美章网 精品范文 转换层施工技术论文范文

转换层施工技术论文范文

前言:我们精心挑选了数篇优质转换层施工技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

转换层施工技术论文

第1篇

关键词:转换层结构;钢筋工程;工艺流程;施工技术

一、建筑转换层结构概念以及功能

1.建筑转换层结构的概念

在建筑转换层结构的最低端,上部建筑因为部分结构是竖直的构件所以是不能直接与转换层的最低端贯通的。应该在建筑中设置建筑结构的转换层,并且在建筑结构的转换层中设置结构转换的构件。结构转换的构件可以采用空腹支撑、梁支撑架、厚板等,其中厚板是抗震设计建筑的主要结构转换层的构件。但是因为建筑的需求量比较大,建筑转换层的最低端空间比较大,并且上下部分不能直接连接在一起,所以可以通过水平的转换使上下部分建筑能够直接连接贯通,从而构成了建筑转换层结构。

2.建筑转换层结构的功能

从建筑转换层结构功能的角度出发,建筑转换层的功能主要可以分成三大类:轴线的转换、结构式的转换、轴线和结构式同时进行转换。其中轴线的转换主要可以通过建筑转换层的结构将建筑下层形成一个柱形网,这样可以满足建筑的下层有比较大的空间需求。结构式的转换指建筑转换层结构可以将建筑上部转换成建筑下部的同时为建筑的下部分提供较大的内部空间需求。

二、各种建筑转换层结构的施工技术

1.混凝土施工技术

建筑转换层混凝土的施工技术主要分为两大部分。第一,转换层混凝土的配合比例。一般情况下,建筑转换层结构中使用的厚板比较大,所以必须根据建筑的需求进行混凝土的浇筑。根据大体积的建筑转换层中的混凝土结构,需要在材料的选择以及配合上做出详细的分析和研究。第二,在浇筑混凝土的时候必须满足整个建筑的连续性。在浇筑的同时可以从转换板的中心开始像建筑的两边进行浇筑,从而保证建筑两边的施工速度和质量的一致性,有效的防止了建筑发生侧内位移的事件。另外,对于斜面分层的建筑,可以采用薄层建筑,使其自然地流淌,直到连续浇筑到建筑顶部的方法。该方法可以有效的控制建筑裂缝。

2.钢筋的施工技术

在建筑转换层混凝土的结构中对钢筋的使用量非常大,所以可靠、安全的将钢筋安排在整个建筑的施工结构中已经变的非常重要。钢筋的施工技术主要分为:安装顺序、连接以及绑扎三部分。

在安装钢筋顺序上,认真考虑好各个钢筋之间额制作尺寸以及安装顺序。一般情况系,钢筋的安装顺序为:安置纵向的钢筋安置建筑低端双向的钢筋安装钢筋支撑架安置建筑上部的纵向钢筋绑扎钢筋使钢筋就位安置双向的钢筋;在建筑施工的过程中,主要可以采用四种钢筋连接的方式、方法。钢筋焊接、锥螺纹的连接、电渣压力的焊接以及套筒冷挤压的焊接。在连接钢筋的时候采用的方式主要由钢筋的型号决定。直径为15~25的钢筋主要是采用电渣压力焊接或者钢筋对焊的方式;钢筋的中间部分主要是采用锥螺纹的连接方式;带有弯头的连接方式主要是采用了套筒冷挤压的焊接方式。在绑扎钢筋支撑架的施工过程中,因为钢筋比较长,所以只能是在钢筋施工的现场进行钢筋焊接,然后再绑扎、安置钢筋支撑架。因为安置钢筋支撑架是钢筋绑扎的关键所在,所以在连接和绑扎钢筋的过程中需要按照钢筋的连接顺序将钢筋一排一排的抽到建筑最低端之后,一边松开一边将钢筋提到正确的位置上,同时在实行绑扎、固定钢筋的工作,直到钢筋绑扎工作完成为止。

3.建筑支撑体系的施工技术

在建筑转换层结构的施工过程中经常使用以下几种建筑支撑体系:

一次性支撑体系。从建筑转换层低端一直支撑到地面的厚板。该支撑体系是需要支撑的原材料,并且适合在建筑施工中可用的原材料比较多以及建筑转换层位置表低的施工现场。载体传递的支撑。该支撑体系主要是施工载体通过载体的支撑传递给建筑的每一个施工部位。其中支撑楼板的数量是需要进行统计来确定的。另外还可以利用该支撑方式将建筑的纵向结构构成的桥梁传递给任意一个建筑部位。埋设钢筋的支撑体系。在建筑转换层结构中埋设钢筋或者钢筋架来支撑,与整个建筑连为一体,从而可以承受全部的支撑重任以及施工的载体。一次性浇筑成型也可以节省建筑支撑所需要的材料,其中建筑转换层之间的桥梁可以采用建筑转换层之间的混凝土结构的连接方式。在设置建筑支撑体系之后,还可以对建筑的转换层的支撑力进行验收。在建筑转换层结构设计的时候,需要综合考虑建筑结构施工的方案,然后建立比较符合实际的支撑模板,使设计与施工达到完美的统一。

4.预应力的施工技术

在建筑转换层结构中的厚板一般情况下是需要配置双向力的预应力钢筋的。采用预应力施工技术的时候需要注意几个注意事项:(1)敷设波纹管。在敷设波纹管的时候需要按照标准规则进行筛选,波纹管不能有凹痕以及裂痕等,并且在波纹管的接头处需要用防水带以及套管进行严密的连接。(2)穿预应力的钢筋。为了有效的防止波纹管出现漏浆从而引起的封堵事故,可以采用先穿束法,该方法是指在安装波纹管之后使用转换层的混凝土施工技术将预应力钢筋穿入。除此之外,还可以在浇筑混凝土结构的时候不断的拉动钢筋,从而保障孔道更加通畅。在穿钢筋结束之后就可以对建筑转换层结构中的波纹管进行表面检查。(3)拉动预应力钢筋。在拉动预应力钢筋的时候采用中间向两侧有顺序的拉伸,采用了拉伸长值以及预应力拉伸的方法。

三、结语

从某种定义上来说,建筑转换层结构的施工技术进一步发展保证了建筑行业顺利进行。根据统计数据表明了,板式的转换层占有额转换层结构在百分之五十之上。因为带有转换层结构的板、柱或梁的尺寸比较大,因此从整个模板的系统来说,钢筋的安装或者预应力顺序就会在转换层结构的施工技术上有严格的限制。总之,建筑转换层结构施工技术是整个建筑的“桥梁”,是使建筑顺利发展的重要前提。如果整个建筑从钢筋的安装、预应力的顺序以及施工设备做出良好的选择以及设定合理、科学的方案,并且合理组织建筑转换层施工现场,就一定会实现社会效益以及经济效益的最大化。

参考文献:

[1] 杨琦;李彪;赵惠麟;马军;赵才其;板片空间结构在高层建筑中的应用研究以及施工技术的管理研究 [板片空间结构体系研究论文之五][A];第六届全国结构工程学术会议论文集(第二卷)[C];1997年

[2] 刘之春;张鑫;傅传国;地方高校土木工程专业《高层建筑结构设计》教学的研究[A];山东土木建筑学会建筑结构专业委员会2008年学术年会论文集[C];2008年

[3] 周德源;马升东;孙良宏;高层建筑结构体系扭转效应以及关于未来发展趋势的探讨[A];第十三届全国结构工程学术会议论文集(第Ⅲ册)[C];2004年

[4] 黄超;韩小雷;季静;关于高层建筑结构风振控制以及管理方法的研究初探[A];庆祝刘锡良教授八十华诞暨第八届全国现代结构工程学术研讨会论文集[C];2008年

第2篇

关键词:高层建筑,转换层,施工技术

 

一、工程概况

某城市住宅区的一栋高层住宅楼工程项目,由主楼和裙房两部分组成,主楼地下两层,地上三十二层;裙房地下一层,地上五层。设计建筑面积50826m2,该工程结构形式为底层大空间剪力墙结构,六层以下为框支结构,第六层设置厚板转换层,六层以上为短肢剪力墙结构。转换层板厚为1650mm,框支梁高分别为1850mm、1900mm,板顶标高为+20.00m。梁的受力钢筋为直径32、36、40 不等的规格,箍筋直径为14,厚板的受力钢筋为双层双向直径25@120 钢筋。厚板及混凝土强度等级为C50,混凝土采用一次浇筑成型的方式进行施工处理。

二、转换层模板主要施工技术

(一)斜撑施工

所有斜撑杆按小于或等于45°角设置, 排距沿柱面竖向为1m,梁底斜撑杆同梁底模板的外钢楞相协调,间距为400mm,其上端伸至模板底并与梁度模外钢楞相扣接,并作双扣件抗滑移保险,斜撑杆的下支点主柱面预留的内设定位短筋的凹槽, 最下排斜撑杆的下支点为所在楼层的柱根部。梁底斜撑支架尽量与梁下排架同时搭设,如跟不上,也必须保证在大梁钢筋骨架就位前搭设完毕,以确保斜撑支架与梁下排架同步受力。

(二)立杆和扫地杆施工

立杆的上端直接与梁底的内楞、外楞分别相扣接(外楞紧贴在内楞下面),从而形成双扣件抗滑移保险,立杆的下端支撑在楼面上铺设的通长木板上设置的钢垫块上。梁下排架下设扫地杆,中间设两道大小横杆,梁底排架两侧,横向设置斜撑,纵向设置双肢剪刀撑,同时将梁下排架与楼层满堂架连为一体,以增加排架的空间刚度。

三、钢筋方面主要施工技术

(一)钢筋连接

考虑到接头数量较多,结合规范要求,通过对不同钢筋连接方法进行技术经济综合对比,主要采用了四种方法,即闪光对焊、电渣压力焊、套筒冷挤压和锥螺纹连接。中部的构造钢筋采用绑扎接头。钢筋的连接方式依钢筋的型号各异。Φ16-Φ25 的柱、墙、梁筋采用闪光对焊、电渣压力焊和电弧焊,Φ28-Φ32 的梁筋采用套筒冷挤压和锥螺纹连接。钢筋中间部分连接采用锥螺纹连接,梁端头带弯头的钢筋一端采用套筒冷挤压连接。梁下部钢筋接头部位在支座内,上部钢筋接头部位在跨中1/3 范围内钢筋的连接相邻接头错开不小于35d。板筋按25%数量错开,相邻接头位置错开不小于35d钢筋的连接。

(二)钢筋绑扎

绑扎下部钢筋,按顺序抽走下一排筋支撑面,下落下一排钢筋至梁底部位,并绑扎。放置横向@1500mmΦ20 分隔筋,抽走下二排支撑面,下落第二排钢筋至设计要求部位,并绑扎,依此类推,直至所有下部钢筋绑扎完毕,依此类推,直至上部钢筋绑扎完毕。梁钢筋安装绑扎时,必须在梁底模两端划定出每排中Φ32 纵筋的分布位置,以确定各自在柱节点的位置,并且对号入座。由于转换梁内钢筋骨架重,为保证保护层厚度,用短钢筋头作垫块,保护层垫块成排布置,排距1.0m,统一垫在主筋下,在梁的骨架就位前放置好。

四、转换层混凝土主要施工技术

混凝土的浇筑方向应先中间、后周边, 向两个方向推进, 转换梁、板混凝土采用“一个坡度, 薄层浇筑, 一坡到顶, 循序渐进”的原则。一方面,这样浇筑加大了混凝土部分工作面的面积,有利于混凝土部分水化热排出,另一方面,也有利于降低混凝土浇筑时模板的侧压力。节点部位的保证措施,转换层中梁、柱、墙节点部位钢筋过于密集,为确保此部位的混凝土浇筑密实,须采取以下措施:采用同标号的细石混凝土浇筑上述部位、对局部钢筋过于密集处要作适当调整,确保插入式振动器有足够的工作界面;浇筑过程中安排专人检查墙、柱等竖向结构的侧模,如发现墙、柱混凝土浇筑到位后模板经敲击发出空响声,则应立即通知混凝土浇筑人员,对此部位加强振捣,并补浇混凝土,确保混凝土浇筑密实;墙、柱混凝土浇筑完18 小时后,对钢筋过于密集的墙、柱节点处的侧模应折开一部分进行混凝土的质量检查,若混凝土存在缺陷,须采用可靠的技术措施进行处理,并建立备忘录,后用超声波仪器检查,确保混凝土强度。大体积混凝土的测温极其重要, 转换层混凝土浇筑可以通过测温来了解混凝土的内部变化情况。测温的方法是通过在混凝土的内部埋设热电阻传感器,用测温仪进行量侧。免费论文。采用XMX-02 型热电阻和温度数字显示仪测温,测温设备要妥善布置,否则直接影响测温结果,测温的导线应夹在两个钢筋之间, 测温用的热阻传感器应用导热性良好的铜箔包好,以免损坏。免费论文。根据混凝土水化热温升规律确定测温时间大约为10-14天,测温分为两个阶段。第一个阶段为升温阶段,第二个阶段为降温阶段。各测点温度测量前72 小时每3 小时测一次,72 小时后每6 小时测一次,并做好测温记录,及时分析测温结果,以便调整混凝土的养护措施。混凝土的养护。转换层混凝土初凝后,上表面立即覆盖塑料薄膜和草袋子并浇水养护,不宜浇水过多,保持混凝土的湿润即可。厚板侧面及底面采用保留模板的方法养护, 部分钢模板的部位要采用外包塑料薄膜和干草袋的方法保温,养护时间不少于14 天。

五、结语

在高层建筑转换层施工中,其关键因素在于转换层结构的支撑系统、混凝土的浇筑方案、混凝土的后期养护、混凝土的温控技术。免费论文。而这每一个方面都是转换层施工面临的崭新的课题, 为确保高层建筑转换层施工的顺利、有效的完成,这就要求其施工应根据工程实际的情况,能方便的运用一些可直接套用的理论体系,并结合类似工程的经验,能快速、有效的解决上述问题。

参考文献:

1.唐兴荣.高层建筑转换层结构设计与施工.中国建筑工业出版社.2002

2.周光毅,刘进贵.结构转换层大体积混凝土施工技术.施工技术.2003(4)

3.戴凯伟,周旭.高层建筑转换层的施工方案与施工要点.工程建设与设计.2003(2)

