美章网 精品范文 刚架结构设计论文范文

刚架结构设计论文范文

前言:我们精心挑选了数篇优质刚架结构设计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

刚架结构设计论文

第1篇

关键词:门式刚架钢结构

一。设计方面

1.屋面活荷载取值

框架荷载取0.3kN/m2已经沿用多年,但屋面结构,包括屋面板和檩条,其活荷载要提高到0.5kN/m2.《钢结构设计规范》规定不上人屋面的活荷载为0.5kN/m2,但构件的荷载面积大于60m2的可乘折减系数0.6.门式刚架一般符合此条件,所以可用0.3kN/m2,与钢结构设计规范保持一致。国外这类,要考虑0.15-0.5N/m2的附加荷载,而我们无此规定,遇到超载情况,就要出安全问题。设计时可适当提高至0.5kN/m2.现在有的框架梁太细,檩条太小,明显有人为减少荷载情况,应特别注意,决不允许在有限的活荷载中“偷工减料”。

2.屋脊垂度要控制

框架斜梁的竖向挠度限值一般情况规定为1/180,除验算坡面斜梁挠度外,是否要验算跨中下垂度?过去不明确,可能不包括屋脊点垂度。现在应该是计算的。一般是将构件分段,用等截面程序计算,每段都要计算水平和竖向位移,不能大于允许值,等于要验算跨中垂度。跨中垂度反映屋面竖向刚度,刚度太小竖向变形就大。要的度本来就小,脊点下垂后引起屋面漏水,是漏水的原因之一。有的工程由于屋面竖向刚度过小,第一榀刚架与山墙间的屋面出现斜坡,使屋面变形。本人有此想法,刚架侧移后,当山尖下垂对坡度影响较大时(例如使坡度小于1/20),要验算山尖垂度,以便对屋面刚度进行控制。

3.钢柱换砼柱

少数设计的门式刚架,采用钢筋混凝土柱和轻钢斜梁组成,斜梁用竖放式端板与砼柱中的预埋螺栓相连,形成刚接,目的是想节省钢材和降低造价。在厂房中,的确是有用砼柱和钢桁架组成的框架,但此时梁柱只能铰接,不能刚接。多高层建筑中,钢梁与墙的连接也是如此。因为混凝土是一种脆性材料,虽然构件可以通过配筋承受弯矩和剪力,但在连接部位,它的抗拉、抗冲切的性能很并,在外力作用下很容易松动和破坏。有些设计,在门式刚架设计好之后,又根据业主要求将钢柱换成砼柱,而梁截面不变。应当指出,砼柱加钢梁作成排架是可以的,但将刚架的钢柱换成砼柱,而钢梁不变,是不行的。由于连接不同,构件内力也不同,要的工程斜梁很细,可能与此有关。

4.檩条计算不安全

檩条计算问题较大。檩要是冷弯薄壁构件,受压板件或压弯板件的宽厚比大,在受力时要屈曲,强度计算应采用有效宽度,对原有截面要减弱,不能象热轧型钢那样全截面有效。有效宽度理论是在《冷弯薄壁型钢构件技术规范》(GB50018-2002)中讲的,有的设计人员恐怕还不了解,甚至有些设计软件也未考虑。但是,设计光靠软件不行,还要能判断。软件未考虑的,自己要考虑。再有,设计人员往往忽略强度计算要用净断面,忽略钉孔减弱。这种减弱,一般达到6-15%,对小截面窄翼缘的梁影响较大。刚架整体分析采用的是全截面,如果强度计算不用净截面,实际应力将高于计算值。《规范》4.1.8、9条规定:“结构构件的受拉强度应按净截面计算;受压强度应按有效截面计算;稳定性应按有效截面计算。变形和各种稳定系数均可按毛截面计算”。有的单位看到国外资料中檩条很薄,也想用薄的。国外檩条普遍采用高强度低合金钢,但我国低合金钢Q345的冲压性能不行,只有用Q235的。国外是按有效截面计算承载力的。如果用Q235的,又想用得薄,计算时还不考虑有效截面,荷载稍大时檩条就要垮。二。施工方面

1.柱子拔出

有的刚架在大风时柱子被拔起,这是实际中常出现的事故。主要原因不是刚架计算失误,而且设计柱间支撑时,未考虑支撑传给柱脚的拉力。尤其是房屋纵向尺度较小时,只设置少量柱间支撑来抵抗纵向风荷载,支撑传给柱脚的拉力很大,而柱脚又没有采取可靠的抗拔措施,很可能将柱子拔起。,因此,在风荷载较大的地区刚架柱受拉时,在柱脚应考虑抗拔构造,例如锚栓端部设锚板等。

2.没有柱间支撑

这种情况最近较多,这样肯定不行。目前没有任何一本规范允许不设支撑。特别是柱间支撑,受力较大,绝不能省略。

3.端板合不上

端板连接是结构的重要部位。由于加工要求不严,而腹板与端板间夹角又,有的工程两块端板完全对不上,合不起来。强行用螺栓拉在一起,仍留下很宽缝隙,严惩影响工程质量。

4.锚栓不铅直

框架柱柱脚底板水平度差,锚栓不铅直,柱子安装后不在一条直线上,东倒西歪,使房屋外观很难着,这种情况不少。锚栓安装应坚持先将底板用下部调整螺栓调平,再用用无收缩砂浆二次灌浆填实。

5.保温材吸水超重

有些房屋雪不大就垮了,究其原因,是屋面防水施工太差,雪融化后水逐渐渗入,为保温村所吸收。今年冬季落雪多次,迁延时间较长。屋面的设计荷载很小时,当吸水量达至一定程序,超过了结构的承载能力,就要倒塌。

第2篇

(1)积雪引起的压强取0.50kN/m2,由于大风造成的压强取0.50kN/m2;(2)恒荷载数值应以厂房实际工作情况确定;(3)屋顶积雪分布系数按照设计规范中给出的系数适当提高,以项目所在地的积雪分布荷载为基础,该项目取2~4,承重钢件的重要性系数取1.1;(4)计算檩条过程中,积雪荷载取值可参照本次雪灾的积雪分布规律进行计算;(5)未受损的部件和各部件连接处也可能受损,加固设计中也应考虑这部分因素;(6)加固方案应保证实际工作方便,可操作,减少加固工程对正常生产运行的影响;(7)加固过程中应保证生产安全、方案合理可行;(8)根据实际情况,可将修复、加固工作分阶段实施操作。

