁路测量流程的主要内容为航测、线路等各自具有不同的国家等级控制,相对为两个独立的系统。航测通过外业与制图,提供相应的供给线路,并且作为初步设计阶段的示意图。航测与线路测量的系统不同,其测量后放到地面会存在一定的误差。系统由于既有误差,所以航测的数字化与电子化难以更换的参与实质性的设计工作当中,难以实现勘测一体化。
要想消除上述的测量误差问题,就需要建立新的测量流程,改变以往传统的测量方式。第一,要实现一次布网。对初测导线、控制点、定测交点等进行合并,并且进行五等水准的测量。对于后续的航测工作,要以此为测量控制的依据,从而消除国家等级点加密误差、初测导线误差、定测交点测量误差等误差的影响。采用一次布网的方式,可以有效的消除地形图与同名地点的系统查,降低测量程序的工作量,简化测量工作,使测量资料清晰明确,便于管理。第二,要从一次布网的控制点中进行直接的中线测设。以往的中线测量工作主要以实地测设为基准,积累了很多的定测交点测量误差。在一次布网进行中,对控制点采用先进的GPS、全站仪等设备,可以跳过定测交点与初测导线的测量。这种测量方式可以将测量误差控制在几厘米之内,并且与实测线路上的选线达到精确的吻合。采用这种理论坐标控制的测量方式,可以有效的避免长距离测量中造成的误差积累,减少转点。在测量过程中,可以随意进行切入测量,不会出现锻炼的现象。这一特点可以更换的应用在复杂工程当中。
四、结束语
我国正处于一个高速发展的阶段,高速铁路工程建设工作的开展,有力的为我国经济快速发展提供了重要的支撑。在铁路工程测量工作改革当中,工程测量人员需要采用先进的科学技术对铁路测量工作进行改进。高铁时代对于铁路测量工作的要求不断提高,铁路测量工作需要进行积极的自身变革,与铁路发展实现同步,从而为铁路工程的建设提供良好的依据。
参考文献:
[1]范谧,方红英.在线路控制网中内插高精度施工控制网的切线不变准则[J]铁道勘察.2006(03)
[2]陈新焕.铁路工程测量的发展与创新[A];2006年铁道勘测技术学术会议论文集[C];2006
Abstract: This paper studies the dynamic characteristics of cement improved soil, and discusses the feasibility of cement improved soil as the roadbed filler of high-speed railway.
关键词:水泥改良土;动力特性;高速铁路;路基填料
Key words: cement improved soil;dynamic characteristics;high-speed railway;roadbed filler
中图分类号:U213.1 文献标识码:A 文章编号:1006-4311(2013)19-0100-02
0 引言
铁路路基基床而言,除了承受上部结构的静荷载外,还要受到列车东荷载的反复作用,因此,在高速铁路路基基床底层改良土的设计中,不应局限于传统的准静态设计,只分析静态指标,还应考虑其在列车动载荷作用下的动态特性。本论文研究了水泥改良土作为高速铁路路基填料时,其在列车动荷载作用下的动态特性,探讨了水泥改良土作为铁路路基基床填料的可行性。
1 试验方案
1.1 试验设备和工作原理 本试验仪器为DDS-70型振动三轴仪,实验系统包括压力室、激振设备和量测设备三个部分组成。
动三轴试验原理是将一定密度和含水率的试样在固结稳定后在不排水条件下作振动试验。设定某一等幅动应力作用于试样进行持续振动,直到试样的应变值或孔压值达到预定的破坏标准,试验终止。记录试验中的动应力、动应变和孔压值随振动周次的变化过程线。采用多个试样得到动应力和破坏周数的关系曲线,即动强度曲线。
1.2 试验参数选择 铁路荷载是一种动荷载,我们在试验中用正弦波来模拟,加载的频率与列车的长度、轴距及运行速度有关,本次试验正弦波的频率取5HZ,即按列车时速为160km/h考虑。
1.3 试验材料 试验土样取自洛湛铁路永州至岑溪段,土样深度为地表以下2~5m。土样定名为粉砂,填料类型为C类。对土样加入5%的水泥进行改良。改良土的干密度为1.68g/cm3,含水量为17.6%,黏聚力151KPa,内摩擦角35.5°。
1.4 试验方法
1.4.1 试样的制备和养护 试样按照《铁路工程土工试验规程》(TB10102-2010)制备,试样直径39.1mm,高度80mm,具体方法按照该规程第18.3.3条的规定进行。
1.4.2 试验过程 试样在仪器内安装固定后,先向压力室内施加一等向围压σ3,然后再在轴向施加静压力σ1,待试样固结稳定后,轴向施加等幅正弦动荷载±σd。本次试验加载的正弦波频率为5HZ。本试验是在不排水条件下进行的。实验结果见表1。
1.4.3 试验结果分析 水泥土的动应力(σd)-动应变(εd)关系,见图1。
如图1所示,水泥混合土的动应变随动应力的增大而增加,开始时,动应变随动应力的增加,增大的幅度较大,随着动应力的增加,动应变增加的幅度变小。随围压的增加,临界动应力值的增加幅度较大,相应的应变值减小。初始变形以弹性变形为主,后塑性应变逐渐累积,曲线斜率逐渐增大,动应力愈大,同一围压下,动应变也愈大。根据实验,σ3为50KPa时,临界动应力值约为140KPa;σ3为100KPa时,临界动应力值约为210KPa;σ3为150KPa时,临界动应力值为约400KPa。
2 结论
高速铁路路基基床表层顶面动荷载幅值的大小为100KPa,根据国内外既有铁路的实测结果表明,基床底层顶面的动应力幅值为50~85KPa。
从试验结果可以看出,即使是在围压为50KPa的时候,水泥改良土土的临界动应力达到140KPa,可以满足路基基床表层及路基基床底层及以下路堤填土的强度要求。而且本次试验采用的试件养护期为7d,水泥土后期强度增长缓慢,但增长量很大,所以临界动强度还有提高的空间,约为30%~40%。所以对于掺入5%水泥的改良土,从动力学方面来说,完全可以满足设计要求。
参考文献:
[1]杨广庆等.高速铁路路基改良土的有关问题[J].铁路标准设计,2003(5):15-16.