第3篇

关键词:高层建筑,焊接技术,建筑施工

 

引言

钢结构型材的多样性,使焊接接头的截面形式也随之多样化,因而带来了许多焊接难题。工字钢、槽钢、角钢是工程结构中使用最早的型钢,之后截面性能优良的H型钢、钢管、网架节点球等型材相继问世并大量应用于钢结构建筑中,从而使钢结构间的焊接节点形式变得多样而复杂。钢结构焊接的施工条件较复杂。建筑工程具有流动性大的突出特点,单从钢结构焊接工程来讲,不同工程的不同地理条件造成了不同的焊接环境条件。

1 高层建筑钢结构焊接的几种常见方法

1.1药皮焊条手工电弧焊

药皮焊条手工电弧焊原理:在涂有药皮的金属电极与焊件之间施加一定电压时,由于电极的强烈放电而使气体电离产生焊接电弧。电弧高温足以使焊条和工件局部融化,形成气体、熔渣和熔池,气体和熔渣对熔池起保护作用,同时,熔渣在与熔池金属起冶金反应后凝固成为焊渣,熔池凝固后成为焊缝,固态焊渣则覆盖于焊缝金属表面。科技论文。

1.2埋弧焊

埋弧焊(SAW)原理:埋弧焊与药皮焊条电弧焊一样是利用电弧热作为熔化金属的热源,但与药皮焊条电弧焊不同的是焊丝外表没有药皮,熔渣是由覆盖在焊接坡口区的焊剂形成的。当焊丝与母材之间施加电压并相互接触引燃电弧后,电弧热将焊丝端部及电弧区周围的焊剂及一母材熔化,形成金属熔滴、熔池及熔渣。金属熔池受到浮于表面的熔渣和焊剂蒸气的保护而不与空气接触,避免氮、氢、氧有害气体的侵入。

(3)CO2气体保护焊

CO2气体保护电弧焊原理:是用喷枪喷出CO2气体作为电弧焊的保护介质,使熔化金属与空气隔绝,以保护焊接过程的稳定。

2 高层建筑钢结构焊接的应用

2.1 厚钢板焊接技术

在高层建筑钢结构柱与一些特殊大跨度重荷载钢析架与梁的设计与施工中,厚钢板大量应用,而影响钢结构焊接质量的一个最主要因素是厚钢板的焊接。厚钢板的焊接主要是要解决层状撕裂和焊接变形二大问题。

l、层状撕裂的预防:层状撕裂是一种不同于一般热裂纹和冷裂纹的特殊裂纹,一般产生在T形和卜字形接头的热影响区夹层中,主要是T形和十字形接头角焊缝的横向收缩对板厚方向产生的拉应力在接头约束度较大的情况下,易发生夹杂物与金属脱开而形成的裂纹。采用塑性过渡层,即先用低强度焊条在坡口内母材板面上堆焊过渡层,然后再焊连续焊缝的方法。采用低氢、超低氢焊条或气体保护焊焊接。即低强度匹配的焊接材料,使金属具有低屈服点,高延性。通过计算和工艺试验确定合理的预热温度,以降低冷却速度,改善接头区组织韧性,同时采用后热消氢处理。

2、焊接变形的控制:厚板的焊接变形主要针对对接中产生的较多,主要通过以下方法来控制:通过合理的坡口角度和焊接间隙尽量减少焊缝的截面积;焊接时尽可能采用多层焊代替单层焊;尽可能采用双面对称坡口,并在多层焊时采用与构件中和轴对称的焊接顺序;采用刚性夹具固定方法控制焊后变形。

2.2钢结构螺栓连接

螺栓连接是钢结构建筑中主要的连接方式,分为普通螺栓连接和高强度螺栓连接两种形式。这里着重阐述高强螺栓连接的检验。高强度螺栓连接的安装顺序及初拧、复拧扭矩检验。检验人员应检查扳手标定记录,螺栓施拧标记及螺栓施工记录,有异议时抽查螺栓的初拧扭矩。高强度螺栓连接摩擦面应保持干燥、整洁、不应有飞边、毛刺、焊接飞溅物、焊疤、氧化薄钢板、污垢和不应有的涂料等。

2.3钢结构的成形加工工艺

弯曲成型:根据工件所需弯曲力,选择好适当的压力设备。首先固定好上模,使模具重心与压力头的中心在一条直线上,再固定下模,上下模平面必须吻合,间隙均匀,上模要有足够的行程。开动压力机试压,检查是否有异常情况,是否良好。难于从模中取出的工件,可适当加些剂,以减小摩擦,便于脱模。首件弯曲成形后必须进行检查合格后,再进行连续压制,工作中应注意随时抽查,每一台班中也必须注意抽检。禁止用手直接在模具上取放工件,对较大工件,可在模具外部取放,对小于模具的工件,应借助其它器具取放。正式弯曲前,必须检查工件编号,尺寸是否与图纸符合,料坯是否有影响压制质量的毛刺。科技论文。对批量较大的工件,须加装调整定位的挡块,发现偏差及时调整修正。

卷圆成型:卷板前熟悉图纸、工艺、精度、材料性能等技术要求,然后选择适当的卷板机,并确定冷卷、温卷还是热卷。检查板料的外形尺寸、坡口加工和曲率样板的正确与否。科技论文。检查卷板机的运转是否正常,并向注油口注油。清理工作现场,排除不安全因素。由于板料在卷板机上弯曲时,两端边缘总有剩余直边,卷板前必须对板料进行预弯。选择合理的工艺参数进行卷板,卷板完成后用样板检查曲率,合格后方可进行批量生产。

边缘加工:需要作边缘加工的有:梁柱翼缘板、支座支承面等具有工艺性要求的加工面,有设计要求的焊接坡口,尺寸精度要求严格的加劲板、隔板、腹板及有孔眼的节点板等。对清除毛刺、飞溅、氧化皮等加工质量要求不高、工作量不大的边缘加工可采用铲边。对焊接坡口成形以及加工质量要求较高的边缘加工,可采用刨边机进行刨边,刨边加工的余量随钢材的厚度、钢板的切割方法而不同,有些构件的端部边缘加工,可采用铣边代替刨边,使构件支承部位的力由支承面直接传至底板支座,以减小连接焊缝的焊脚尺寸。

制孔加工:普通构件和对孔距要求不高的构件,制孔时采用划线钻孔。对依靠群孔作为定位的构件与孔距精度要求较高的制孔,宜采用钻模钻孔。高层钢结构构件,节点上有两个以上方向有高强螺栓连接的构件,或设计上有特殊要求的构件制孔,应采用钻模钻孔。

另外,测量工作的好坏,是关系整体钢结构安装质量和进度的大问题,为此钢结构安装应重点做好以下工作:设计图纸的审核;测量定位依据点的校核与校测;测量器具的检定与检校;测量方案的编制与数据准备;建筑物测量验线;高层钢结构安装阶段的测量放线工作。包括控制网的建立,平面轴线控制点的竖向投递,柱顶平面放线,悬吊钢尺传递高程、钢结构安装测控等。

3 结语

建筑施工技术是生产建筑产品的技术,建筑产品具有典型的单一性,固定性和巨大体量的特性。因而建筑施工技术也是复杂多变的。钢结构工程是节能环保型结构,是未来我国将大力发展的结构形式之一。需要进一步研究高层建筑钢结构的施工链接技术。

参考文献

[1]马兴宝.上海高层建筑施工技术的概述[J].施工技术,1996,(02)

[2]王洪名,李晓枫.高层建筑主体施工技术探讨[J].林业科技情报,2001,(02)

[3]姜辉.梁式转换层高层建筑施工技术的探讨[J].科技资讯,2010,(07)

[4]杨爱华.梁式转换层高层建筑施工技术的探讨[J].建材与装饰(下旬刊),2008,(07)

第4篇

关键词:高层建筑;施工技术;逆作业;控制;管理

一、高层建筑常见的几种施工技术

当前我国高层建筑的常见施工技术按照施工路线划分如下:逆作法要求先做好施工准备和楼面支撑体系,在由上而下或上下并行浇筑施工。整体滑模法着眼于整个工程的主体结构,施工作业面较大、速度较快,可减少大量工序和成本;而整体爬模法则立足于筒体支架和横梁顶升千斤顶,再浇筑混凝土进而进行水平结构施工,工序相对繁杂。基础施工技术依据高考建筑基础施工的地势、设计、各部分的关联、风险特征通过降水、挖土方、基坑支护、混凝土浇筑等实现初步施工。钢结构施工要求强度高、速度快,相对滑膜技术来说,它采用了筒中筒结构以及区域高悬吊装、双系统复合控制、立斜结合的气体保护焊接技术实现高难度的钢构施工。混凝土泵送技术将掺粉煤灰和化学添加剂进行适当比例混合通过泵送流程进行高空灌注。钢-混凝土组合施工技术综合利用钢与混凝土优质特性实现高质量施工。结构转换层施工技术主要采用剪力墙结构或框架筒体结构体系通过内力变化、移位等方式调整局部结构来强化整体结构。

这些施工技术都是把主体施工作为重点,以基础和结构施工为主线,高效运输体系为支撑,通过强化局部施工技术来提升整体施工技术质量,通过环保节能型施工技术来实现资源的合理利用以及建筑事业的可持续发展。

二、逆作法实例探析高层建筑施工技术的应用

目前我国高层建筑多采用补偿原理合理利用地下空间和地基承载力,一方面增加了可使用面积,另一方面也为逆作法施工提供有利条件。作为一种新型结构施工技术,逆作法在我国已取得长足的进步和发展,与传统技术相比较,它的施工结构变形要小得多,而且能够解决很多施工难题,例如土方工程与结构施工交叉作业,临时支护结构和永久结构的统一方案及与中间支撑柱的共同监测,还有一些连接强度、沉降差异、漏水露筋等问题。随着逆作法技术的运用越来越成熟,其分支也越来越多,主要有全/半逆作法、整体/分层/局部逆作法,盆状/抽条挖土逆作法。这里我们结合工程实例探究逆作法的技术实施过程。

我们以位于某市中心的商务大厦A为例,A大厦以钢筋混凝土灌注桩及现浇钢筋混凝土作为基础形式,其主体结构为现浇钢筋混凝土框架、混凝土筒体及劲性钢结构及混凝土楼板结构;外框架柱为钢骨混凝土柱,通过钢梁与混凝土筒体铰接;底板主筋采用直螺纹连接钻孔灌注桩。它的主要施工技术包括基坑支撑防护技术、地下结构逆作法、测量控制等技术,主要在建筑物原始数据的基础上通过变形观测法进行整体监测。该大厦的逆作法施工技术流程如下首先是施工前准备工作包括人员、材料等方面,接着要做好桩基工程及地下墙维护工程,。地下施工的第一步要设置坐标网做好施工测量,第二步是地下第一层作业,包括土方开挖,圈梁板柱施工,底板混凝土浇筑,地下水电安装、建筑施工;接下来是地上施工部分,首先是准备工作和自上而下的地上基础结构安装,调度大面积混凝土时要进行绝热温升、内部抗应力计算,而后采取适当的配合比方案。在节点设计上预埋连接钢筋法、齿形/锥螺纹钢筋连接接头以及剪力连接件法实现柱与梁板节点连接,剪力墙节点、地下连续墙以及中间支承柱与梁节点连接,同时地下连续墙也要与底板连接。接下来在特殊施工过程中要做好地下连续墙防水抗渗、底板抗浮以及格构柱受力转换措施,最好是能够在逆施工的过程中安排好格构柱拆除方案;也要利用立柱桩沉降差异,以控制整个结构的不均匀沉降。当然在逆施工过程中还要通过施工动态量测做好技术监控量测――中间支撑桩、建筑物轴线、楼层标高等,同时还要通过高精度水准量测系统以及轴线投影法、土体测斜、应力测试等方法进行现场实测,通过监测参数、频率、精度以及警戒值进行具体的逆作法施工环境和工程监测。

三、高层建筑施工技术控制与管理

考虑到现阶段高层建筑技术操作的高难度特性,为保证建筑工程的持续高效发展,我们尤其要重视施工技术的控制与管理。高层建筑施工技术受很多不确定因素的影响,难以操控,所以一般我们都采用比较灵活的变形观测法通过放、抗结合的措施来进行整体的监控。在施工的过程中我们也需要步步跟踪来进行技术监测:在进行测量控制时,我们要根据建筑的实际状况把握垂直线、轴线、标高线三方控制。

在技术管理过程中,我们应以保证高效运作、安全施工、科学控制为核心进行分项管理,依照施工技术路线我们首先需要依据建筑区域地理环境的基本情况确定基础施工的支护方案,同时在周边设置防护、排水措施,对突况还要能够进行及时的监测和异常处理。对于高层作业来说重点是高层施工设施的防护,尤其是脚手架、悬梯以及防护栏杆;其中脚手架要符合工程的特点和要求,必须是刚性架接和柔性硬顶;防护网须满铺封闭。在施工过程中要依据工程图来设计安装各道工序,再有争对性的通过计算和分析给各项技术制定实施方案。这里我们还需考虑各项技术的稳定性,例如基坑施工技术:由于高层建筑地基要求较深且技术含量大,在设计和施工时必须明确地下连续墙以及基坑结构隆起的共同作用以保证整体的稳定性,从而再按照基本结构加荷卸载状况设定基本工况,由此计算各个模块的条件数量,再布置全方位的监测点,通过实测来检控施工技术的运用效果;当然其他的施工技术也应该依此方案,进行监测点适度重复使用,由局部到全程的监控施工过程。

结语:目前我国高层建筑施工技术都引用国外先进成果,在运用方面仍然在摸索中逐步走向成熟,我们应该在不断精炼技术成果的同时,加强实践应用和控制管理,才能使施工技术得到合理运用,高层建筑工程高校快速的完工。

参考文献:

[1] 赵彦华,叶英.高强泵送混凝土施工技术[J].山西建筑,2007,33(2).

[2] 程宝坪.深圳赛格广场地下室全逆作法施工技术[j].施工技术.1999(8).