2钢架加固

2.1加固设计方案

按照上述工程实例情况,基于目前加固设计标准和操作规范,结合事故检测报告中提及的问题进行分析,本文设计了2种钢架加固方案,进行筛选。方案一:通常厂房荷载计算只选取恒荷载,一般为50年最大风雪荷载量进行计算。这种方案计算所得的轻钢厂房强度并不能满足实际工作需求,也不能达到设计标准。为解决上述问题,本方案对承重梁进行加腋处理,以缓解焊接重量,柱翼缘选择对称焊接,以提高承载能力。该方案所需焊接工作量大,对生产过程的影响也大。方案二:对上述工程实测数据分析可知,厂房悬挂荷载较低,钢架所承受恒荷载为0.3kpa。按照上述数据可知,轻钢厂房外部构件稳定性不达标,在柱翼缘处加入刚性系杆,以缓解这一问题。该加固方案工作量较少,对厂房内部设备生产运行影响也小。对厂房实际工作情况进行分析,在厂房运行过程中不能有灰尘产生,两种方案进行对比分析,选取方案二进行加固处理。

2.2荷载取值范围

在计算过程中确定荷载取值范围,选择轻钢结构设计可以按照相关设计规范选取合理数值。通常情况,雪压、风压选取50年内最大值,本工程分别选取0.5kpa和0.55kpa;恒荷载量取0.3kpa,悬挂荷载量取0.1kpa;房屋自重计算得0.2kpa。按照上述荷载取值范围进行核算,该数值是按照单向刚接计算所得,而实际工作中是双向刚接,应对上述数据进行处理。根据上述数据可见,轻钢结构中主要存在超负荷工作现象,大部分钢架外部稳定应力超过承受限值。经分析可知,保证钢架柱稳定应力不超过1,面部长度应取5.5米进行计算。此外,钢架梁所承受的应力也超极限运行,要保证稳定性达标,面外长度应取3米进行计算。

2.3刚架结构的加固

如图2所示,刚架结果加固处理即在柱间设置刚性系杆,以降低轴面外部的长度,设计规范中规定,面积应小于5.5m2,该工程计算0.9m×5.85m=5.25m2,符合规范条件。

3维护结构的加固设计

3.1檩条的加固设计

在对檩条进行加固设计中,应首先确定檀条部分的荷载数值。参考本次雪灾积雪分布规律进行计算。在进行加固处理时,应轻轻揭开厂房外顶板,为确保厂房能够正常运行,厂房内部环境不受影响,应将厂房内顶板留于厂房顶部,为缓解承载应力作用,应增加檩条数量。檩条加固设计时应结合实际积雪荷载量和分布范围,选择最为经济合理的檩条位置和数量进行加固设计。积雪较少的位置处檩条可以不改变布设位置,在原檩条位置加设2.5毫米厚的C状檀条;在积雪符合较大的区域,在原檩条处加设3毫米厚的C状檀条,加设的C状檀条高度应与原檀条保持一致;在积雪最严重的区域,可利用25a热轧槽或者H型钢檩条焊接到原檀条位置,对受损部位进行焊接修复处理,以加强原檩条的承载能力。

3.2其他结构的加固设计

屋面支撑材料的加固应遵循设计规范中规定的设计方法进行设计,加设刚性系杆以提高屋面整体的承载能力,同时,设计者还应考虑实际加固施工的可操作性,选取最方便可行的设计方案。墙梁加固设计中,可在需要加固的墙梁部位增设一道墙。悬挂梁加固时应在连接处加设刚性系杆,以增强梁的承载力。雨篷加固,可将槽钢焊接在横梁上,增大衡量的抗扭强度。

4结束语

第3篇

要想有效实现混凝土框架顶层加建钢结构的目标,就一定要明确两者之间的区别。混凝土框架具有自重大、刚度大、震害明显、密闭性好、整体性好、抗压性好、不易受外界侵蚀等特点;钢结构具有自重小、延性好、耐火性差、密闭性差、易受外界侵蚀等特点。混凝土框架与钢结构均是借助传统力学和数学公式进行受力计算的,同时在进行抗震设计的时候,均需要设置多道抗震防御体系,这样才可以保证结构的整体性与牢固性;在进行管理的时候,无论是混凝土框架还是钢结构,均需要管理人员具备相应的专业素质与技能,对施工中可能出现的风险、隐患、质量问题等进行预防与处理,保证施工的顺利完成。当然,两者之间也存在着明显的区别:首先,材质方面。混凝土框架主要就是由钢筋与混凝土构成,自重非常大;钢结构主要是由钢构件连接组成,自重比较小。其次,震害结果。根据相关资料显示,混凝土框架震害主要表现为裂缝,局部倒塌,很少出现整栋楼倒塌的情况;钢结构在地震作用下,经常发生失稳、扭曲、变形的情况,并且因为整体性比较差,因此在进行设计的时候,定要对整体性进行充分的考虑。最后,施工管理方面。在实际施工中,对于相同面积的施工,钢结构要比混凝土框架施工快;在现场施工的时候,混凝土框架施工需要进行现场支模浇筑,进行预制构件工厂加工的情况不多,而钢结构需要在工厂加工很多的预制构件,之后运输至施工现场,进行相应的安装与焊接。除此之外,针对工程造价而言,钢结构也要比混凝土框架低一些,在进行实际施工时,可以根据市场情况,进行适当的选择。

