美章网 精品范文 管理学术论文范文

管理学术论文范文

前言:我们精心挑选了数篇优质管理学术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

管理学术论文

第1篇

文化结构由物质文化和精神文化组成。由于一定的社会制度是一定的物质基础上产生的,要受到一定的精神文化制约,因而可将文化结构分成三个层面:“这就是物质文化,制度文化和精神文化”①。数学在建立发展过程中,受到了物质文化、制度文化、精神文化的影响及制约。

东方中国的古代文化的经济基础基本上是农业经济。这种情况决定古代中国的物质文化是农业文化。中国古代数学也与农业经济有着密切的关系。《九章算术》是中国最古老的经典著作,书有九章,包含246个问题。都和农业生产有关,九章分别是方田(土地测量)、粟米(百分法和比例)、衰分(比例分配)、少广(减少宽度)、商功(工程审议)、均输(征税)、盈不足(过剩与不足)、方程(列表计算的方法)、勾股(直角三角形)。这些问题都是用来解决农田的测量、粟米的称量,农业水利工程的测算等。《五曹算经》是一部为地方行政人员所写的应用算术,全书五卷,有田曹、兵曹、集曹、仓曹、金曹五个部分。田曹卷的主题是田地面积的量法;兵曹算术大都是军队的给养问题;集曹问题和《九章算术》粟米章问题相仿;仓曹解决粮食的征收、运输和储藏问题;金曹问题以丝绢、钱币等物资为对象,是简单的比例问题。我国古代大数学家刘徽到祖冲之、祖冲之研究圆周率和圆面积的辉煌成就中,都深深地打着农业经济的印记。农业的交通工具主要是车,车轮是否圆,不仅和车辆行驶中的平稳状况有关,而且还和省力有关,因而农业经济的需要使得我国圆周率的研究在世界数学中占有相当的地位。过去,农业的显著特点是靠天吃饭,天文、节气的测算是农业生产的需要,在中国,古代天文测算的成果是相当辉煌的,“东汉末年天文学家刘洪造乾象历法(公元206年),创立了推算定朔、定望时刻的公式”。“隋朝天文学家刘焯在他的杰作《皇极历》(公元600年)中创立了一个推算日、月、五星行度的比以前更加精密的公式”②。天文学的发展推动了数学的发展。解一次同余式就是由天文测算开始的。天文数学的发展除了物质文化的需要,还受到制度文化的要求,中国数学的重要性在于它与历法有关,“在《畴人传》中很难找到一个数学家不受诏参与或帮助他那个时代的历法革新工作。”③除了中国,古代埃及数学的建立基础也是农业的需要。埃及几何学的起源被史学家们归因于泥罗河泛滥后土地的重新测量;巴比伦的数学起源也是如此,尤其是巴比伦数学的60进位制来自于天文学;印度数学和占星术有关,而占星术又和农业及宗教有关。

东方数学的建立比西方要早,但东方的数学在理论化的道路上行动迟缓。原因何在呢?自给自足的自然经济的生产力状况决定的生产力关系是以家族为中心、以血缘关系为纽带的宗法等级关系,社会制度是宗法等级制度。自给自足的自然经济中分散的家族和农民需要有高高在上、君临一切的中央集权的君主专制制度的统治。在这种社会制度的影响和作用下,形成中国古代稳定的上下尊卑等级秩序的文化心理。主要特点是静态的、和解的、自然的、消极的心理特点。造成安于现状的生活方式、工作方式、管理方式。思想僵化、调和持中,这种文化心理使得数学只停留在实用上。没有就数学而数学,使数学自身的规律没有得到完善。“在古代东方的全部数学中甚至找不到一个我们今天称之为‘证明’的例子,代替论证的只有程序的描述,所讲授的内容只是‘如此这般地做’,而且也不是以一般规则的形式提出来,只不过是在一系列特殊情况下的应用方法。”④这段话虽有失偏颇,但也道出中国古代数学的特征。在中国数学的发展史上曾出现了刘徽、墨子、惠施等天才的数学家,但他们的数学研究和成就不能和西方的阿基米得、欧几里德相比较。这主要是我国古代数学的理论研究不受重视所致。汉王朝建立以后的“重农抑商”政策使数学研究受不到贸易的诱惑。农业经济的财富有限和填饱肚子的生活状况,不允许人们的思想向实用以外的地方延伸;隋朝开始的科举制度也扼杀了大批在数学研究上具有不凡才华的人。在科举制度中数学不是要考的课程,为“学而优则仕”而奋斗的人们,自然不会将数学当作主修课程来学习。另外,农业经济的贫困使得没有多少人来学文化,学数学的人自然更少。在这种情况下,中国古代数学的许多成就只处在应用和描述过程阶段,没有提高到抽象的、系统的理论阶段,从而使数学的发展和升华受到限制,象“勾股定理”、“圆周率”这些值得中国人骄傲的数学成就,没有造成相应的数学的轰动效应。“勾股定理”在我国商高的时代就应用比西方的毕达哥拉斯发现早600年,但由于我们没有给出严格的数学证明,这个定理在现在还认为是毕氏的成果,称为“毕氏定理”。墨子的极限理论也没有引起足够的重视,后来西方数学传入我国时才知西方极限思想和黑子的思想是一致的。“重农抑商”的文化传统的价值观具有明显的伦理性。小农经济的自给自足的环境不需进行商品交换(至少不需要太多的货币介入)。生产中占支配地位的是使用价值,人们关心的是使用价值而不是价值,以不言利为荣,“重义轻利”的思想渗透到人们的思想深处。数学的应用只局限于分配环节中。而在复杂的流通和交换领域中数学没有机会“施展才华”。多农少商没有足够的财富供人们享受,财产的有限性限制了人们的探险精神和“想入非非”,从而限制了数学向理性的发展。