第5篇

关键词:高层 悬挑幕墙铝板 质量控制

中图分类号:TU97文献标识码: A

1 工程概况

武汉新能源研究院及配套服务中心项目总建筑面积为68480平米。其中地上建筑面积53940平米,地下建筑面积14540平米。项目由A楼(展示中心)、B楼(主塔楼)、C1~C5楼(裙楼)、D楼(地下室停车库)组成。B楼造型为“马蹄莲花”,寓意“能源之花”,是一座代表性建筑。C1~C5楼位于B楼周围,造型创意为“绿叶”。B楼主塔楼共19层,幕墙总标高为109.358米,其中12-17层及屋架主体为钢结构。屋架钢结构位于17层以上,高度36米,结构顶标高105米,最大悬挑20米,呈莲花形斜向布置,倾角约24度。17层以上檐口为铝板幕墙,铝板幕墙以下为铝格栅。

2 工程特点

整个幕墙为双曲面造型,且屋盖悬挑尺寸最大达20m。

施工放线难度大,主体结构复杂,造型特殊,多为三维高空定位;

幕墙材料规格型号多,组织安装工作难度较大;且由于安装剩余钢结构,塔吊和升降电梯须拆除,导致材料运输困难。

安全防范措施要求高,本工程幕墙施工多为高空作业,且多为高空悬挑。

3 铝板幕墙安装技术

3.1 安装思路

采用以轴线为单位进行大板块拼装,然后分两片进行整体吊装的方法,以确保吊装速度及效果。此施工方法有以下优点:板块龙骨按轴线整体定型,能有效控制尺寸偏差,为整体施工效果控制打基础;面板全部在地面拼装,为平整度等效果控制提供便利条件;面板全部在地面拼装,为平整度等效果控制提供便利条件;主要工序安排在地面进行,能降低施工安全风险,加快施工进度;大板块吊装,减少板块定位次数,降低定位偏差,能很好地控制吊装质量。

3.2铝板安装工艺

施工工艺:板块拼装板块吊装装饰柱固定。

3.2.1 板块拼装

1)由于施工图为整个屋架的三维模型图,从三维模型中提取板块加工的数据、尺寸。以轴线为单位,从挑檐铝板整体模型中提取板块模型图。

将原模型的世界坐标系转换成笛卡尔坐标系,保持板块竖向龙骨所在切面为正投影切面,以该龙骨起始点弦长为Y轴,然后旋转模型图,保证X、Y轴形成的面为水平面,以此来建立坐标系;

根据转换后的模型图,提取3根主龙骨的放样图,在CAD中进行尺寸标注;

对于圆弧高度低于10mm主龙骨,采用折弯方式加工;高度超过10mm主龙骨,应进行拉弯处理。

将转换后的模型图导入到CAD中,进行龙骨各控制点坐标标注,最终形成板块加工图。

3.2.2 板块吊装

1)吊点设置

板块龙骨组装完成后,背面焊接50*5镀锌钢方管斜向剪刀撑(见下图),加强吊装时板块的整体稳定性;吊点1/2与卷扬机连接,用于板块提升;吊点3/4与汽车吊连接,用于板块释放及转移。

板块释放及转移

板块与支架是整体,吊装前采用汽车吊完成释放工作;先用尼龙吊带将板块与汽车吊大小吊钩连接,上吊点与小吊钩连接,下吊点与大吊钩连接;提升吊钩,当板块与支架达到分离临界状态时停止提升,然后逐点拆除支架对穿螺栓,逐步释放板块与支架的连接;待板块全部释放后,汽车吊大小吊钩同时慢速提升,使板块完全悬空,然后再停止提升;观察板块是否出现塑性变形,若无就开始板块转移。通过汽车吊将板块水平转移至作业点正下方。

3)板块提升

板块转移至作业点下方后,将卷扬机吊钩与板块预设吊点连接,开始提升板块;待板块全部由卷扬机着力之后,解除汽车吊吊钩,调整板块方位呈立式,开始往上提升板块。

4)板块固定

板块临时连接:待板块提升至安装点下方200mm时,卷扬机停止工作,然后将6个手动葫芦吊钩下放至板块面,与板块预设吊装环连接,形成临时连接。与此同时,卷扬机吊钩不脱钩。

板块定位:板块就位后通过调节手动葫芦对板块位置进行微调,确定其固定位置;每一个轴线安装完成之后进行复核,如有误差及时纠正和修改。

最终固定:板块定位完成后,用钢方管将板块与主钢构上弦杆焊接固定;板块先三边固定,包括上边、下边及主桁架所在竖向边;第四边待相邻板块安装完成后,统一调整进场尺寸再固定。

4 质量控制

整个铝板造型为平滑的双曲面“花瓣”造型,铝板质量好坏将严重影响外观形象,须严格把控。由于本分部分项工程为双曲造型,无法完全按常规质量验收规范进行验收,为了明确质量验收标准,采用样板验收制方法,样板施工质量获得各方认可后再进行大面积施工。

1)保证缝隙大小均匀纵向板块之间留3mm缝隙,此缝隙由角码拉铆形成;

2)严格控制板块龙骨精度主龙骨放样完成后,需复核弦长、拱高是否符合加工图要求,偏差不得超过5mm;龙骨组装完成后,需复核外框及对角线长度是否符合加工图要求,偏差不得超过8mm。

3)保证相邻板块的顺滑板块内铝板拼接处,在背后通过燕尾钉连接,确保相邻铝板相对位置不错动;铝板接缝两侧高低差不超过2mm,且触摸时不得有明显错层感。

5 结束语

武汉新能源研究院项目B楼悬挑铝板已顺利安装完成,安装质量收到各方一致好评,各项指标均符合设计要求。现成为武汉东湖高新区标志建筑。

参考文献

[1] 中国建筑科学研究院 JGJ133-2001金属与石材幕墙工程技术规范 2001.

[2] 中国建筑科学研究院;中国建筑标准设计研究院 GB/T21086-2007建筑幕墙 2008.

[3] 黄恒;理想大厦外墙挑檐饰面铝单板安装技术-建筑技术开发.

第6篇

【关键词】超大深基坑工程关键施工技术研究

中图分类号:TU74 文献标识码:A 文章编号:

一、关键施工技术

1、施工顺序

本基坑工程总体施工顺序为:测放基坑线开挖地槽、桩机就位复测桩位施工支护桩、旋喷桩钻进钻孔、喷射水泥浆二次挖地槽凿钻孔桩桩头降水井施工、降水施工圈梁开挖土方、施工土钉基坑监测。

2、桩间土钉施工技术

采用中800@1200mm钻孔灌注桩+桩间中140x3.smm@:1200mm钢管土钉复合结构作为支护方案,如图3所示。钻孔灌注桩支护桩间采用中800@1200mm二重管高压旋喷桩止水,坑内采用管井降低地下水位,坑外布设一定数量观测井(回灌井)。为了增强基坑支护桩的刚度,提高整体支护体系的稳定性,要在支护桩上的顶圈梁混凝土强度达到设计要求后,才能进行下一步支护桩的钢管±钉施工。钢管土钉与桩间的连接节点构造如图4所示。土钉的施工方案采用项管工艺法,顶进的长度根据设计要求确定。待施工结束后进行抗拉试验,测承载力,并评估设计方案。如果此方案切实可行,再进行后续推广使用。

3、旋喷桩施工技术

这里以二重管喷射为例。它是一种浆、气喷射,浆液灌注搅拌混合的方法,即用二重喷射管使高压水泥浆和空气同时横向喷射,并切割地基土体,借助空气的上升力把破碎的土由地表排除:与此同时,使水泥与土达到止水及加固目的。本次设计桩径≥800mm,桩间lEEl200、1300和1500mm。旋喷桩机在施工中的提升速度按设计要求严格控制在0.1m/min,钻机垂直度偏差不得超过0.3%,枕木应垫实,以保证钻机的平稳与垂直。旋喷桩选用普通硅酸盐32.5级水泥,旋喷桩主要是止水作用,水泥进场后要注意防潮和防雨。设计要求水泥用量不少于40%,其水灰比为l:1。确保单桩喷浆量是桩体质量的基本保证。根据喷射工

艺,设计要求喷浆压力20MPa,提升速度8~10crn/min。浆液的可喷性与其稠度有较大关系,浆液稠度过大,可喷性差,往往会使喷嘴及输浆管堵塞,同时易磨损高压泵,使喷射难以进行。本工程水泥浆的水灰比为1.0。施工前3根桩必须在监理监管下进行,以确定实

际水泥投放量、浆液水灰比、浆液输送时间、桩长及垂直度控制要求,确保旋喷桩止水效果,保证桩体质量。

4、挂网喷浆放坡支护技术

(1)施工流程

放边坡线修整坡面钢筋土钉、分布筋施工喷射混凝土。根据设计要求,边坡为两级放坡,中间设2m宽的马道(见图5)。

(2)施工工艺、材料、技术参数

锤击土钉采用中1 8@l 000mn饵l 000mm,L=l000mm,钢筋(平面梅花形布置)网片为中6@200ram×200mm;土钉墙面层厚80mm,分两次喷射;细石混凝土强度等级为C20,3天强度不低于10MPa,碎石最大粒径应小于l0mm,喷射压力为0.3~0.5MPa;喷射作业分段进行,同一段顺序自下而上。

5、高压线杆处支护桩顶圈梁施工技术

一期工程的基坑支护桩施工,在南侧围墙内约1.8m及围墙外侧2.3m有两根高压线杆,~根为铁塔式,另一根为水泥杆,上挂l0kV的6根高压线,且高压线距钻井架最高处约lm。根据基坑支护的设计要求,通过南侧圈梁的施工,将高压线杆的固定转换至圈梁上,用圈梁来固定高压线杆,并加强电线杆和变电箱的稳定性。详见图6、图7。

为了确保南侧支护桩施工过程中的安全,采取了以下措施:

(1)将支护桩施工场地约7m宽的土取走1.5m深,使钻井机架整体下降1.5m,以保证钻井机架与高压线有足够的安全距离。

(2)在围墙外侧,沿高压线杆靠近施工面这一侧,分别搭设两座毛竹防护架,毛竹防护架的平面形状为2.3m×1.7m的矩形,四角设立杆,并设横杆扫地杆,间距为1.8m。四面均设置斜撑,靠近围墙一侧用12号铅丝将毛竹防护架与围墙拉结绑扎,确保毛竹防护架

的整体刚度和稳定性,搭设高度略比机架高l00mm,靠近机架增设小横杆,从而确保支护桩在电线杆一侧施工时的安全可靠。

6、土方开挖施工技术

基坑开挖中充分考虑时空效应规则,遵循分区、分块、分层、对称、平衡、合理卸载的原则。本工程将基坑开挖平面分成4个区域,如图8所示。先进行I区范围内的土方开挖,沿整个西侧支护桩的位置整体由西往东进行,水平方向开挖宽度约30m左右,含放坡尺寸。垂直方向从自然地坪开挖至各层土钉墙位置往下lm左右,最后挖至比设计基坑底面标高高出lm左右,以防止扰动基层。在开挖的同时,南侧预留放坡,按照设计要求配合在东侧、北侧做

好二级放坡的开挖施工。一级坡比1:1;马道宽2m,位于一5.3m处;二级坡比1:1.2。开挖深度较深时,采用阶梯式的开挖方法进行开挖。II区土方开挖时,按照设计要求配合在北侧、东侧做好二级放坡的开挖施工,II区地下室负2层项板施工完成后才能进行III区的土方开挖;III区的地下室负2层顶板施工完成后,才能进行Ⅳ区的土方开挖。

7、降水施工技术

(1)降水井设计

根据基坑开挖深度,设计井深为20m,井口高于自然地面0.5m;井管采用钢筋混凝土预制管,外径360mm,内径300mm,端部预埋钢圈,井管之间焊接连接。滤管,即在井管预留滤水孔的基础上外包两层60目滤网,并绑扎牢固。滤料含泥量小于5%,且粒径1~3nun,从孔口投入井管周边。

(2)降水运行

施工完一口井即投入试运行一口,试运行抽水时间控制在3天,并做好出水质量和出水量检查。正式降水运行14天后进行土方开挖。

(3)降水井封井

随着工程的进展,土方开挖前施工的降水井逐步退出使用。为了确保降水井在封堵后不渗漏,降水井的封堵工作尤为重要。降水井的封堵必须在后浇带施工完毕,根据设计及规范要求,征得设计同意后,逐一进行。

二、深基坑工程监测

1、基坑工程除进行安全可靠的围护体系设计、施工外,尚应进行现场监测,做到信息化施工,基坑围护体系随着开挖深度增加必然会产生侧向变位,关键是侧向变位的发展趋势与控制。通常围护体系的破坏是有预兆的,因此进行严密的基坑监测是非常重要的,通过专业基坑监测单位的监测情况可及时了解围护体系的受力状况,可以达到及时校正、修正施工方案和指导现场施工的目的,使基坑处于安全可控状态。

2、该工程基坑的监测,由专业人员对深层土移、地下水位、围护桩、立柱桩的竖向位移、支撑杆件的轴力进行严密监测,土方开挖至基础施工阶段以每天1 至2 次的监测频率测试,除对以上基坑本身监测外还应对周围建筑物(基坑深度的2 倍范围)及地下管线进行监测并及时将观测资料反馈给建设、施工、监理、设计等单位以便及时分析处理。通过日常观测及专业单位的监测来确保基坑施工及周边环境的安全。以免给人民群众的生命、财产造成损失。

总结

我国的深基坑工程施工难度在不断的增加,这对深基坑的施工技术提出更高的要求,一个安全合理的施工技术是既要确保基础安全,顺利地施工,又要考虑方便施工,经济合理。在具体分析工程地质水文,工程特点状况下,对施工技术提出合理方案,针对不同土质的工程性质及具体工程实践,这样才可以做好建筑深基坑施工。

【参考文献】

[1]王玉芹,高秀丽. 论述建筑工程中基坑开挖与支护施工技术[J].科技与企业, 2012,(02)

[2]邹腾辉 超大深基坑单边采用六级放坡挖土的施工实践[期刊论文]-建筑施工2010,32(3)

[3]王文光 广州地铁三号线客村站深基坑施工技术[期刊论文]-广州建筑2004(z1)

[4]李万玉.吴立基坑放坡安全开挖的设计与施工[期刊论文]-安全与环境工程2004,11(4)