2加建工程的现状

我国加建设计起步比较晚,与世界先进国家之间存在着一定的差距。随着社会的不断发展与进步,科学技术水平的不断提高,加建工程得到了很大的发展空间,并且在我国各地都开展了一些旧房挖潜、改造、加建等工程,并且在上海、重庆、广州、贵阳、昆明等地都将旧房改造工程列入到了城市规划项目当中,颁布了相应的文件与规章制度。由此可以看出,我国加建工程得到了很大的发展空间。1)由以往的单个房屋加建发展为成片住宅区的加建工程;2)各种新材料、新工艺应用到了加建工程当中;3)轻钢结构加建技术得到了深入的分析与研究,并且在加建工程中得到了广泛的应用。

3钢结构加建的优缺点

开展钢结构加建工程的时候,具有以下优点:1)节约土地,提高土地面积的使用效率,缩短建设工期;2)因为钢结构的自重比较轻,因此,加建部分的荷载作用对原结构的影响非常小,不需要单独对地基进行加固处理,这样不仅可以减少工作量,还可以缩短工期,节省部分施工成本;3)钢结构具有较强的多样性,在进行加建的时候,可以充分发挥空间的优势,降低对原建筑结构的影响;4)钢结构加建的适用范围比较广,不仅可以对房屋建筑进行加建,还可以对工业建筑进行加建,因此,在建筑加建工程中得到了广泛的应用。当然,其也存在着一些缺点:1)在进行钢结构加建之后,其整体建筑结构就会呈现一种上柔下刚、上轻下重的质量与刚度分布,导致建筑整体性较差,缺乏一定的抗震性能;2)钢结构耐久性较差,在进行加建的时候,需要进行防腐、防火等措施的考虑,这样就会增加一些建筑材料的使用,此时不仅会涉及到原材料的质量问题,还要考虑原材料的成本问题,因此,存在着一定的不足。

4混凝土框架顶层加建钢结构设计

1)楼板设计。在设计楼板的时候,现阶段一般选用的都是现浇灌技术。目前,现浇灌技术是楼板设计中最为常用与有效的方法,在采用此种方式进行钢结构施工的时候,可以有效提高建筑结构整体的稳定性、牢固性与安全性。同时,在钢结构施工中,此种方法可以对出现的问题进行灵活的处理与调整,根据实际情况,提出有效的解决办法,保证楼板设计与施工的顺利进行,确保建筑工程的整体施工质量。2)梁设计。在进行梁设计的时候,一定要结合国际设计标准与实际设计情况,制定合理、科学的钢构设计要求:首先,在进行梁设计的时候,一定要保证其截面宽度不会低于200mm,同时宽度与高度之间的比值不要超过4。其次,在梁设计中必然要使用一些钢筋,对其使用钢筋也要进行一定的规定,保证梁结构具有一定的硬度与抗震性能,进而确保建筑工程整体结构的牢固性与安全性。最后,在设计扁梁的时候,一定要保证梁中线和柱中线重合,采用双向布置结构。同时对扁梁进行严格的计算与设计,保证其结构的合理性与科学性,增强建筑工程整体结构的稳定性。3)柱设计。在进行柱设计的时候,一定要保证其截面符合设计标准:通常情况下,柱截面宽度与高度均不可低于300mm,柱直径一定要超过350mm,截面短边与长边的比值不可以超过3,柱纵向钢筋配比不可以低于0.2%等。在设计柱的时候,一定要严格遵照以上要求,这样才可以保证柱设计的合理性与科学性,同时增强钢结构的稳定性,保证建筑工程施工的顺利完成。4)基础承载重量构件设计。在进行基础承载重量构件设计的时候,一定要综合考虑各方面的因素,结合建筑负荷、结构形式、施工状况等,加强基础设计的合理性与科学性,使其达到建筑工程整体设计要求。针对设计不合理、不符合要求的部分,一定要进行相应的修改,保证其设计的合理性与科学性,这样才可以保证建筑工程整体的施工质量。

5结语

第4篇

城市轨道交通停车场主要功能是承担地铁车辆的运用、停放、列检及周月检等工作。一般有以下几个建筑单体组成:综合楼、运用库、洗车库、变电所、污水处理站、人行天桥和门卫。综合楼用于日常办公和食住等功能;运用库用于地铁车辆停放和检修保养等功能;洗车库用于地铁车辆清洗;变电所负责给整个停车场供电;污水处理站主要处理停车场内污水净化排放;人行天桥用于工作人员跨轨道通行,车辆正常运营时,行人不能随意穿越轨道。场地地质概况由上至下主要有以下土层:新填土4~5m深,高压缩性;淤泥0.4~5.5m深,fak=50kPa,高压缩性;粘土0.6~7.4m深,fak=65kPa,高压缩性;淤泥质土1~8.7m深,fak=55kPa,高压缩性;粉质粘土1~7.2m深,fak=200kPa,中压缩性;强风化泥质砂岩未揭穿,fak=300kPa,低压缩性。

2停车场主要单体结构设计总结

停车场内房屋结构安全等级为二级,结构设计使用年限为50年。根据《建筑工程抗震设防分类标准》GB50223-2008,除变电所为重点设防类外,其余均为标准设防类建筑[7]。根据《建筑抗震设计规范》GB50011-2010,本实例工程属于抗震设防烈度为6度,设计基本地震加速度0.05g,地震设计分组为第一组[8],结合地方管理规定和场地地震安全性评价报告,场区特征周期0.35s,地震影响系数最大值0.0765,场地土类别为Ⅲ类。工程材料选择:主体结构混凝土等级采用C30,地下室结构采用P6抗渗等级防水混凝土,二次浇捣构件(如构造柱和圈梁等)混凝土等级采用C25,钢梁钢柱采用Q235B钢材。主要建筑单体结构布置和基础选型如下:综合楼建筑面积约7000m2,总高度为22.35m,五层钢筋混凝土框架结构,局部有地下室,柱网布置开间7.8m,进深7.2m,抗震等级四级,主要柱截面600×600,主要梁截面300×700。选用直径500预应力混凝土管桩桩承台基础,持力层粉质粘土。