在西方,小亚西亚海岸新兴的商业城市、希腊本土、西西里岛和意大利海滨,由于海上贸易和战争的刺激使得人们的思想活跃,商品贸易发达,对计算要求的提高,财富的增加使人们有更多的时间从事“非实用”的理论研究。古代东方静态的观点和西方动态的观点不一样,表现在数学上唯理论的气氛浓厚起来。人们不但要知其“然”,而且要知其“所以然”。不但要问“什么”,而且要问“为什么”,要解决“所以然”和“为什么”。古代东方的以实践和经验为根据的方法就显得“无能为力”和“后劲不足”。为了知道“所以然”和“为什么”,就得在数学的证明方法上作一定的努力,在这样的文化氛围中现代意义上的数学产生了。东方的几何学只为测量提供方法,而证明的几何学是由公元6世纪前半期米利都的泰勒斯开创的。泰勒斯不是农业经济中的“耕夫”,而是一个商人,他在经商过程中积累了足够的财富后,在后半生从事研究和旅行。他在几何学中的主要成果有“圆被任一直径二等分”,“等腰三角形的两底角相等”、“两条直线相交对顶角相等”,“两个三角形,有两个角和一条边对应相等,则全等”、“内接与半圆的角必为直角”等⑤。这些成果的意义不在于断言的本身,而是提供了一些逻辑推理(象他的第五个问题巴比伦比他早知道近1400年,但没有形成严格的证明)。使得数学被推向抽象、系统化轨道的还有毕达哥拉斯、柏拉图以及他们的继承者形成的毕氏学派和柏氏学派。由于商业的发达、财富的增长,使得人们旅行的欲望越来越高,而旅行和游动的生活方式给数学的发展提供了机遇。前面提到的泰勒斯的后半生就是在旅行和数学研究中渡过的,“他有一段时间住在埃及”⑥。毕达哥拉斯也有旅行和流动生活的经历。“他曾在埃及居住了22年,从埃及神庙的祭司那里了解了古埃及有关数学、天文方面的知识……回国后,又前往希腊的移民地阿佩宁半岛的克罗托纳城定居”⑦。从这两位数学大师的经历看,不能不说旅游这种文化活动给数学的发展提供了条件。商业贸易的发展,可诱导战争的爆发,战争不仅给侵略者掠夺来物质财富,而且也带来了许多精神财富,其中就有数学成就。公元前334年,马其顿国王亚历山大领兵进入埃及,不久挥师东进,横扫了波斯帝国的军队,到了印度河西岸,建立起庞大的亚历山大帝国和亚历山大城,这个城市的建设主要着眼于文化科学设施的建设,吸引了大量的人才,不久就成为当时世界科学文化的名城,欧几里德就是在这个环境中熏陶和成熟起来的伟大的数学家。他对数学宝库的贡献是《几何原本》。他的几何和东方几何的不同之处是,不仅从应用的角度来谈,而是就几何而几何的角度加以研究,运用逻辑推理来证明命题的真伪。而且用几何的方法来解决代数方程。他的著作中的许多公理、定理和定义除了适应当时的经验外,还具有普遍的意义。阿基米得也是当时伟大的数学家,他采用穷竭法来求圆的周长和直径的比值,其指导思想和我国刘徽的计算圆周率的思想是一致的,但不同之点是“刘徽是从圆内接正多边形着手,而阿基米得不仅从圆内接正多边形着手、还从外切正多边形这个角度进行计算”⑧。这就体现出西方数学家多方位的思维方式。另外,阿基米得在研究圆的同时,还研究了球和圆柱的问题,他在《论锥形体和球形体》中使用了近似于现代数学的方法。他的工作不仅涉及到具有很大应用价值的数学问题,而且提出了许多明确的数学概念,在这一点上要比东方数学先进。商业贸易具有一定的风险性、尤其是远航贸易。这种背景下产生了保除业。而保险的兴起又促使了概率论的产生和发展。虽然刺激概率论的是赌博,但起源是商业文化。即使是赌博也是产生于发达的商业文化城。可见,东西方传统文化不仅影响到不同的数学分支和范围,而且在同一数学问题上所体现的解决问题的方法也不同,表述的形式、研究的动机也存在差异。再来看一个事实,《周易》及先天图二分法与菜布尼兹的二进制,两者一个讲对分,一个讲进位。但都“用两个符号表示无限的事物或数学其客观存在的排列法则,决定了先天图与二进制算术的一致”⑧。二进制和先天图没有关系,这是不同时代的东西方数学家,在完全不同的社会背景下的产物,其一致性是令人吃惊的,但思想方法却完全不同。二进制是在西方传统文化中欧洲科学发展的基础上产生的,是有意识地运用十进制知识而创造的一种计数方法。二分图是《周易》众多象数体系中的一个,其中有合理的因素。但其动机不免有些封建意识的糟粕,因为它不是依靠科学的依据推出来的。