第7篇

论文摘要:作为高层建筑结构体系中相当重要的组成部分之一,大体积混凝土施工一直以来都是整个工程施工过程中最为重要的关键环节。因此,为了确保高层建筑大体积混凝土工作的施工质量,有必要针对高层建筑中大体积混凝土的施工技术进行研究。鉴于此,本文介绍了高层建筑中大体积混凝土施工的特点和要求,并重点探讨了大体积混凝土的施工技术等相关内容。

一 高层建筑结构中大体积混凝土的特点分析

较普通体积混凝土结构而言,大体积混凝土具有如下方面的特点:一是体积相对较大,且块体相对较厚。二是混凝土结构所需连续浇筑量相对较大,且其结构对于整体性方面的要求也相对较高,较普通混凝土来说,大体积混凝土水化热会导致混凝土的内部温度更高。三是若混凝土的厚度大于1.5m,则必须对水平分层施工的设置进行考虑,以更好地降低水化热对大体积混凝土结构所带来的不良影响。四是对于高层建筑结构而言,其大体积混凝土结构通常埋于地下,主要用于基础结构中,因而其所受外界环境温度改变的影响相对较小,但是,对于抗渗方面的性能要求相对较高,因此,进行高层建筑大体积混凝土的施工过程中,必须重点考虑进行水化热的影响以及混凝土结构自防水等相关问题的分析

二 高层建筑结构中大体积混凝土的施工要求分析

对于高层建筑而言,其基础形式通常都离不开大体积混凝土底板或承台,因而大体积混凝土结构对于高层建筑而言具有十分重要的意义。进行高层建筑的实际施工过程中,由于进行大体积混凝土结构的处理过程中所采取的处理方法不尽相同,因而通常需要充分考虑各种可能出现的情况和问题。对于大体积混凝土而言,各国的规定也各不相同,我国就高层建筑混凝土而言,在相关行业标准中规定“大体积混凝土其内部与表面之间的温度差,以及外表面同环境之间的温度差都不可以超过25℃”。

转贴于

三 高层建筑工程中大体积混凝土的施工技术分析

(1)材料的控制技术

对于高层建筑中大体积混凝土的材料控制技术而言,其主要应注意如下方面的问题:一是确保材料的质量,二是注意对混凝土温度进行控制。对于大体积混凝土的材料质量而言,进行施工前必须先要对混凝土进行有效的搅拌,以确保不同强度的建筑均可满足其要求。对于柱子混凝土来说应尽可能减少水泥、水灰的用量,同时加大石子的用量,对粉煤灰及外加剂的配合比进行调整,以更好地控制混凝土的强度。对于混凝土温度的控制而言,则应注意进行碎石的浇水过程中药确保温度的适宜,同时确保通风良好,这样方可实现混凝土裂缝情况的有效避免。

(2)浇筑技术

混凝土的浇筑技术一直以来都是建筑工程施工过程中必不可少的关键环节之一,对于混凝土的浇筑技术而言,其需要注意浇注的种类及其浇筑方量等问题。进行浇注的过程中必须严格遵守浇注顺序,根据核心筒墙、柱、梁、板混凝土的浇筑依次进行施工。对于墙体浇筑时应确保其厚度维持在5cm,而高度维持在45cm最佳,对于浇筑的间隔时间来说应尽量保持在2h之内。对于柱的浇筑过程而言应进行钢丝网片的设置。进行梁、板混凝土的浇筑时应注意采取相同的坡度,等到筏板凝固后再进行二次浇筑,以确保浇筑环节的质量。

(3)温测技术

混凝土的温测技术是确保大体积混凝土质量的重要技术之一,对混凝土的温度进行控制可以有效防止底板产生裂缝。混凝土温测过程中必须对其各土层的温度都进行测量,并就其温度特性分别进行分析。对于温度传输器而言,通常采用的是电阻型温度计,进行温度的测量时应注意测温点以及测温线的分步进行,先进行位置的选定,并进行记号的编订和定位,然后再进行温度的测量。此外,应确保测温线同钢筋之间的合理接触,以确保测量过程的精确性,防止混凝土内部温度应力的出现。

(4)养护技术

待大体积混凝土施工结束后,还应对其进行养护。混凝土养护的主要目的是为了实现对混凝土温度的有效控制,以降低其内外温差,并满足混凝土抗力方面的相关要求。进行混凝土的浇筑时应进行塑料布的覆盖,并在塑料布的基础上进行防寒毡的覆盖,以做好保温保湿工作,避免混凝土的表面由于脱水而导致裂缝的产生。此外,还要注意设置隔热层,以实现混凝土内部温度的有效降低。

四 结语

对于高层建筑中大体积混凝土的施工而言,必须首先对原材料的质量进行控制,还应通过科学的施工技术来对混凝土的浇筑温度进行有效的控制,除此之外,还应注意进一步加强大体积混凝土的养护工作,这样方可确保高层建筑中大体积混凝土的施工质量,确保高层建筑的整体施工质量和效益。

参考文献

[1] 田金红.高层建筑厚板转换层混凝土施工技术研究[J].中国房地产业,2011,(03).

第8篇

论文关键词:高层建筑大体积混凝土特点施工技术

中图分类号:TU97 文献标识码:A

一 高层建筑结构中大体积混凝土的特点分析

较普通体积混凝土结构而言,大体积混凝土具有如下方面的特点:一是体积相对较大,且块体相对较厚。二是混凝土结构所需连续浇筑量相对较大,且其结构对于整体性方面的要求也相对较高,较普通混凝土来说,大体积混凝土水化热会导致混凝土的内部温度更高。三是若混凝土的厚度大于1.5m,则必须对水平分层施工的设置进行考虑,以更好地降低水化热对大体积混凝土结构所带来的不良影响。四是对于高层建筑结构而言,其大体积混凝土结构通常埋于地下,主要用于基础结构中,因而其所受外界环境温度改变的影响相对较小,但是,对于抗渗方面的性能要求相对较高,因此,进行高层建筑大体积混凝土的施工过程中,必须重点考虑进行水化热的影响以及混凝土结构自防水等相关问题的分析

二 高层建筑结构中大体积混凝土的施工要求分析

对于高层建筑而言,其基础形式通常都离不开大体积混凝土底板或承台,因而大体积混凝土结构对于高层建筑而言具有十分重要的意义。进行高层建筑的实际施工过程中,由于进行大体积混凝土结构的处理过程中所采取的处理方法不尽相同,因而通常需要充分考虑各种可能出现的情况和问题。对于大体积混凝土而言,各国的规定也各不相同,我国就高层建筑混凝土而言,在相关行业标准中规定“大体积混凝土其内部与表面之间的温度差,以及外表面同环境之间的温度差都不可以超过25℃”三 高层建筑工程中大体积混凝土的施工技术分析

(1)材料的控制技术

对于高层建筑中大体积混凝土的材料控制技术而言,其主要应注意如下方面的问题:一是确保材料的质量,二是注意对混凝土温度进行控制。对于大体积混凝土的材料质量而言,进行施工前必须先要对混凝土进行有效的搅拌,以确保不同强度的建筑均可满足其要求。对于柱子混凝土来说应尽可能减少水泥、水灰的用量,同时加大石子的用量,对粉煤灰及外加剂的配合比进行调整,以更好地控制混凝土的强度。对于混凝土温度的控制而言,则应注意进行碎石的浇水过程中药确保温度的适宜,同时确保通风良好,这样方可实现混凝土裂缝情况的有效避免。

(2)浇筑技术

混凝土的浇筑技术一直以来都是建筑工程施工过程中必不可少的关键环节之一,对于混凝土的浇筑技术而言,其需要注意浇注的种类及其浇筑方量等问题。进行浇注的过程中必须严格遵守浇注顺序,根据核心筒墙、柱、梁、板混凝土的浇筑依次进行施工。对于墙体浇筑时应确保其厚度维持在5cm,而高度维持在45cm最佳,对于浇筑的间隔时间来说应尽量保持在2h之内。对于柱的浇筑过程而言应进行钢丝网片的设置。进行梁、板混凝土的浇筑时应注意采取相同的坡度,等到筏板凝固后再进行二次浇筑,以确保浇筑环节的质量。

(3)温测技术

混凝土的温测技术是确保大体积混凝土质量的重要技术之一,对混凝土的温度进行控制可以有效防止底板产生裂缝。混凝土温测过程中必须对其各土层的温度都进行测量,并就其温度特性分别进行分析。对于温度传输器而言,通常采用的是电阻型温度计,进行温度的测量时应注意测温点以及测温线的分步进行,先进行位置的选定,并进行记号的编订和定位,然后再进行温度的测量。此外,应确保测温线同钢筋之间的合理接触,以确保测量过程的精确性,防止混凝土内部温度应力的出现。

(4)养护技术

待大体积混凝土施工结束后,还应对其进行养护。混凝土养护的主要目的是为了实现对混凝土温度的有效控制,以降低其内外温差,并满足混凝土抗力方面的相关要求。进行混凝土的浇筑时应进行塑料布的覆盖,并在塑料布的基础上进行防寒毡的覆盖,以做好保温保湿工作,避免混凝土的表面由于脱水而导致裂缝的产生。此外,还要注意设置隔热层,以实现混凝土内部温度的有效降低。

四 结语

对于高层建筑中大体积混凝土的施工而言,必须首先对原材料的质量进行控制,还应通过科学的施工技术来对混凝土的浇筑温度进行有效的控制,除此之外,还应注意进一步加强大体积混凝土的养护工作,这样方可确保高层建筑中大体积混凝土的施工质量,确保高层建筑的整体施工质量和效益。

参考文献

[1] 田金红.高层建筑厚板转换层混凝土施工技术研究[J].中国房地产业,2011,(03).

第9篇

关键字:房屋;剪力墙;施工技术

墙体一般根据其受力特点分为剪力墙和承重墙。剪力墙是承受水平荷载,承重墙是承受竖向荷载。剪力墙主要承受风荷载或地震引起的水平荷载,因此也被称为抗风墙或抗震墙,一般是钢筋混凝土制造。

一、剪力墙的分类

为满足使用要求,剪力墙一般都会开有门窗洞口,根据有无洞口,洞口大小、位置和形状,剪力墙可分为四类,分别是整体墙、整体小开口墙、联肢墙和壁式框架。各类剪力墙的性能对比见下表:

二、剪力墙的平面布置

(一)轴向布置

剪力墙的全部竖向荷载和水平荷载主要都是由钢筋混凝土承受的轴向荷载,因此其结构也应该沿平面主要轴线分布。主要有三种布置情况:

(1) 在矩形、L形、T形平面中,剪力墙沿两个正交的主轴方向布置。

(2) 在三角形、Y形平面中,剪力墙可沿三个正交主轴方向布置。

(3) 在正多边形、圆形、弧形平面中,剪力墙可沿径向和环向布置。

(二)竖向布置

剪力墙在整个建筑中应该是竖向连续的,从顶到底,在中间楼层也不应该中断,因为剪力墙的中断将导致其刚度突变,影响其抗震性。在楼顶要取消部分剪力墙时,剩余剪力墙在结构上应予以加强。在底层要取消部分剪力墙时,应该设置转换层。当剪力墙厚度变化时,应该遵从内外侧同时变化的原则,对于外墙和电梯间墙壁可允许单面变化。在剪力墙厚度和混凝土强度等级变化时,应该循序渐进,不宜一次变化超过100mm,并且最好错开楼层。

三、剪力墙结构施工技术

(一)钢筋工程

钢筋混凝土结构是剪力墙的主要制造形式,因此在施工中钢筋的用量较大,一般使用直径小于12的钢筋捆扎连接,或者直径大于14的钢筋焊结连接。在浇筑时,为防止钢筋网片向内或向外位移,可以在竖向钢筋搭接范围电焊通长水平筋。在楼板钢筋绑扎时,为保证钢筋有足够的保护层厚度和间距,要放置足够的垫块和马凳筋。在楼板中铺设电线管时,要事先设计好走向,尽量防止电线管路重叠。

(二)模板工程

高层剪力墙施工一般采用定型大模板,其整体刚度好,周转次数多,施工方便且速度快,墙体平整度好。在支模时,应让外侧模板紧贴已浇筑墙体,并且在模板接触处粘贴海绵条。在浇筑楼板时,在浇筑位置预先埋短钢筋头来设定位置,可有效防止模板根部在浇筑时发生向内或向外的偏移。在浇筑过程中,一定要保证楼板和模板之间的密封,以防止漏浆现象发生。如果出现缝隙,要及时用水泥砂浆堵住缝隙。严禁用木条来堵缝。

(三)混凝土工程施工

混凝土与钢筋都是高层剪力墙施工中的主角,用量非常大,混凝土浇筑质量的好坏决定着整个工程的质量,在浇筑时,型钢柱内混凝土表面不能有积水和杂物。为防止自由下落的混凝土粗料发生弹跳,影响接头质量,应该先浇筑厚100~200mm,与混凝土强度级别相同的水泥砂浆。每次分层下料的高度不能超过500mm,下料后应该用长插式高频振动器垂直振捣,在充分振捣紧实后,再进行下一步下料。

四、剪力墙裂缝问题及其防治措施

在实际房屋施工中,钢筋混凝土剪力墙裂缝一般分为表面不规则裂缝和贯穿性裂缝。

(一)裂缝原因

一般裂缝原因分为两类,一是因为动荷载、静荷载以及其他各种外荷载引起的裂缝。二是因为混凝土自身温差、收缩等问题引起的裂缝。水泥用量,骨料、构件长度以及外加剂等因素是影响收缩应力的主要原因,这种裂缝出现的本质其实是混凝土约束力使得剪力墙不能自由变形或者跟约束构建的变形不协调。

(二)防治措施

针对以上裂缝原因,可从外荷载和混凝土两方面开展裂缝防治工作。采用高标号的水泥,减少水泥用量,严格控制外加剂的使用剂量,采用中砂,严格控制砂石含泥量,以保证最终混凝土质量。在拆模过程中,适当延长拆模时间。在施工中,当混凝土振捣紧实后应尽快对其进行覆盖养护,并且及时喷水,适当延长养护时间。也可在混凝土中掺杂膨胀剂,因为膨胀剂可以在一定程度上补偿收缩应力,能有效减少收缩裂缝的产生。防止裂缝最有效的方法就是在剪力墙上开小孔,通过开孔可以有效缩短墙面长度,减少收缩变形约束,但是在开孔前必须对结构进行严格计算,以确保安全。当发现裂缝不能自我愈合,并且其长期存在会对结构构件的使用性能和安全性带来影响时,待裂缝发展稳定后,就必须针对裂缝的不同大小进行相应的裂缝补强治理措施。