运用库建筑面积2万平方米单层工业厂房,采用门式刚架结构,钢柱钢梁抗震等级四级,柱网跨度15m+28m+26.4m+26.8m,柱距离6m,主要柱截面H600×350×8×16,主要梁截面H(1000~700)×350×12×20。柱下基础选用直径400预应力混凝土管桩桩承台基础,轨道道床基础选用直径400预应力混凝土管桩桩筏基础,持力层粉质粘土。洗车库和污水处理站为一层钢筋混凝土框架结构,局部两层,抗震等级四级,主要柱截面500×500,主要梁截面300×800。选用直径400预应力混凝土管桩桩承台基础,持力层粉质粘土。变电所为两层钢筋混凝土框架结构,其中一层为半地下室电缆夹层,抗震等级三级,主要柱截面400×400,主要梁截面300×900。选用直径400预应力混凝土管桩桩承台基础,持力层粉质粘土。人行天桥独柱钢筋混凝土框架结构,柱网布置跨度7m+13m+12m+8.5m,抗震等级四级,主要柱截面500×1200,主要梁截面400×1200。选用直径600钻孔灌注桩桩承台基础,持力层粉质粘土。

3结构设计难点分析

(1)根据场地地质概况的描述,本场地淤泥及淤泥质土较厚,新填土达4m深,场地地面沉降不稳定,柱下基础和库房内无砟整体现浇道床,对基础沉降极其严格,选用何种加固处理措施,是结构设计难点之一。

(2)运用库为大跨度工业厂房,采用何种结构体系,是本工程结构设计难点之二。考虑施工周期和经济指标,本工程采用钢梁钢柱门式刚架结构体系。

(3)刚架梁梁连接节点计算时,高强螺栓计算中和轴位置的确定是本工程结构设计难点之三。查阅相关资料,中和轴位置的确定有两种假定:①中和轴在受压翼缘中心,假定模型:在弯矩作用下,把梁根部截面弯矩简化为作用于梁上、下翼缘的力偶,同时把梁受拉翼缘和端板作为独立的T形连接件看待,忽略腹板的扶持作用。此假定螺栓受力与端板厚度关系很大,设计计算较为繁琐;②中和轴在端板形心,假定模型:高强螺栓外拉力总是小于预拉力,在连接受弯矩而使螺栓沿栓杆方向受力时,被连接构件的接触面一直保持紧密贴合,认为中和轴在螺栓群的形心轴上。根据《端板连接高强度螺栓群中和轴位置研究》试验论文结果,螺栓群中和轴介于其端板形心与受压翼缘内侧中心线之间,当所受弯矩越小,则中和轴越接近端板形心轴,越大则越接近受压翼缘[9]。

4配合施工遇到的问题分析

(1)围墙开裂。分析原因:新填土4m高,围墙距离护坡边仅1m,施工工期较紧,施工单位无法用大型机械分层碾压,填土密实度达不到设计要求。解决措施:①围墙基础选用刚性较大条形基础,防止不均匀沉降,此方案施工较快,造价便宜。②选用换填处理或水泥搅拌桩加固围墙基础下新填土,减小不均匀沉降量,此方案施工周期较长,造价偏贵。综上所述,本工程选用第一种解决措施。

(2)运用库库内柱式检查坑,轨道下混凝土短柱出现偏柱、歪柱等现象。分析原因:短柱设计由结构和轨道两个专业,施工也分别由两家单位施工。解决措施:①混凝土短柱设计为钢柱,直接安装。②混凝土短柱由一家施工单位施工。建议日后设计采用第一种解决措施。

(3)人行天桥柱下管桩无法施工。分析原因:人行天桥跨轨道设置,场地内轨道区域下被地路专业设计水泥搅拌桩加固。解决措施:①天桥柱下基础改为钻孔灌注桩;②检验水泥搅拌桩加固后地基承载力,如不够采用,采用CFG桩加固后采用柱下独立基础。结合现场工期需要,本工程采用钻孔灌注桩基础方案。综上所述,结构设计时,充分运用结构设计难点分析结果,指导结构设计;配合施工时,遇到以上问题,经分析原因,采取我们选用的处理措施,得到明显改善效果,保质保量,按时完成土建施工。目前,本工程已投入使用2年,没有出现任何问题,得到业主单位一致认可。

5结构设计建议

(1)运用库库房内轨道道床为无砟整体现浇道床,对基础沉降极其严格,铁路规范要求控制在20mm以内,如果道床下地质情况不好,建议采用预应力混凝土管桩桩筏基础。

(2)运用库为一层钢结构工业厂房,采用何种结构形式,需根据结构计算和经济比较。结合本工程实例,试算比较后,得出如下经验:柱跨28m,采用混凝土柱+钢梁排架结构和钢梁钢柱门式刚架结构较经济,综合考虑施工工期,选钢梁钢柱门式刚架较适用。

(3)刚架梁梁连接节点设计时,综合考虑各种因素,高强螺栓群计算中和轴宜选端板形心。

(4)场地平整有大量新填土,新填土下有较厚的淤泥和淤泥质土,计算单桩承载力时一定要考虑桩侧负摩阻力。

(5)结合配合施工中的问题,建议结构设计时改进以下措施:①场地内高填方区围墙应做刚性较大的条形基础,以避免围墙不均匀沉降开裂;②运用库库内柱式检查坑,轨道下混凝土短柱出现偏柱、歪柱等现象,影响传力和结构安全,建议混凝土短柱设计为钢柱,直接安装即可;③被其他专业加固的场地区域,柱下基础结构设计时,建议选用钻孔灌注桩。

6结束语

第5篇

【关键词】大跨度;工业厂房;悬挂吊车;门式刚架;应用

自我国《门式刚架轻型房屋钢结构技术规程》颁布和实施以来,大跨度的门式刚架结构在众多工业厂房中得到广泛应用。其平面布置灵活多变,不受模数限制,跨度大,自重轻,不仅抗震性能好,而且施工简便,安全度高,有效提高了工业化程度以及企业的综合经济效益。历经多年改革和发展,门式刚架结构也凭借其独有优势,在工业厂房等众多领域得到了广泛运用。然而,在实际使用过程中,由于大多数大跨度厂房建设中悬挂吊车所需的门式刚架跨度超过了传统规程中建议的适宜的最大跨度,超规程大跨度工业厂房建设中的门式钢架如何设计和构建,成为众多企业在建设大跨度厂房时所遇到的难题。因此,研究大跨度工业厂房中悬挂吊车的门式刚架如何应用这个问题是非常有必要的。本论文将从门式刚架的结构选型和布置,结合算例分析,陈列计算结果,以及此结构的节点设计和施工安装方式等几个方面逐一进行以下陈述。