总之,东西方传统文化的不同,造成了东西方数学上的差异。东方是数学原始的发祥地,但其发展和科学化、理性化的功劳基本上归于西方。

参考文献:

①张立文等《传统文化与现代化》,中国人民大学出版社。

②钱宝琮《中国数学史》,科学出版社。

③(英)李约瑟《中国科学技术史》,科学出版社。

④⑤⑥(美)H·伊夫斯《数学史概论》,山西人民出版社。

第2篇

一、加强函数概念的教学

函数是中学数学中的重要概念.它既是从客观现实中抽象出来的,又超越了千变万化的客体的个性,其内涵极为深刻,外延又极为广泛.所以它既是重点,又是难点.教学时,教师应采取以下有效的措施:

1.注意早期渗透

事实上,函数观念的培养在小学已经开始了.进入中学,随着代数式、方程的研究已渗透了这一观念.例如,含有一个字母的代数式,就可看作它所含字母的函数.这是因为,含有一个字母的代数式的值,是由这个字母所取的值唯一确定的,它符合函数的定义.因此,在代数式的教学中,要有意识地渗透函数的概念.

2.注重概念的引入

为引入函数概念,课本上讲了四个例子,教师可根据学生的实际再增加一些例子.对每个例子都要进行分析,揭示它们的共同特性:

(1)问题中所研究的两个变量是互相联系的;

(2)其中一个变量变化时,另一个变量也随着发生变化;

(3)对第一个变量在某一范围内的每一个确定的值,第二个变量都有唯一确定的值与它对应.

3.准确理解定义

课本中函数的定义包含着三层意思:

(1)“x在某一范围内的每一个确定的值”,是说自变量是在某一范围内变化的,它揭示了自变量的取值范围;

(2)“y都有唯一确定的值和它对应”,它既揭示了所研究的函数是单值函数,又反映了两个变量间有着一个相互依存的关系,即函数的对应法则;

(3)谁是谁的函数要搞清.定义中说的是“y是x的函数”.

4.不断深化概念

在几类具体函数的研究过程中,要注重把所得的具体函数与函数的定义进行对照,使学生进一步加深对函数概念的理解.

二、强化函数性质的应用

不同的函数有不同的特性,探求并掌握一个新函数的性质是我们追求的目标.在掌握函数性质的同时,要注重强化学生应用函数性质的意识.应用函数性质时还应注意以下两点:

1.借助函数解题

我们知道,代数式、方程、不等式与函数有着密切的关系,因此可构造函数,利用函数的性质解决有关的问题.例如构造二次函数研究一元二次方程根的分布问题、解一元二次不等式等.

2.利用函数解决实际问题

利用函数知识解实际问题是近几年中考出题的热点.这类题目可以培养学生综合运用知识的能力,增强学生用数学的意识.但教材中这类题目设计得较少,应根据学生的实际补充一定的例题或习题.

三、加强数学思想方法的教学

新大纲把数学思想方法纳入数学基础知识的范畴,因此要加强数学思想方法的教学.函数这一章主要体现了以下思想或方法:

配方法.这一方法要求所有的学生都要掌握.

第3篇

一、抓住重点、突出重点

重点确立后,要通过每个教学环节和教学手段,象众星捧月般地把它加以突出,即常说的“突出重点”。也就是抓住主要问题讲课。如高中数学三角函数在各象限内的符号一节,依次出现了三个内容:①确定三角函数的符号;②三角函数的特殊值;③终边相同的角的同名三角函数值相等。而确定三角函数的符号是这节教材的重点,这要分别做出四个象限的角,从三角函数的定义式出发,先分析正弦、余弦、正切在各象限中的符号,再用余割、正割、余切分别是上述三个三角函数的倒数而分别对号成组(共三组),而特殊值与终边相同的角的同名三角函数值相等两个问题也就迎刃而解了。

二、分散难点、突破难点

难点就是难于理解或难于掌握的内容,或较抽象、或较复杂,难点与重点,有时兼备,有时不同。难,包括学生难学和教师难教,由于学生难学致使教师难教,若教法不当,则学无成效,教与学相互制约、相互影响。确定难点,要着眼于多方面,不能单凭主观臆断。突破难点,更为艰辛,要师生密切合作,协同作战,方可破之。突破难点要注重两点,一要把难点讲清,教师要由浅入深,由易到难,循序展现,把知识的内在规律,清晰地交给学生,让学生了解知识的来龙去脉,化难为易,步步相扣;二是把难点分化成若干个小问题,分散难点,各个突破。

三、寻找弱点、除掉弱点