五、总结

随着我国经济文化的不断发展,城市规模也在逐步扩大,城市人口剧增势必导致城市住房不断增多,因为住房用地紧张,房屋高层化现象成为城市房屋发展趋势。因为剪力墙具有整体性好、刚度大、抗震性好等优点,所以在高层建筑施工中得到广泛应用。在剪力墙的建筑工程施工中,剪力墙施工技术的应用对于建筑工程的整体施工情况以及建筑工程的施工质量都有很大的影响。随着社会经济的发展,在房屋工程施工中,工程施工项目越来越多,剪力墙施工技术对于房屋工程的施工影响也越来越大。因此,在施工的过程中,应该要特别注意其施工技术的控制,以保证工程的安全性。

参考文献:

[1]罗飞翔,杜新喜,程辉,彭攀,《基于AutoCAD剪力墙软件前处理开发》[A],《钢结构工程研究⑧――中国钢协结构稳定与疲劳分会第12届(ASSF-2010)学术交流会暨教学研讨会论文集》[C],2010年

[2]陈学伟,《剪力墙结构构件变形指标的研究及计算平台开发》[D],华南理工大学,2011年

[3]滕军,吕海霞,李祚华,《平面不规则剪力墙结构大震变形及耗能反应分析》[A],《第八届全国地震工程学术会议论文集(Ⅰ)》[C],2010年

第10篇

论文摘要:随着建筑业的快速发展,施工过程中常涉及到大体积砼的问题,由于其具有体积较大、结构厚、钢筋密等特点,因此对施工技术提出了更高的要求,只有重视大体积砼的施工问题,避免裂缝的产生,才能确保施工质量。

大体积砼是指其最小断面的尺寸仍大于1000mm以上的砼结构,大体积砼施工技术与施工质量、工程造价、结构安全等密切相关。因此,本文将对大体积砼的施工技术相关问题进行分析与阐述。

一、大体积砼的施工方法

科学的施工方法既能满足节约施工成本的要求,又有效避免了大体积砼内外的温差问题,极大降低了产生裂缝的可能性,以下将对几种施工方法进行分析:

1.1分块浇筑法

为了尽量避免大体积砼内外的温差问题,在进行施工过程中宜采取分块浇筑法。分块浇筑法又可以分为水平分段浇筑与竖向分层浇筑两种方式,其中分层浇筑又可分为全面分层、分段分层及斜面分层三种方式。在竣工时间较充足的情况下,可以将大体积砼的结构采取分层多次浇筑,各施工层之间的结合均按照施工缝来处理,也就是薄层浇筑技术,这种技术能充分散发砼内的水化热。在施工过程中,应注意每道程序的间歇时间,如果间歇的时间太长,会影响竣工,同时也会使原来的砼对新浇筑砼产生约束力,进而会在上下层砼结合面产生难以发现的裂缝;如果间歇的时间过段,则可能正处在下层砼的升温阶段,表面温度高,再覆盖上层砼,就不利于下层砼的散热,也可能造成上层砼的沉降问题,提高裂缝的可能性。

1.2二次振捣技术

二次振捣技术,对提高砼的抗裂性具有重要作用,大量的施工实践表明,对已经完成浇筑但尚未凝固的砼加强二次振捣工作,能有效避免砼由于水平钢筋下部产生的水分及空隙等,以此提高钢筋与砼之间的凝聚力,避免由于砼沉降而产生裂缝,并能以此降低砼内微裂的现象,提高砼的密实度,并增强砼的抗压强度约10%一20%,有效防止裂缝产生。

1.3优化大体积砼的搅拌

在传统的大体积砼搅拌过程中,水分会与湿润的石子表面直接接触,在砼逐渐成形或静置的过程中,水就会向水泥砂浆和石子的界面集中,最终在石子表面形成水膜层。在砼已经硬化后,由于存在水膜层,就会造成界面的过度层趋向疏松多孔化,减弱了硬化水泥砂浆和石子之间的粘结性,进而成为砼结构中最薄弱的环节,对砼的抗压力及其他物理学性能造成不良影响。改进大体积砼的搅拌方式,能有效提高砼的极限拉伸力,避免砼结构的收缩。为了进一步保障砼的质量,可以通过二次投料的砂浆裹石或者净浆裹石等搅拌技术,既能防止水分过于向石子及水泥砂浆界面集中,又能保障硬化后的界面过度层更密集,并提高约10%的砼结构强度,提高其极限抗拉值与抗拉强度。大量的施工已经证明,在砼结构的强度基本趋同的情况下,能够适当减少水泥用量,也避免了水化热的产生。

二、 提高大体积砼施工质量的一些途径

2.1加强对温度的控制

首先,为了控制由温差导致的裂缝,大体积砼的浇灌工作应选在一天中气温比较低的时间进行,优先选择水化热比较低的水泥,在确保大体积砼的强度等级前提下,使用一定的缓凝减水剂,以减少水泥的使用量,同时使水灰比降低,能够有效减少水化热;加入外掺料如粉煤灰不仅能代替部分水泥的功能、减少用水,还能够改善砼的可泵性。其次,要注意控制砼入模的温度,如通过向骨料洒水来减少太阳对砂石料的直接照射;通过加冰块来冷却材料。在浇筑时,应采取分层的方法,能够更好的控制浇筑的厚度及进度,有利于散热,同时浇筑的温度也要格外关注,例如在浇筑大体积素混凝土时加入适量的毛石,能够吸收大量的热能,并且节约大体积砼的原材料,但是要注意在浇灌过程中,应严格控制毛石块的体积不超过总体积的25%。

2.2提高对原材料的控制

由于在大体积砼结构中涉及的配筋较密且多,因此为了确保砼的紧密填充,应加强石子中最大粒径及其粗细集料级配,如果石子的粒径过大,石子就可能卡在钢筋中,而砂浆的收缩度大于砼的收缩度,拆模后就很可能在钢筋下方造成裂缝。另外,应严格控制砂石料的含泥量,若超过规定,会降低大体积砼的抗拉力并增加砼的收缩力,这种情况下就极易产生裂缝,影响工程质量。

另外,在大体积砼的施工过程中,对水泥的选择也十分重要。不同品牌、类型的水泥其组织各不相同,因此配置出的砼的性能也不尽相同,一般大体积砼工程在浇筑初期发生开裂的最重要原因就是由于砼内部温度升高与收缩而造成的。通过对大体积砼的选材及配合比的控制,在大体积砼结构中加入外加剂,尽量减少水泥和水的用量,以减少水化热现象引起的收缩变形。普通的硅酸盐水泥虽然其早期的强度高但是水化热反应大;矿渣水泥相比普通水泥的热度低,但是它的干缩和渗水现象严重,而且后期会产生硬度收缩;火山灰水泥在后期的收缩程度较大,而且经济代价较大。通过平衡选择,一般粉煤灰水泥,可降低裂缝出现的频率,同时添加LN-800N与膨胀剂HEA,在一定程度上降低了水灰比以及水灰量,有效控制了水化热,同时对大体积砼起到补偿收缩的目的,有效防控了裂缝的产生,提高工程质量。

2.3适当调整钢筋配置

通过调整钢筋的配置方案,可以增设温度的传递分布筋,将大体积砼内部的热量及时传递出来,以防止内部热量增高。在钢筋的配置设计上,一般采取在配筋率不改变的前提下、上下皮配筋差异的方案,也就是说底皮钢筋在没有柱板带的地方横纵均采用Φ25@150,在有柱板带的地方上下皮筋则采Φ25@130。由于砼的厚度约为1米,出于其散热速度的考虑,可在底皮钢筋与顶皮钢筋之间设置Φ25,温度分布筋采用每平方米1根的方式,采用搭接焊的方式连接上下,放弃原来28@200的配筋方案。通过这种上下错位的分布方式,可使钢筋的直径减小,钢筋之间的间距缩短,这样就减少了砼的收缩程度,上下搭接的方式能够使中间的热量迅速散发出来,减少裂缝发生的几率。

2.4通过在浇筑混凝土的模具内敷设一定数量的细钢管为导管,在施工浇筑时及养护期作为散热管道,在导管中循环冷水,带走大量的水化热,是一种很好的降温措施。

2.5注重养护工作

加强对砼结构完工后的养护,主要是严格监控其温度,以避免出现过大温差而导致裂缝。一般大体积砼的底板浇筑应控制在5月份之前完工,以避开炎热天气以及太阳的暴晒。在养护方面,当浇筑工作完成后,派3—4个人进行专门养护工作,做到轮班值守。为了确保已经浇筑好的砼表面热度不至过快散去,可选择在大体积砼的表面铺盖草袋,并在草袋的上面再盖一层尼龙薄膜,这样可以有效保证砼的表面湿润,使其降温速度降慢。由于初期的养护工作十分重要,能为后期投入使用时避免裂缝现象提供较好的保障,以减少不必要的麻烦,所以不能怠慢,并应将养护期延长至15天。

由上可见,大体积砼施工的技术十分复杂,为了有效避免裂缝的产生,从设计到施工,包括施工的环境与材料等多方面因素,都应提高注意。应从多方面加强对大体积砼施工的分析,并采取积极的防控措施,以实现综合治理原则,能够从根本上提高建筑工程的质量,保证建筑物使用功能的发挥。

参考文献:

[1]钱向阳.大体积防辐射特种砼施工技术[J].安徽冶金科技职业学院学报.2005(2)

[2]吴志明.浅析大体积砼无缝施工技术在建筑施工中的应用[J].城市建设与商业网点.2009(28)

[3]葛新友.大体积砼温度裂缝产生的因素及控制措施[J].中国科技博览.2010(4)

[4]李高生.浅谈大体积砼底板防裂施工技术[J].中小企业管理与科技.2010(27)

[5]郭海英、耿介.浅谈寒冷地区大体积砼冬季施工技术[J].科学之友.2009(8)

[6]张子子.特大型高层建筑版式结构转换层施工技术[J].企业技术开发(学术版).2007(1)

第11篇

论文摘要:随着建筑业的快速发展,施工过程中常涉及到大体积砼的问题,由于其具有体积较大、结构厚、钢筋密等特点,因此对施工技术提出了更高的要求,只有重视大体积砼的施工问题,避免裂缝的产生,才能确保施工质量。

大体积砼是指其最小断面的尺寸仍大于1000mm以上的砼结构,大体积砼施工技术与施工质量、工程造价、结构安全等密切相关。因此,本文将对大体积砼的施工技术相关问题进行分析与阐述。

一、大体积砼的施工方法

科学的施工方法既能满足节约施工成本的要求,又有效避免了大体积砼内外的温差问题,极大降低了产生裂缝的可能性,以下将对几种施工方法进行分析:

1.1分块浇筑法

为了尽量避免大体积砼内外的温差问题,在进行施工过程中宜采取分块浇筑法。分块浇筑法又可以分为水平分段浇筑与竖向分层浇筑两种方式,其中分层浇筑又可分为全面分层、分段分层及斜面分层三种方式。在竣工时间较充足的情况下,可以将大体积砼的结构采取分层多次浇筑,各施工层之间的结合均按照施工缝来处理,也就是薄层浇筑技术,这种技术能充分散发砼内的水化热。在施工过程中,应注意每道程序的间歇时间,如果间歇的时间太长,会影响竣工,同时也会使原来的砼对新浇筑砼产生约束力,进而会在上下层砼结合面产生难以发现的裂缝;如果间歇的时间过段,则可能正处在下层砼的升温阶段,表面温度高,再覆盖上层砼,就不利于下层砼的散热,也可能造成上层砼的沉降问题,提高裂缝的可能性。

1.2二次振捣技术

二次振捣技术,对提高砼的抗裂性具有重要作用,大量的施工实践表明,对已经完成浇筑但尚未凝固的砼加强二次振捣工作,能有效避免砼由于水平钢筋下部产生的水分及空隙等,以此提高钢筋与砼之间的凝聚力,避免由于砼沉降而产生裂缝,并能以此降低砼内微裂的现象,提高砼的密实度,并增强砼的抗压强度约10%一20%,有效防止裂缝产生。

1.3优化大体积砼的搅拌

在传统的大体积砼搅拌过程中,水分会与湿润的石子表面直接接触,在砼逐渐成形或静置的过程中,水就会向水泥砂浆和石子的界面集中,最终在石子表面形成水膜层。在砼已经硬化后,由于存在水膜层,就会造成界面的过度层趋向疏松多孔化,减弱了硬化水泥砂浆和石子之间的粘结性,进而成为砼结构中最薄弱的环节,对砼的抗压力及其他物理学性能造成不良影响。改进大体积砼的搅拌方式,能有效提高砼的极限拉伸力,避免砼结构的收缩。为了进一步保障砼的质量,可以通过二次投料的砂浆裹石或者净浆裹石等搅拌技术,既能防止水分过于向石子及水泥砂浆界面集中,又能保障硬化后的界面过度层更密集,并提高约10%的砼结构强度,提高其极限抗拉值与抗拉强度。大量的施工已经证明,在砼结构的强度基本趋同的情况下,能够适当减少水泥用量,也避免了水化热的产生。

二、 提高大体积砼施工质量的一些途径

2.1加强对温度的控制

首先,为了控制由温差导致的裂缝,大体积砼的浇灌工作应选在一天中气温比较低的时间进行,优先选择水化热比较低的水泥,在确保大体积砼的强度等级前提下,使用一定的缓凝减水剂,以减少水泥的使用量,同时使水灰比降低,能够有效减少水化热;加入外掺料如粉煤灰不仅能代替部分水泥的功能、减少用水,还能够改善砼的可泵性。其次,要注意控制砼入模的温度,如通过向骨料洒水来减少太阳对砂石料的直接照射;通过加冰块来冷却材料。在浇筑时,应采取分层的方法,能够更好的控制浇筑的厚度及进度,有利于散热,同时浇筑的温度也要格外关注,例如在浇筑大体积素混凝土时加入适量的毛石,能够吸收大量的热能,并且节约大体积砼的原材料,但是要注意在浇灌过程中,应严格控制毛石块的体积不超过总体积的25%。