1 结构选型和布置

我国门式刚架结构应用大约从20世纪80年代初期开始,历时二十多发展,门式刚架结构凭借自身显著的适用性与优越性,在众多刚架结构中脱颖而出。在大跨度工业厂房建设中,由于钢屋架要直接承受吊车的荷载,并且跨度一般都较大,因此门式刚架结构的选型非常重要,因为它直接关系到整个结构的安全和稳定,以及企业的综合经济效益。

1.1 结构选型

由于门式刚架结构的空间刚度和整体性能好,在成熟的理论支撑下,其安全度高,在满足抗震要求的同时,空间系统结构还能协调工作。在大跨度工业厂房中建设中,在满足安全构建,经济合理等原则条件外,一般以节约钢材为最主要参考依据。从结构设计方案来讲,一般是采用混凝土柱和短钢柱相结合的设计理念。这种设计方式,可以增强整个结构的刚度,还可以有效减小门式刚架的扰度以及刚截面的高度,从而节省用钢量。同时,因受混凝土柱较高的影响,一般在钢柱脚和混凝土柱间采用铰接方式连接,而在钢梁和钢柱间采用刚接方式连接,从而可以有效节省空间,同时减小柱截面,简化工程。

1.2 结构布置

在结构布置方面,在大跨度工业厂房中采用的门式刚架结构的跨度大,而且梁截面也高,因此为了增强门式钢架平面外的刚度,将吊车产生的水平刹车力等其他水平外力,以最短的途径传给基础,一般在房梁屋脊,钢梁两端以及吊杆处钢梁等位置设置H型钢刚性系杆促进支撑,从而缓解梁上直接承受的动力荷载;钢梁的平面外侧,则利用隅撑作为支撑,从而减小钢梁平面外的计算长度;在屋面、伸缩处、屋脊处设计中,采用封闭式圆钢水平作为支撑,而在屋面以及短钢柱所在的墙面则采用Z型冷弯薄壁型钢檀条的彩色压型钢板体系进行支撑;在边跨以及伸缩缝等地,要设置钢管所制的柱间支撑,来维持整个构架的平衡和稳定。

2 计算和分析

为避免门式刚架结构中的钢梁出现塑性铰,一般情况下,钢柱采用变截面H钢,钢梁采用等截面焊接H钢, 吊车水平力由吊杆之间的纵横垂直的刚架支撑和承受,因此在计算时,主要是考虑吊车产生在竖直方向直接承受吊车的动力荷载,利用SSDD软件进行有限元分析计算以及复核。根据不同柱距时的刚架、檩条、墙梁及支撑的含钢量,可计算得到不同柱距时的结构体系总用钢量,如下图所示:

从上述图表可以看出:随着门式刚架中柱距的增大,整体用钢量比率逐渐呈现递降趋势,并且随着柱距的增加,用钢量下降量幅度逐渐趋向于水平。此外,随着柱距的增加,墙梁、檩条、柱间支撑、屋面支撑等方面的用钢量也会增加,并且檀条用钢量增加的幅度是其中最大的一项。

对于整个厂房的门式刚架的钢结构体系来说,柱距的高度还是整个钢结构体系总用钢量的关键因素,当柱距较小时,总用钢量可以得到一等程度的节省,并且这时候包括墙梁、檩条、柱间支撑、屋面支撑在内的其他各个方面的用钢量只是相对较少的一部分。对于整个工业厂房的上部结构来说,墙梁、檩条、柱间支撑、屋面支撑等用钢量总体呈现先增加后减少的,而后增加的趋势,因此存在一个最优柱距,从图上可以看出,一般情况下最佳柱距为8M,但是也会根据具体情况以及结构体系要求作相应的调整和改变。

3 节点设计和施工安装

在大跨度厂房中悬挂吊车的大跨度门式刚架的设计过程中,由于扰度控制对整个结构起主导作用,因此在节点设计以及施工安装方面必须考结构形式的刚度以及扰度的大小。

3.1 “强节点,弱构件”的设计原则

节点设计是钢结构设计的重要环节和步骤,门式钢架中各个构件之间的内力是依靠节点来传递的。在整个构架中,节点设计合理性至关重要,因为它关系到整个结构的承载力,可靠性,以及整个刚架结构的可行性,甚至是安全性。

在门式刚架结构中,一般遵从“强节点,弱构件”的设计原则,最常用的节点连接方式为刚接,比如刚架主梁和刚架柱,以及刚架主梁和主梁之间,都是使用高强度的螺栓进行刚接,同时,吊杆与刚架主梁之间的节点连接方式也是一样,只是一般采用摩擦型高强螺栓进行刚接。在连接之前,还需要结合高强螺栓的总体使用数量,验算节点以及刚架结构的承载能力,一般以“四面焊接”的方式来增强节点的承受能力。

除了刚架主梁与刚架和主梁之间采用刚接方式外,在钢柱与混凝土之间则一般采用铰接方式连接,在大跨度工业厂房悬挂吊车门式刚架结构中,因受钢柱和混凝土本身属性和质地等因素影响,需要进一步增强节点的设计,一般采用8M至39M地脚螺栓进行强化连接。这种连接方式不仅使得整个门式刚架结构传力作用明确,结构体系更加安全可靠,而且还使施工更为方便。

3.2 施工安装

在大跨度工业厂房中,由于钢梁的截面高度一般都较高,因此,在门式刚架结构安装时,除保证整个安装过程简便而易于操作外,还需要确保刚架平面外稳定性。在吊装过程中,需要进行多次检查和校正,确保每一步骤的明确度和精准度。