2.2提高对原材料的控制

由于在大体积砼结构中涉及的配筋较密且多,因此为了确保砼的紧密填充,应加强石子中最大粒径及其粗细集料级配,如果石子的粒径过大,石子就可能卡在钢筋中,而砂浆的收缩度大于砼的收缩度,拆模后就很可能在钢筋下方造成裂缝。另外,应严格控制砂石料的含泥量,若超过规定,会降低大体积砼的抗拉力并增加砼的收缩力,这种情况下就极易产生裂缝,影响工程质量。

另外,在大体积砼的施工过程中,对水泥的选择也十分重要。不同品牌、类型的水泥其组织各不相同,因此配置出的砼的性能也不尽相同,一般大体积砼工程在浇筑初期发生开裂的最重要原因就是由于砼内部温度升高与收缩而造成的。通过对大体积砼的选材及配合比的控制,在大体积砼结构中加入外加剂,尽量减少水泥和水的用量,以减少水化热现象引起的收缩变形。普通的硅酸盐水泥虽然其早期的强度高但是水化热反应大;矿渣水泥相比普通水泥的热度低,但是它的干缩和渗水现象严重,而且后期会产生硬度收缩;火山灰水泥在后期的收缩程度较大,而且经济代价较大。通过平衡选择,一般粉煤灰水泥,可降低裂缝出现的频率,同时添加LN-800N与膨胀剂HEA,在一定程度上降低了水灰比以及水灰量,有效控制了水化热,同时对大体积砼起到补偿收缩的目的,有效防控了裂缝的产生,提高工程质量。

2.3适当调整钢筋配置

通过调整钢筋的配置方案,可以增设温度的传递分布筋,将大体积砼内部的热量及时传递出来,以防止内部热量增高。在钢筋的配置设计上,一般采取在配筋率不改变的前提下、上下皮配筋差异的方案,也就是说底皮钢筋在没有柱板带的地方横纵均采用Φ25@150,在有柱板带的地方上下皮筋则采Φ25@130。由于砼的厚度约为1米,出于其散热速度的考虑,可在底皮钢筋与顶皮钢筋之间设置Φ25,温度分布筋采用每平方米1根的方式,采用搭接焊的方式连接上下,放弃原来28@200的配筋方案。通过这种上下错位的分布方式,可使钢筋的直径减小,钢筋之间的间距缩短,这样就减少了砼的收缩程度,上下搭接的方式能够使中间的热量迅速散发出来,减少裂缝发生的几率。

2.4通过在浇筑混凝土的模具内敷设一定数量的细钢管为导管,在施工浇筑时及养护期作为散热管道,在导管中循环冷水,带走大量的水化热,是一种很好的降温措施。

2.5注重养护工作

加强对砼结构完工后的养护,主要是严格监控其温度,以避免出现过大温差而导致裂缝。一般大体积砼的底板浇筑应控制在5月份之前完工,以避开炎热天气以及太阳的暴晒。在养护方面,当浇筑工作完成后,派3—4个人进行专门养护工作,做到轮班值守。为了确保已经浇筑好的砼表面热度不至过快散去,可选择在大体积砼的表面铺盖草袋,并在草袋的上面再盖一层尼龙薄膜,这样可以有效保证砼的表面湿润,使其降温速度降慢。由于初期的养护工作十分重要,能为后期投入使用时避免裂缝现象提供较好的保障,以减少不必要的麻烦,所以不能怠慢,并应将养护期延长至15天。

由上可见,大体积砼施工的技术十分复杂,为了有效避免裂缝的产生,从设计到施工,包括施工的环境与材料等多方面因素,都应提高注意。应从多方面加强对大体积砼施工的分析,并采取积极的防控措施,以实现综合治理原则,能够从根本上提高建筑工程的质量,保证建筑物使用功能的发挥。

参考文献:

[1]钱向阳.大体积防辐射特种砼施工技术[J].安徽冶金科技职业学院学报.2005(2)

[2]吴志明.浅析大体积砼无缝施工技术在建筑施工中的应用[J].城市建设与商业网点.2009(28)

[3]葛新友.大体积砼温度裂缝产生的因素及控制措施[J].中国科技博览.2010(4)

[4]李高生.浅谈大体积砼底板防裂施工技术[J].中小企业管理与科技.2010(27)

[5]郭海英、耿介.浅谈寒冷地区大体积砼冬季施工技术[J].科学之友.2009(8)

[6]张子子.特大型高层建筑版式结构转换层施工技术[J].企业技术开发(学术版).2007(1)

第12篇

关键词:高层建筑转换层施工

近年来高层建筑迅速发展,建筑向着型体复杂、多功能的综合性方向发展,因次结构形式也复杂多样。城市主干道两侧,集吃、住、办公、购物、停车等为一体的多功能综合性高层建筑大量兴建,高层商住楼一般在商用和住宅间设有转换层以满足建筑物上、下不同使用功能的需要。由于构件不连续,受力结构复杂,钢筋、混凝土用量大,因此转换层施工非常复杂。文章作者根据多年的施工经验,详细介绍高层建筑结构转换层施工技术措施,为同类施工提供参考。

1工程概况

某高层商住大楼总用地面积10048m2,总建筑面积42269m2,地面以上高度99.9m。±0.00以上共三十三层,第一层为商业用房,第二层为转换层,以上31层位住宅用房。工程楼面采用C50混凝土,楼板厚度25cm。楼面含转换大梁五根,断面尺寸分别为70cm×200cm、70cm×l80cm、80cm×180cm、60cm×150cm、60cm×150cm。最大受力主筋直径为28mm,最密集处为为三排共24根Φ28钢筋。

2转换层施工技术措施

2.1模板及支撑结构

结构转换层的自身重量及施工荷载都较大,因此模板支撑方法是关键,必须根据工程的具体情况,经过计算选择安全可靠的模板支撑方案,确保支撑系统的强度和稳定性满足要求。楼板的模板体系中,面板采用l5mm厚的竹胶板,支撑楼板的肋骨采用10cm×l0cm松杂木枋,间距35cm,模板拼缝采用玻璃胶封闭。支撑系统采用门式脚手架加可调底座和顶托,门架间距90~95cm,中间用交叉支撑连接,在两层门架竖向连接处用φ48mm钢管做一道水平连接杆。转换大梁的龙骨采用10cm×l0cm松杂方木,间距35cm,模板拼缝板缝均用胶带纸封闭。支撑系统采用碗扣式满堂钢管脚手架,钢管布置为60cm×90cm×120cm。转换梁的侧模每45cm设置一道对拉杆固定。模板体系应该仔细检查合格,并报监理检查合格后方能浇筑砼。砼浇筑过程中,应派专人负责监视模板支撑体系的变化情况,有必要时,分阶段监测模板系统的挠度,发现异常,及时采取处理措施。

2.2钢筋工程

转换大梁钢筋直径大数量多,尤其是在梁柱结点和主次梁相交处,钢筋错综复杂,其准确就位和绑扎难度大。因此,施工前就应当认真研究图纸,弄明白钢筋的相互关系以及绑扎时的排筋次序,以便快速准确的安装,确保钢筋工程施工的质量。

(1)钢筋采用直螺纹机械连接

由于转换大梁钢筋的直径大,数量多,为保证钢筋连接的可靠性以及快速施工,所以采用直螺纹机械连接。直螺纹丝头加工措施:①加工前应检查钢筋端是否有弯曲现象,如有,必须采用砂轮切割机将弯曲部分切除方能加工;②应该采用专用钢筋套丝机床进行加工,应采用水溶性切割冷却液,禁止采用油类冷却液,以免污染钢筋。③直螺纹丝头加工完成后,应逐个检查,不合格者应切掉重新加工,合格的丝头应该拧上塑料保护帽,避免丝头受损。④现场对接:先将钢筋端部的塑料保护帽和连接套上的密封盖摘下,并再次检查丝头质量,合格后,用连接套筒将两对接钢筋连接并拧紧,再用力矩扳手按规定的力矩值拧紧钢筋接头,完成钢筋的连接。

(2)钢筋的绑扎、安装

转换梁的钢筋均在地面加工成形,利用塔吊并配以特制的桁架吊至施工楼层进行安装。在安装箍筋、主筋及构造筋前,先在梁底上方搭设临时钢管搁架,以方便安装。钢筋安装顺序为:搭钢管搁架安装保护层垫块套箍筋分层摆放下部纵筋分层吊挂上部纵筋穿腰筋、附加吊筋等拆除钢管搁架验收。主次梁交叉处的钢筋密集且布置复杂,容易上下错位。因此,吊装前,应对加工成形的钢筋逐一编号,按编号的顺序吊装、铺放。在每层钢筋之间每隔1-2m用与梁宽相同的φ32mm短钢筋做衬垫,以保证梁底2排或3排钢筋的位置准确。由于钢筋层数多,分布密集,因此必须采取分层分段进行验收,在底下一层钢筋验收合格后方能进行上一层钢筋的安装。

(3)预留插筋的定位

转换层上部为标准层住宅,其构件的截面尺寸小于转换层构件截面尺寸,因此预留插筋定位准确是保证上层施工质量的关键。具体施工措施:①施工测量放样时,便定出预留插筋的位置,并标识清楚。②各预留插筋安装完成后,再进行复核。③复查无误后,将其固定。④砼浇筑前,拉通线检查,根据设计图纸检查各开间、门、窗洞口的相对位置,确保万无一失,复核无误后方可浇筑混凝土。

2.3混凝土工程

(1)混凝土浇筑、振捣、养护

本转换层梁板采用C50混凝土,采用商品混凝土,利用混凝土输送泵泵送入模浇筑,混凝土坍落度控制在14-16cm。混凝土的浇筑顺序为从中部开始、逐渐向两边扩展的方式进行浇筑。混凝土的施工质量是整个工程成败的关键,因此必须加强施工过程控制,确保混泥土的施工质量。

①混凝土浇筑前,必须清理干净模板内的杂物,尘渣,并用水湿润模板及钢筋。

②根据设计要求转换层混凝土浇筑一次性浇筑完成,不留施工缝。为防止浇筑过程中产生冷缝,必须严格按照事先确定的浇筑方案工艺进行浇筑。要求砼供应商,备料充分,运输能力充足,并选择合适的交通路线。

③混凝土应分层浇筑,每层浇筑厚度不得超过50cm,分层振捣,振捣时不得漏振、过振。振捣时振捣棒应该采取快插慢拔的方法;浇筑上一层混凝土时,应插入下一层5-10cm,避免形成施工缝;砼密实的判断标准为肉眼观察混凝土表面无气泡,不下沉。在钢筋密集处采用钢钎配合振捣,确保混凝土密实。

④混凝土浇筑完成后要及时养护。混凝土收平后,覆盖塑料薄膜、土工布,并浇水养护,适当提高养护环境有利于减少内外温差,养护期间混凝土表面温度与混凝土内部中心温度差不大于25℃,以免混凝土表面干裂而产生塑性收缩。洒水、保温、保湿养护时间不得少于14天。

(2)混凝土施工质量保证措施

①严格控制原材料的质量,水泥、石子、砂、粉煤灰、外掺剂等必须经试验检测合格后方能用于混凝土生产,为保证砼的质量,应对商品混泥土公司的原材料进行抽检。

②加强混凝土坍落度的控制,保证其入模时的塌落度为14-16cm。严禁在砼运输途中及达到现场时随意加水。对每一车到达现场的砼进行检查,及时向搅拌站反馈现场混凝土坍落度、可泵性、和易性等质量信息,以有利于控制搅拌站出料质量。

③严格把守混凝土品质关,混凝土搅拌车进场时,检查搅拌车运输时间、混凝土坍落度、可泵性是否符合要求,对不合格的予以退还。

④配备足够的振捣设备以及熟练的振捣工人,确保砼的及时振捣。

⑤制定混凝土浇筑方案,组织召开技术交底会,让每个操作工人都能熟练掌握混凝土下料方法、振捣步骤以及技术要求。

⑥加强混凝土的养护措施,派专人进行养护。

3结束语

在高层建筑转换层施工中,由于其结构受力复杂,钢筋密集、混凝土方量大,因此我们在施工过程中必须采取恰当的施工措施,加强模板支撑、钢筋制安以及砼浇筑的施工质量控制,才能保证结构转换层的质量,为建筑物整体质量奠定坚实的基础。

参考文献:

第13篇

【论文摘要】随着我国建筑业的发展,高层建筑、超高层建筑不断涌现,各种大型场馆不断投入建设,高层建筑的箱形基础或筏形基础都有大体积的砼结构,还常有深梁以及转换层、转换大梁,这些结构对砼的施工技术提出了更高的要求,施工企业在具体施工过程中,常常出现裂缝问题,并且近年来日趋增多。

某工程总建筑面积14万m2,根据工程进度安排,该基础砼属于冬季大体积砼施工。其中A楼主楼地上29层、地下2层,深基坑砼为C40P8,基坑砼最深处达6.0m,一次性浇筑约2500m3;B楼主楼地上44层、地下2层,深基坑砼为C40P8,基坑砼最深处达6.9m,一次性浇筑约4500m3。本文结合该工程就有关大体积砼浇筑常见的裂缝控制问题进行较深入的研讨。

1.大体积砼温度和温度应力计算

1.1砼内部最高温升值

该温度为基础底板砼内部中心点的温升高峰值,该温升值一般都略小于绝热温升值,一般在砼浇筑后3d左右产生,以后趋于稳定不再升温,并且开始逐步降温。由于砼内部最高温升值为69℃,因此将砼表面的温度控制在44℃左右,这样砼内外温差不会超过规范规定的25℃,表面温度的控制可采取调整保温层的厚度得以实现。

1.2温度应力计算

在砼浇筑后水化热值达到最大时,计算此时由温差和收缩差引起的温度应力。采用425号硅酸盐水泥拌制的砼,在养护温度20℃左右,龄期18d的强度可达到设计强度的85%左右,掺加了JM-3防水剂后,龄期18d的强度可达到设计强度的95%以上。C40砼的抗拉强度设计值为1.71MPa/mm2,设计强度的95%为1625N/mm2。