在钢柱吊装完成后,还需要以简易的平面外施工支撑作为整个刚架结构的第二道防护。此外,为了保证整个门式刚架结构形成刚度较大的结构体系,待两榀刚架吊装工作以及校正工作完成之后,需要及时安装柱间支撑,屋面刚性系杆以及水平支撑部分并条,从而进一步保证整个刚架结构中各个部件的稳定以及整个施工过程的质量和安全。

经济的发展促进了我国大跨度工业厂房的发展,作为我国工业建筑中最为主要的结构形式,门式钢架结构体系也凭借其适用性、经济性等优势成为众多大跨度工业厂房中刚架结构应用的首选。总而言之,在大跨度工业厂房悬挂吊车的门式刚架设计中,前期的策划与理论设计是非常有必要的,而合理的结构选型是整个结构体系能否正常发挥其优势的关键。在大跨度门式刚架结构设计过程中,要尽量去减小扰度,在保持平面外稳定的同时,选用刚度较大的结构形式,才能使得整个门式刚架结构发挥其最佳工作状态。

参考文献:

[1]夏汉强.钢结构设计规范[J].中国计划出版社,2003.

第6篇

关键词:抗震性能化设计,格构柱剪切变形,折减系数,性能指标

中图分类号:S611文献标识码: A

1、前言

山东某重型数控压力机制造联合厂房钢结构工程,为重钢结构厂房,最大吊车起重吨位为200t。其中A、B、C轴线为H型钢柱,D、E、F轴线为双圆管钢混结构柱。本工程建筑面积35474.9,主厂房纵向长度264.580米,横向长度132米,共5跨,各跨跨度由南至北依次为24m、24m、27m、27m、30m。 南四跨的最大吊车吨位由南至北依次为10t、32t、50t、75t。北一跨, 1~13轴为100t,13~23轴线间为200t(吊车使用过程中,200t吊车严禁运行到使用范围外)。厂房内景照片见图1。

图1 厂房内实物图

75t门式刚架厂房设计已超过《门式刚架轻型房屋钢结构技术规程》的适用范围,设计主刚架、吊车梁及制动桁架时,可通过《钢结构设计规范》来控制刚架柱侧移及吊车梁变形,刚架梁和围护结构变形仍可按《门式刚架轻型房屋钢结构技术规程》进行设计[1]。

2、优化思路

2.1 主构件基于性能设计的优化

风荷载标准值作用下,主刚架为“有桥式吊车的单层框架”,柱顶位移按照h/400控制;屋面无吊顶、吊挂等,则屋架挠度按照L/250控制;对于吊车梁 [2],竖向挠度限值取其跨度的1/1000,水平挠度取其跨度的1/2200。

基于刚架柱抗弯性能较高,刚架柱为双肢钢管混凝土格构柱,而钢管混凝土时经典的钢-砼组合构件,其刚度大、变形能力强,受力性能以及性能如抗火性能等均优于纯钢或钢筋混凝土构件。然而原设计没有使材料承载力得到很好发挥,经优化后,柱的应力控制在0.85以内。

根据钢梁弯矩包络图,将钢梁采用变截面形式,可充分发挥材料力学性能,以及基于腹板的屈曲后拉力场效应,采用薄腹截面焊接H形钢。钢梁的稳定可由檩条-拉条系统作为钢梁平面外的侧向约束,整体稳定可不用考虑,优化后钢梁应力控制0.9以内。

吊车梁吨位较大,其所用的用钢量不少,因此需精心设计,实现经济目标。经优化后主刚架减省用钢量情况见表1所示。

表1 主刚架优化结果

2.2 次构件基于性能设计的优化

围护结构下列指标进行截面优化设计:参照《门式刚架轻型房屋钢结构技术规程》(CECS102:2002),檩条挠度≤L/150,墙梁挠度≤L/100,其他受压杆长细比≤180,吊车梁以下柱间支撑长细比≤300,其他受拉杆长细比≤350~400。

2.3、抗震性能化设计

根据《建筑抗震设计规范》(GB50011-2010)条文说明9.2.14规定,当构件的强度和稳定的承载力均满足高承载力――2倍多遇地震作用下的要求时,可采用现行《钢结构设计规范》GB 50017弹性设计阶段的板件宽厚比限值,即C类;C类是指现行《钢结构设计规范》GB 50017按弹性准则设计时腹板不发生局部屈曲的情况,如双轴对称H形截面翼缘需满足,受弯构件腹板需满足,压弯构件腹板应符合《钢结构设计规范》GB50017―2003式(5.4.2)的要求。本工程进行了2倍多遇地震作用验算,各指标满足规范要求,因此板件宽厚比及高厚比要求限值放宽,降低用钢量。

3、格构柱剪切变形影响

格构柱属于压弯构件,多用于厂房框架柱和独立柱,优点在于很好的节约材料;截面一般为型钢或钢板设计成双轴对称或单轴对称的截面。格构柱的突出力学性能优势使得其不仅作为承压构件还作为主要抗侧移构件被广泛应用于工程中[3]。本工程优化设计对于设有格构柱的厂房,目前设计手册建议对于格构柱的建模采用对惯性矩乘以0.9来考虑剪切变形的影响,具体格构柱的剪切变形影响有多大,已有少量报道论述过这个问题。童根树从稳定的角度研究格构柱的剪切变形影响,详见《格构柱的剪切变形对超重型厂房框架稳定性的影响分析》[4],提出了格构柱惯性矩的折减系数公式,

(1)

陈绍蕃在对上述论文进行了讨论,提出了自己的折减系数公式[5],。本文从强度的角度对格构柱剪切变形影响进行分析。

3.1、理论分析

对于轴心受压构格柱,当格构柱处于临界的微弯状态时,柱子的横截面将产生剪力;对于压弯格构柱,由弯矩产生剪力。横截面上的剪力将引起格构柱分肢之间的剪切变形,从而降低构件的承载力。因此,格构柱分肢之间的缀材用来抵抗这种横向变形,而缀条或缀板的截面尺寸主要按横向剪力来设计的[6]。