砼表面温度在18~20℃,水化热引起最高温度的天数在浇筑砼后3~5d,所用水泥为425硅酸盐水泥,强度为37%~50%,相当C20强度。如温差控制在:T=T1-T2=69-44=25℃H(t)=0.35σ1(+)=1.0×10-5×2.246×104×25/2×0.35=0.98

=1.18N/mm2>1.1Ν/mm2(承台则会开裂)。

2.大体积砼冬季施工准备工作

2.1材料选择

2.1.1水泥

普通水泥水化热较高,在砼内部温升过高,与砼表面产生较大的温差,使砼内部产生压力,表面产生拉力。当表面拉力超过早期砼抗拉强度时就会产生温度裂缝,通过掺加合适的外加剂可以改善砼的性能,并提高砼的抗渗能力。

2.1.2外加剂

通过分析比较及过去在其他工程上的使用经验,四季仁恒项目采用JM-3砼防水剂,掺量为水泥重量的8%,该防水剂能明显提高硬化后的砼抗渗性能,同时还具有防水、降低水化热峰值、对砼收缩有补偿功能,可提高砼的抗裂性。

2.2现场准备工作

2.2.1基础承台钢筋及柱、墙插筋应分段尽快施工完毕,并进行隐蔽工程验收。

2.2.2将基础底板上表面标高抄测在柱、墙钢筋上,并作明显标记,供浇筑砼时采用。

2.2.3浇筑砼时预埋的测温管及保温所需的塑料薄膜、草袋应提前准备好。

2.2.4管理人员、施工人员、后勤人员、测温人员、保温人员等昼夜排班,坚守岗位,各负其责,保证砼连续浇筑的顺利进行。

3.大体积砼冬季施工措施

3.1砼浇筑

3.1.1砼采用商品砼,用砼输送泵将砼泵送到浇筑地点,需采用一台汽车泵与3台固定泵。

3.1.2砼浇筑时应采用“分区定点、一个坡度、循序推进、一次到顶”的浇筑工艺,划定浇筑区域,每台泵车负责本区域的砼浇筑,浇筑时先在一个部位进行,直至达到设计标高,砼形成扇形向前流动,然后在其坡面上继续浇筑,循序推进。这种浇筑方法能较好地适应泵送工艺,使每车砼均浇筑在前一车砼形成的坡面上,确保每层砼之间的浇筑间歇不超过规定的时间,同时可解决频繁移动泵车的问题,也便于浇筑完的部位进行覆盖保温。

3.1.3砼浇筑应连续进行,间歇时间不得超过3.5h,过时仍不能继续浇筑时,需采取应急措施,即在已浇筑的砼面上插&12短钢筋,长度1m,间距500mm,呈梅花状布置,同时将砼表面用塑料薄膜或草袋覆盖保温,以保证砼表面不受冻。

3.1.4由于砼坍落度比较大,会在表层钢筋下部产生水分,或在表层钢筋的上部产生细小裂缝。为了防止出现这种裂缝,在砼初凝前采取二次抹面压实措施。

3.2砼测温

3.2.1基础底板砼浇筑时应设专人配合预埋测温,测温热电偶分别埋置在不同的部位。

3.2.2测温工作应连续进行,每4h测一次,持续测温18d及砼强度达到设计强度的要求,并经技术部门同意后方可停止测温。

3.2.3测温时发现砼内部最高温度与表面温度之差达到25℃或温度异常时,应及时采取应对措施。

3.3砼养护

3.3.1砼浇筑及二次抹面压实后应立即覆盖保温,经计算得出先在砼表面覆盖一层塑料薄膜,然后在上面覆盖四层草袋内含二层塑料薄膜,顶上再盖一层塑料薄膜。

3.3.2新浇筑的砼水化速度比较快,盖上塑料薄膜后进行保湿养护,防止砼表面因脱水而产生干缩裂缝,同时可避免草袋因吸水受潮降低保温性能。

3.3.3柱、墙插筋及后浇带部位是保温的难点,要特别注意盖严,防止造成温差较大或局部受冻。

3.4蓄热保温、控制内外温差

砼浇筑完成后(终凝前)应对砼进行蓄热保温, 控制砼表面温度,控制降温速率,减少温度梯度(温度梯度控制按JBJ224-91规程规定,砼浇灌承台的降温速度不宜大于1.5℃/d,因砼总体降温缓慢,可充分发挥砼徐变特性降低温度应力),使砼内外温差控制在25℃以内。为达到此目的要及时对砼温度进行测量,随时测量内外温差,以调整覆盖保温材料厚度,当内外温差小于25℃时,可逐步撤除保温层。

3.4.1覆盖保温材料厚度计算

d=0.5Hλ1(Ta-Tb)K/λ2(Tmax-Ta)

d—保温层厚度;H—砼承台厚度(m)

λ1—保温材料导热系数(W/HK),草袋取0.055

λ2—砼导热系数(W/HK),取2.5;Tmax-砼最高温度

Ta—砼表面温度;Tb—大气温度(可按平均气温取值)

K—传导系数修正值,取1.0

d=0.5×6.9×0.055×(44-5)×1.0/2.5×(69-44)=0.08(m)

所以应采用四层塑料薄膜和四层草袋覆盖养护。

3.4.2蓄热保温时间计算

按砼最高温度69℃计算,砼浇筑后半个月内以日平均温度5℃计算,拆除保温层时间以砼承台中心温度与外界温差小于25℃为标准,则承台中心最高温度应降到25+5=30℃以内。最高温度降温数为69-30=39℃,按日平均降温1.5℃计算,则需要39/1.5=26d,故保温时间不得少于26d,具体应以实测温度计算温差决定。

鉴于本工程为150m超高层结构,承台体积大,仅基础大体积砼的工程造价约为700万元左右,又值冬季施工,建设、设计、监理、施工等单位对温控方案十分重视,经过技术可行性方案比较,最后决定选用覆盖蓄热保温法,基本上达到温控目标。■

【参考文献】

第14篇

Abstract: Optimization of green construction plan is the inevitable requirement of the development of green building in China, and is also the powerful way to realize green sustainable development and enhance the core competitiveness of construction enterprises. This article mainly introduces the connotation of source reduction construction mode and significance of the implementation, using AHP and fuzzy comprehensive evaluation method to construct the evaluation model of green construction scheme. Taking the roof insulation for slope engineering construction scheme selection as an example, four construction schemes were evaluated to verify that this instance. The results show that, by using AHP and fuzzy comprehensive evaluation and analysis of the green construction scheme is objective and fair, effective, according to the comprehensive evaluation of the highest score of the selected scheme is better than that of other construction scheme.

关键词: 绿色施工;减量化;模糊综合评价

Key words: green construction;reduction;fuzzy comprehensive evaluation

中图分类号:TU71 文献标识码:A 文章编号:1006-4311(2014)19-0126-03

0 引言

政府、广大企业以及人们都已经普遍接受了低碳经济,住房和城乡建设部于2007年9月印发的《绿色施工导则》从绿色施工的社会责任、原则、总体框架以及实施要点和四新技术等方面提出了绿色施工的导向性要求。为了规范建筑工程绿色施工评价和评比方法,国家于2010年颁布了《建筑工程绿色施工评价标准》GB/T50640―2010。2014年了《建筑工程绿色施工规范(征求意见稿)GB/T50905-2014》,对绿色施工技术做出了进一步的规定。经过几年的实施,绿色施工技术在我国效果并不是理想,大多数施工企业对绿色施工模式下的施工方案无法进行科学地选择。目前,之所以不能对施工方案做出系统综合的评价,主要是由于无法对施工方案进行横向比较,评价指标之间的度量单位不同或对同一评价指标的度量标准不同常常引起评价中无法汇总基础数据。因此,对于评价施工企业的施工方案而言,建立一套科学的切合实际的以及具有指导性的指标体系至关重要。本研究在源头减量化绿色施工模式下,以屋面隔热保温找坡工程施工方案选择为例,采用AHP-模糊综合评价方法[1-2],对源头减量化绿色施工方案的综合评价进行了初步研究,旨在为同类工程绿色施工模式评价提供参考。

1 评价源头减量化绿色施工模式的意义

1.1 建筑垃圾源头减量化施工模式 建筑垃圾源头减量化施工模式是为了实现行业内部循环以及减少需要进入垃圾处理系统的垃圾,通过科学的管理以及有效的控制方法在建筑垃圾形成前将其减量化[3-4]。为了有效的实现该模式中的建筑垃圾减量化,主要通过工程项目内部对建筑材料进行充分利用从而明显减少外排和二次处理建筑垃圾的工作量来彻底改变施工活动污染环境的传统施工模式的循环实现的。在主要施工方案中提倡绿色管理,采用科学清洁的施工技术,使绿色建材在管理、技术以及材料三方面得到优化。

1.2 评价源头减量化绿色施工模式的意义 在实施与推广绿色施工技术的过程中,施工单位占据主体的决定性地位。然而,在使用绿色施工技术的同时,很多施工企业、项目部对绿色施工模式不重视,对绿色施工中存在的问题无法发掘新的技术,甚至对使用新的施工模式带有抵触情绪。施工模式的选择对于施工企业来说是至关重要的,一是可以实现施工项目的经济利益最大化,更重要的是提高企业的综合竞争力,走可持续的发展道路。目前这种模式在我国的推行受到了严重的阻碍,主要是由于我国对此研究偏重于理论概念,从而没有对其实施的经济环境效果评价进行量化,最终导致了业主、施工单位和消费者对此模式的实践性持有怀疑态度。通过绿色管理方法、优化施工技术以及绿色建材三方面构建的源头减量化绿色施工模式反映了绿色施工的实质以及实现其目标要求的有效途径,从而在保护生态环境、节约资源以及降低建筑垃圾外排量方面取得了显著的成绩。由于该模式具有很强的操作性,从而更容易达到降低建筑垃圾产量、节约资源能源以及使工程项目与生态环境和谐统一的目的。

2 源头减量化绿色施工模式评价模型

2.1 指标体系的建立 评价指标作为衡量参选方案的基本尺度,只有保证评价指标的客观性、可测性和可比性才能有效确保评价体系的有效性和科学性。因此,在参照国家有关规范标准和绿色施工评价的相关文献的基础上,运用层次分析法[1,5]、价值工程原理[6]、模糊综合评价法[7-8]进行指标体系构建。为了能选择出充分利用资源且能够最大限度的减少建筑垃圾以及降低施工现场对原环境的不利影响的方案,工程项目在结合源头减量化绿色施工模式的实质选择施工技术方案的时候不能仅仅单纯的从工程成本角度来考虑。根据工程项目实际和相关专家的建议和意见,筛选出18个因子作为具体的评价指标(表1)。

2.2 AHP结构模型 根据该项目方案的特点以及影响该目标的因素,按照层次分析法(AHP)的基本原理选择“目标―指标层结构”建立的表1源头减量化绿色施工技术方案评价指标体系共分为三层,即指标层、因素层和目标层。目标层是选出理想的绿色施工技术方案,即研究的理想结果;因素层是指制约绿色施工技术的6个因素;指标层则体现了评价因素的18个具体评价指标。

2.3 确定权重集 应用层次分析法根据体系的评价因素层与目标层的逻辑关系确定了各评价因素的权重[1]。对于各评价因素的重要性,评估小组通过两两比较,用1-9比率标度法量化其结果并建立判断矩阵,在对最大特征根和对应的特征向量进行计算和一致性检验的时候采用Excel算法[9],最终得出各评价因素权重Wp(评价因素个数,p=1,2,…6)。在得出各评价因素下属的评价指标的权重Wpi(i=1,2…k,k为各评价因素下属评价指标个数)的时候仍旧采用此方法,最后根据计算结果建立权重分配集。

2.4 进行一级和二级的模糊综合评价 从指标层开始对一级模糊进行综合评价,指标层相对应的指标决定了因素层的每个因素。先对每一个因素的单因素进行评价,然后根据形成的各因素评价矩阵得到以及模糊综合评价集。二级模糊综合评价建立在以及模糊综合评价的基础上。

2.5 计算各因素评价值和方案综合评价值 从最低层开始运用模糊数学确定各评价因子隶属度的数值并建立评价矩阵,并与相应评价因子权重合成运算确定所属的高一层的评价因子的评价集;依次类推,最终确定评价对象的评价集,按照最大隶属原则或采用加权平均法做出评价结论。

3 实证与结果

3.1 评价对象概况 在本案例中将建筑施工中常见的屋面隔热保温找坡工程作为评价对象。与传统方案相比,由于该方案的数据易于收集,该工程采用绿色施工技术的经济环境效果明显,具有典型的代表性。屋面隔热保温找坡工程施工方案根据目前屋面工程设计与施工现状可以采用以下四种方案:甲方案(水泥砂浆+挤塑保温板);乙方案(陶粒混凝土+挤塑保温板);丙方案(膨胀珍珠岩);丁方案(发泡混凝土)。针对这四种方案进行经济环境和综合效益的比较分析,根据上文的评价方法判断出最佳方案。

3.2 评价步骤 根据层次分析结构模型宜采用二级模糊综合评价。

①成立评价小组。为了保证评价的准确和客观,组织了10位专家进行评价,在组建专家人员的时候除了考虑工程设计、工程施工以及工程监理外,还充分考虑了质量监督、材料、造价以及生态等方面的搭配。

②建立因素集。根据本文上述结构模型的内容,建立评标的因素集如下:一级指标有:U={U1,U2,U3,U4,U5,U6};二级指标有:U1={U11,U12,U13};U2={U21,U22,U23,U24};U3={U31,U32};U4={U41,U42,U43,U44};U5={U51,U52,U53};U6={U61,U62}。

③建立评价集。根据可能出现的评价结果,将评价等级分为四级,用Vj(j=1,2…m,m为等级个数4)表示,建立评语集V={V1(优),V2(良),V3(中),V4(差)},其中V1=(90,100);V2=(80,89);V3=(60,79);V4=(0,59)。按照屋面隔热保温工程设计和施工的要求,参考专家意见,经过反复推敲,制定了评价指标等级标准表(表2)。

④确定出权重集。

W=(W1,W2,W3,W4,W5,W6)=(0.2881,0.2881,0.0978,

0.1695,0.0978,0.0588)

W1i=(0.5100,0.2450,0.2450),

W2i=(0.4667,0.2776,0.1603,0.0953),

W3i=(0.3332,0.6668),

W4i=(0.3512,0.1887,0.3512,0.1089),

W5i=(0.5396,0.2970,0.1634),

W6i=(0.3332,0.6668)