格构柱节间单元的抗侧刚度计算[7],计算简图见图2所示,在单位荷载下节间单元的变形为,

图2 节间抗侧刚度计算简图

,则抗剪刚度为,抗推刚度为;格构柱抗弯刚度,其中分肢截面面积都为,分肢形心间距,斜缀条截面面积,缀条间距,缀条与分肢夹角,钢材弹性模量,格构柱高度,绕虚轴长细比为(计算长度系数取1.0,为回转半径),缀条长度,缀条轴向力,分肢绕自身形心轴惯性矩为。下面按悬臂格构柱的不同荷载状态下计算剪切变形对强度的影响。

1)柱顶集中荷载情况

柱顶作用集中荷载,则变形为,若按三维建模格构柱,则可真实计算变形;若按单杆建模,则计算变形时需考虑等效抗弯刚度,变形为,使

,则,得到

,即格构柱惯性矩折减系数为 (2)

2)柱身均布荷载情况

柱身作用均布荷载,则变形[8]为,若按三维建模格构柱,则可真实计算变形;若按单杆建模,则计算变形时需考虑等效抗弯刚度,变形为,使,则,得到

,即格构柱惯性矩折减系数为(3)

3.2、算例验证

现对集中荷载作用下悬臂格构柱进行三维建模计算,与简化计算进行比较,分析折减系数情况与本文公式(2)的折减系数进行对比分析,某格构柱,分肢截面面积都为,分肢形心间距,缀条间距,缀条与分肢夹角,钢材弹性模量,格构柱高度,绕虚轴长细比为,分肢绕自身形心轴惯性矩为。经计算得到下列表格2所示。

缀条面积 SAP2000三维计算顶点位移 不考虑剪切变形顶点位移 软件计算得折减系数 本文公式(2)

表2 集中荷载作用格构柱在变化缀条面积条件下折减系数对比情况

现对悬臂格构柱受均布荷载作用下进行三维建模计算,与简化计算进行比较,得到折减系数与本文公式(3)、童根树提出的公式(1)的折减系数进行对比分析,经计算得到下列图3所示。

图3 均布荷载作用格构柱在变化缀条面积条件下折减系数对比情况

由表2、图3可知,本文提出的折减系数更加接近三维模型计算值。

3.3 考虑剪切变形对结构侧移的影响

图4 计算简图

结构按二维平面模型计算,计算简图见图4所示,风荷载作用下顶层相对侧移为1/941,若考虑其中三根格构柱的剪切变形,结果将发生变化。在风荷载作用下,前三根钢柱为实腹式柱,无需折减,第4、5根格构柱惯性矩折减系数按式(2)计算(因柱身没有受风荷载,通过顶点集中传力),第6根根构柱惯性矩折减系数按式(3)计算(因风荷载沿柱身分布),求得系数分别为0.656,0.701,0.71,由软件三维建模计算得顶点相对侧移为1/683,即格构柱剪切变形对整榀刚架侧移影响折减系数为683/941=0.726,可见格构柱的剪切变形不可忽略,本工程在考虑剪切变形影响下相对侧移仍满足规范(1/400)要求。

4、小结

1)本文从性能指标和构件受力特性对重钢厂房构件截面进行优化设计,降低了用钢量。

2)本文从强度的角度分析格构柱剪切变形的影响,与童根树教授得出的折减系数稍有区别,原因是分析角度不同。通过对悬臂格构柱在不同荷载状态下的分析,得知不同荷载状态下折减系数公式不同,即折减系数随荷载状态而变化,且稳定分析与强度分析的折减系数又不同。

3)本文折减系数公式(2)、(3)看起来与童根树老师从稳定性得出的式(1)不同,确实不同,因为本文从强度条件出发,式(2)、(3)中的长细比,即相当于计算长度系数取1.0,而式(1)中计算长度系数由梁、柱线刚度比值确定,对于悬臂柱取2.0。由此可见,稳定计算与强度计算格构柱的惯性矩折减系数是不同的,但作者认为,构件抗弯刚度与自身构造有关,不应该与考虑钢梁、钢柱线刚度比得到的计算长度系数有关,因此推荐采用强度推导得到的折减系数。

4)本工程刚架在风荷载作用下考虑格构柱剪切变形的侧移计算,得知格构柱的剪切变形不容忽视,值得工程设计重视。

参考文献

[1]GB50017-2003,钢结构设计规范[S],北京:中国计划出版社,2003。

[2]CECS102:2002,门式刚架轻型房屋钢结构技术规程[S],北京:中国计划出版社,2003。

[3]施刚,范浩等,某重型门式钢架钢结构厂房的优化设计[J],工业建筑2010增刊,1200-1205。

[4]童根树,王素俭等,格构柱的剪切变形对超重型厂房框架稳定性的影响分析[J],建筑钢结构进展,2008.10,10(5):1-4。

[5]陈绍蕃,《格构柱的剪切变形对超重型厂房框架稳定性的影响分析》一文的讨论[J],建筑钢结构进展。

[6]张宇力,对《钢结构》教材中格构柱问题之商榷[J],华南建设学院西院学报,1997.6,5(1):76-78。

第7篇

【关键词】框架桥,弯矩,剪力,变形

1.工程概况。此工程位于烟台市某地,根据市交通局规划和城市人行地道的交通流量,本设计采用单孔5m框架桥结构。施工时采用暗挖施工主通道,出入口和主通道净空2700mm另加装修层50mm,底板厚度为500mm,顶板厚度500mm,侧墙厚度500mm,出入口底板厚30cm。箱涵主体结构和洞门混凝土强度等级为C35,基础垫层混凝土强度等级为C15,支护结构锚喷混凝土为C20,防水保护层混凝土为C30,主要受力钢筋为HRB335.地基为粘土。主通道荷载等级为城-B级,出入口设计荷载3.5kN/m2.