⑤一级模糊综合评价。先进行单指标评价,单指标评价就是定出每个指标对于各评价等级的隶属度[10],对每一个Upi进行评价,建立单指标评价矩阵,Rij=(ri1,ri2,ri3,rj4)。本案例包括甲乙丙丁四个可供选择的施工方案,根据方案评价体系,十位专家对某一单一因素进行评价打分。本研究仅以十位专家对甲方案打分表为例,对甲单位U11因素进行评分结果为:评分为优的有两人,良的为五人,中的为三人,然后用10除遍各个等级的各数得到U11因素的模糊评标向量。然后对其他因素采用同样的方案进行专家打分。对专家打分情况进行统计后根据各评价指标的隶属度建立各因素评价矩阵Rp,

R■=0.2 0.5 0.3 0.00.2 0.6 0.2 0.00.2 0.8 0.0 0.0,R2=0.0 0.7 0.3 0.00.2 0.5 0.3 0.00.0 0.6 0.4 0.00.0 0.3 0.7 0.0

R3=0.0 0.4 0.6 0.00.0 0.3 0.7 0.0,R4=0.1 0.7 0.2 0.00.0 0.3 0.6 0.10.0 0.2 0.7 0.10.0 0.1 0.8 0.1

R5=0.0 0.0 0.8 0.20.2 0.7 0.1 0.00.0 0.8 0.2 0.0,R6=1.0 0.0 0.0 0.00.0 0.6 0.2 0.2

利用(・,+)模型[2]进行模糊合成运算,可得各因素UP的一级模糊综合评价集

B1=W1i・R1=(0.2000,0.5980,0.2020,0.0000),

B2=W2i・R2=(0.0555,0.5903,0.3542,0.0000),

B3=W3i・R3=(0.0000,0.3333,0.6667,0.0000),

B4=W4i・R4=(0.0351,0.3536,0.5164,0.0649),

B5=W5i・R5=(0.0594,0.3386,0.4941,0.1079),

B6=W6i・R6=(0.3333,0.4000,0.1333,0.1333)。

⑥二级模糊综合评价。在一级模糊综合评价的基础上,把Up作为一个因素看待,用Bp作为它的评价向量。

由上面求出的Bp可得到目标层U的评价矩阵R

R=B■B■B■B■B■B■=0.2000 0.5980 0.2020 0.00000.0555 0.5903 0.3542 0.00000.0000 0.3333 0.6667 0.00000.0351 0.3536 0.5164 0.06490.0594 0.3386 0.4941 0.10790.3333 0.4000 0.1333 0.1333

再用M(・,+)模型进行模糊合成运算,可得目标层U的模型综合评价集B=W・R=(0.1049,0.4965,0.3692,0.294)

⑦计算综合评估值。用公式α=■进行最大隶属度有效性[10]验证,β为Β中最大分量,γ为Β中第二大分量,经过计算方案甲α=0.45。

按照上述步骤,对除甲方案以外的三个方案进行二次模糊综合评价以及最大隶属度有效验证,得出四个方案的α均小于0.5,这说明在评价方案的时候不宜采用最大隶属度原则。因此,本文采用加权平均法来提高评价结果的可靠性和有效性,其公式为:Xp=Bp・FT和X=B・FT[2]计算各因素评估值Xp和方案综合评估值X,按照中间取值原则对评价等级进行赋值量化得到评价等级分行向量F=[95.0,84.5,69.5,29.5],FT为F的转换矩阵(表3)。

4 结果分析与方案选择

从表3可以看出,丁方案综合评估值最高,丙方案其次,乙方案最低,甲和丙方案的评价值相差不大。根据此评价方法,选择丁方案发泡混凝土做为最后实施方案。

本工程在选取屋面保温隔热层的时候采用发泡混凝土,与其他几种方案的材料相比除了具有明显的隔热保温效果外,同时还能够明显的减少建筑垃圾的外排量以及大大降低了噪音、光以及粉尘的污染程度,因此,不仅保证了施工质量,并且保证了整个施工过程的安全健康,从而具有很好的综合效益。

为了验证该综合评价模型的正确性,我们对已竣工的工程项目中屋面保温隔热层各施工方案的情况进行调查研究,并考虑了造价的因素,表4是调查统计得出的结果。可以看出,实际工程中选择发泡混凝土综合单价最低,建筑废料产生率也最低。采用发泡混凝土作屋面保温隔热层是最优的选择,跟评价模型评价的结果相一致。

总之,对绿色施工方案进行评价的时候采用AHP-模糊综合评价法能够得出客观公正的结果,验证了在实施的施工方案中采用源头减量化绿色施工模式能够在节约资源、保护环境以及降低建筑垃圾外排量等方面都能达到理想的效果。此方法之所以为提高绿色施工方案的综合质量奠定了基础,是由于此方案不仅反映了绿色施工方案的实际水平,同时也克服了现有方案评价过程中单一化和主观化的缺点,从而对于评价过程中难以定量的问题予以了很好的解决。但是,我们也可以看出,在对绿色施工方案进行评价的过程中,其难点就是量化各评价指标、对各个评价指标在整个评价体系的中的权重予以明确以及量化整个设计方案的综合评价。考虑到计算较复杂的问题,在实际工程中可以运用计算机实现可视化的界面输入计算,达到计算过程快捷、结果准确的推广应用。

参考文献:

[1]赵焕臣,许树柏,和金生.层次分析法――一种简易的新决策方法[M].北京:科学出版社,1986.

[2]韩利,梅强,陆玉梅等.AHP-模糊综合评价方法的分析与研究[J].中国安全科学学报,2004,14(7):86-88.

[3]李景茹.新建工程建筑废弃物产出水平调查分析[J].建筑经济,2010(1):83-86.

[4]张金利.基于循环经济理论的北京市建筑固体废物再利用模式研究[J].中国软科学,2010,4:88-92.

[5]谢卫标.层次分析法和模糊数学在工程投标风险分析中的应用[J].中国科技论文在线,2006:36-38.

[6]邓朗妮.基于价值工程的绿色施工方案评价[J].施工技术增刊,2007,36:449-451.

[7]洪锋,王东.基于模糊综合评判的桩基础绿色施工指标体系研究[J].昆明理工大学学报(理工版),2009,34(4):47-52.

[8]张巍.基于模糊综合评判的绿色施工指标体系研究[J].南 昌工程学院学报,2010,29(3):55-59.

第15篇

【论文关键词】大体积砼 冬季施工防裂 温度应力 蓄热保温

【论文摘要】随着我国建筑业的发展,高层建筑、超高层建筑不断涌现,各种大型场馆不断投入建设,高层建筑的箱形基础或筏形基础都有大体积的砼结构,还常有深梁以及转换层、转换大梁,这些结构对砼的施工技术提出了更高的要求,施工企业在具体施工过程中,常常出现裂缝问题,并且近年来日趋增多。

某工程总建筑面积14万m2,根据工程进度安排,该基础砼属于冬季大体积砼施工。其中A楼主楼地上29层、地下2层,深基坑砼为C40P8,基坑砼最深处达6.0m,一次性浇筑约2500m3;B楼主楼地上44层、地下2层,深基坑砼为C40P8,基坑砼最深处达6.9m,一次性浇筑约4500m3。本文结合该工程就有关大体积砼浇筑常见的裂缝控制问题进行较深入的研讨。

1.大体积砼温度和温度应力计算

1.1砼内部最高温升值

该温度为基础底板砼内部中心点的温升高峰值,该温升值一般都略小于绝热温升值,一般在砼浇筑后3d左右产生,以后趋于稳定不再升温,并且开始逐步降温。由于砼内部最高温升值为69℃,因此将砼表面的温度控制在44℃左右,这样砼内外温差不会超过规范规定的25℃,表面温度的控制可采取调整保温层的厚度得以实现。

1.2温度应力计算

在砼浇筑后水化热值达到最大时,计算此时由温差和收缩差引起的温度应力。采用425号硅酸盐水泥拌制的砼,在养护温度20℃左右,龄期18d的强度可达到设计强度的85%左右,掺加了JM-3防水剂后,龄期18d的强度可达到设计强度的95%以上。C40砼的抗拉强度设计值为1.71MPa/mm2,设计强度的95%为1625N/mm2。

砼表面温度在18~20℃,水化热引起最高温度的天数在浇筑砼后3~5d,所用水泥为425硅酸盐水泥,强度为37%~50%,相当C20强度。如温差控制在:T=T1-T2=69-44=25℃H(t)=0.35σ1(+)=1.0×10-5×2.246×104×25/2×0.35=0.981.1(N/mm2)符合要求。如温差T控制在25℃以上如30℃时,H(t)=0.35σ1=1.0×10-5×2.246×104×30/2×S(t)

=1.18N/mm21.1Ν/mm2(承台则会开裂)。

2.大体积砼冬季施工准备工作

2.1材料选择

2.1.1水泥

普通水泥水化热较高,在砼内部温升过高,与砼表面产生较大的温差,使砼内部产生压力,表面产生拉力。当表面拉力超过早期砼抗拉强度时就会产生温度裂缝,通过掺加合适的外加剂可以改善砼的性能,并提高砼的抗渗能力。

2.1.2外加剂

通过分析比较及过去在其他工程上的使用经验,四季仁恒项目采用JM-3砼防水剂,掺量为水泥重量的8%,该防水剂能明显提高硬化后的砼抗渗性能,同时还具有防水、降低水化热峰值、对砼收缩有补偿功能,可提高砼的抗裂性。

2.2现场准备工作

2.2.1基础承台钢筋及柱、墙插筋应分段尽快施工完毕,并进行隐蔽工程验收。

2.2.2将基础底板上表面标高抄测在柱、墙钢筋上,并作明显标记,供浇筑砼时采用。

2.2.3浇筑砼时预埋的测温管及保温所需的塑料薄膜、草袋应提前准备好。

2.2.4管理人员、施工人员、后勤人员、测温人员、保温人员等昼夜排班,坚守岗位,各负其责,保证砼连续浇筑的顺利进行。

3.大体积砼冬季施工措施

3.1砼浇筑

3.1.1砼采用商品砼,用砼输送泵将砼泵送到浇筑地点,需采用一台汽车泵与3台固定泵。

3.1.2砼浇筑时应采用“分区定点、一个坡度、循序推进、一次到顶”的浇筑工艺,划定浇筑区域,每台泵车负责本区域的砼浇筑,浇筑时先在一个部位进行,直至达到设计标高,砼形成扇形向前流动,然后在其坡面上继续浇筑,循序推进。这种浇筑方法能较好地适应泵送工艺,使每车砼均浇筑在前一车砼形成的坡面上,确保每层砼之间的浇筑间歇不超过规定的时间,同时可解决频繁移动泵车的问题,也便于浇筑完的部位进行覆盖保温。

3.1.3砼浇筑应连续进行,间歇时间不得超过3.5h,过时仍不能继续浇筑时,需采取应急措施,即在已浇筑的砼面上插&12短钢筋,长度1m,间距500mm,呈梅花状布置,同时将砼表面用塑料薄膜或草袋覆盖保温,以保证砼表面不受冻。

3.1.4由于砼坍落度比较大,会在表层钢筋下部产生水分,或在表层钢筋的上部产生细小裂缝。为了防止出现这种裂缝,在砼初凝前采取二次抹面压实措施。

3.2砼测温

3.2.1基础底板砼浇筑时应设专人配合预埋测温,测温热电偶分别埋置在不同的部位。

3.2.2测温工作应连续进行,每4h测一次,持续测温18d及砼强度达到设计强度的要求,并经技术部门同意后方可停止测温。

3.2.3测温时发现砼内部最高温度与表面温度之差达到25℃或温度异常时,应及时采取应对措施。

3.3砼养护

3.3.1砼浇筑及二次抹面压实后应立即覆盖保温,经计算得出先在砼表面覆盖一层塑料薄膜,然后在上面覆盖四层草袋内含二层塑料薄膜,顶上再盖一层塑料薄膜。

3.3.2新浇筑的砼水化速度比较快,盖上塑料薄膜后进行保湿养护,防止砼表面因脱水而产生干缩裂缝,同时可避免草袋因吸水受潮降低保温性能。

3.3.3柱、墙插筋及后浇带部位是保温的难点,要特别注意盖严,防止造成温差较大或局部受冻。

3.4蓄热保温、控制内外温差

砼浇筑完成后(终凝前)应对砼进行蓄热保温, 控制砼表面温度,控制降温速率,减少温度梯度(温度梯度控制按JBJ224-91规程规定,砼浇灌承台的降温速度不宜大于1.5℃/d,因砼总体降温缓慢,可充分发挥砼徐变特性降低温度应力),使砼内外温差控制在25℃以内。为达到此目的要及时对砼温度进行测量,随时测量内外温差,以调整覆盖保温材料厚度,当内外温差小于25℃时,可逐步撤除保温层。

3.4.1覆盖保温材料厚度计算

d=0.5Hλ1(Ta-Tb)K/λ2(Tmax-Ta)

d—保温层厚度;H—砼承台厚度(m)

λ1—保温材料导热系数(W/HK),草袋取0.055

λ2—砼导热系数(W/HK),取2.5;Tmax-砼最高温度

Ta—砼表面温度;Tb—大气温度(可按平均气温取值)

K—传导系数修正值,取1.0

d=0.5×6.9×0.055×(44-5)×1.0/2.5×(69-44)=0.08(m)

所以应采用四层塑料薄膜和四层草袋覆盖养护。

3.4.2蓄热保温时间计算

按砼最高温度69℃计算,砼浇筑后半个月内以日平均温度5℃计算,拆除保温层时间以砼承台中心温度与外界温差小于25℃为标准,则承台中心最高温度应降到25+5=30℃以内。最高温度降温数为69-30=39℃,按日平均降温1.5℃计算,则需要39/1.5=26d,故保温时间不得少于26d,具体应以实测温度计算温差决定。

鉴于本工程为150m超高层结构,承台体积大,仅基础大体积砼的工程造价约为700万元左右,又值冬季施工,建设、设计、监理、施工等单位对温控方案十分重视,经过技术可行性方案比较,最后决定选用覆盖蓄热保温法,基本上达到温控目标。■

参考文献