2.恒载计算

2.1材料特性。根据《城市人行天桥和人行地道技术规范》本地道桥框架结构采用C35混凝土,材料特性依据《混凝土结构设计规范》(GB 50010--2002):

2.2 桥跨自重。计算尺寸: 计算宽度 L=5.0m+0.50m=5.5m,计算高度 H=2.7m+0.05m+0.50m=3.25m

2.3 结构荷载

2.3.1板顶均布恒载

2.3.3混凝土收缩影响

根据《城市人行天桥和人行地道技术规范》规定,对于刚架结构,混凝土收缩的影响系假定用降低温度的方法来计算。对于整体灌注的钢筋混凝土结构,相当于降低温度15?莓,线膨胀系数?琢=0.00001,顶板收缩t′=(?琢·l·t)

\3.活载计算3.1汽车活载标准值

3.2人群荷载标准值

4.截面弯矩检算

根据《混凝土结构设计规范》(GB 50010-2002)规定,按照极限状态法进行框架结构截面检算,取框架单位宽度1m作为计算单元。分别取跨中,钢筋弯起点和端部进行计算。

计算参数:

式中:M --弯矩设计值;?琢1 --系数取1;fc --混凝土轴心抗压强度设计值; A?琢、AS′--受拉区、受压区纵向钢筋的截面积; b--矩形截面的宽度;h0 --截面有效高度; ?孜b--界限相对受压区高度; ?琢′--受压区钢筋合力点至截面受压边缘的距离。

对于边墙的截面计算,由于受力钢筋截面没有变化,所以取弯矩绝对值最大的截面进行计算,采用了与底板和顶板相同的计算原理,其中上侧钢筋指相对于左侧,下侧钢筋相对于右侧。经计算各截面均符合要求。

5.截面剪力检算

根据《混凝土结构设计规范》(GB 50010-2002)规定,矩形截面受弯构件,其受剪截面满足条件。

参考文献:

[1]杨工勤,地道桥的设计与施工,[硕士学位论文]四川:西南交通大学2002

第8篇

关键词: 钢结构栈桥; 桁架;水平防风撑; ∏形刚架。

近年来,在火力发电厂工程设计中, 尤其是高参数、大容量的火力发电厂,钢结构栈桥的应用日趋广泛。同时, 钢结构计算程序的应用, 如STAAD.Pro、STS、SAP6等三维空间设计计算软件, 又为设计提供了更便利的途径。本文结合实际工程的设计实践经验,谈谈在火力发电厂钢结构栈桥设计中的一点体会。

1 栈桥的横断面尺寸的确定

桁架宽度方向的轴线尺寸一般参照工艺专业要求确定,比如,根据工艺专业资料,要求栈桥净空宽8900,高2800。在做结构设计时,应预留出桁架自身宽度及挡水沿宽度。故总宽度应算至桁架中心, 通常a = 250~300。

桁架高度方向的轴线尺寸取决于栈桥的跨度,也与桁架相邻节点间距离有关, 且为100 的倍数。栈桥一般可视为简支梁,单跨栈桥跨度一般情况下为30~36m 。桥跨尺寸的确定除上述条件外, 还要考虑到所用钢材的经济性、制做简单及安装方便。理论上,钢材消耗最少的桁架其h/ L ( h 为桁架高度,L 为桁架跨度)在1/ 10 左右。这样,假设不加下撑的桁架高度为3.3m , 最优跨度为33~39m,但由于受到型钢截面等因素的限制,栈桥不宜过长。综合考虑,实践中一般栈桥h/ L 在1/ 10左右,并且如果多跨栈桥的跨度不等, 通常为了使栈桥的高度统一, 小跨度的桁架高度就要随大跨度的桁架高度而加大。

2 桁架的跨间结构

桁架一般设计成简支梁式或悬臂式, 一般不采用连续梁式超静定多跨桁架, 悬臂桁架的悬臂长度一般不超过6~8m 。桁架的节点间距离主要由桁架高度、楼板形式及跨度综合考虑确定的。设计原则是使桁架中杆件间夹角接近45°,如不能,至少也要在30°~60°之间。支撑楼板的横梁应该放在桁架的节点上。

桁架一般采用两种形式: ①带有辅助竖杆的三角式腹杆系桁架。②斜杆受

拉、竖杆受压的下斜式桁架。

三角式腹杆体系的桁架中只有向跨度中心倾斜的腹杆才是受拉的, 另一半的斜杆和辅助竖杆受压。两种形式桁架各有优劣。第一种桁架,优点是由于在桁架纯受弯时,平面内,两端竖杆为零杆。这样在桁架平面外,两端竖杆只承受整个桁架的水平力作用,受力比较单一明确。缺点是计算长度大的斜腹杆受压,要按压杆长细比设计,截面会较大。第二种桁架正好弥补了第一种的缺点,计算长度短的垂直腹杆受压,按压杆长细比设计。

桁架杆件布置时应使桁架节间数为偶数, 若不能则中央节间可采用交叉斜腹杆。承重桁架所受竖向荷载(恒载、活载包括风在竖向产生的荷载) 应通过桁架的节点变成桁架的轴力传递到支座。桁架中,除两端竖杆外,应控制所有杆件尽量只承受轴向力。在staad空间三维设计计算中,可以真实的模拟水平风荷载栈桥的作用。通常将水平风荷载加在上下弦或垂直竖杆上。

3 水平支撑系统

上弦水平支撑系统用来承受栈桥的横向荷载, 是保持桁架的空间稳定及空间刚度的重要组成构件, 也是栈桥构件中除主桁架以外很重要的构件。它布置在两桁架间的上弦平面内。水平支撑系统由两侧桁架上弦、支撑斜杆、屋面横梁等构件组成。桁架的上弦杆同时是支撑的组成杆件。下弦水平支撑系统由桁架下弦、楼面梁、楼板等组成。由于目前楼板都设计成压型钢板做底模的现浇钢筋混凝土组合楼板,所以刚度较大,下弦一般不再设支撑斜杆。

4 栈桥两端门架

按照《火力发电厂土建结构设计技术规定》,桁架端竖杆应与端部横梁组成∏形刚架。以保证栈桥的横向稳定,承受整个栈桥的水平荷载。根据这个要求,栈桥两端门架为刚接的刚度较大的∏形刚架。两端门架应成为水平支撑系统承受水平力的支点。水平支撑系统将栈桥的水平作用力通过两端门架传向支座, 以保证栈桥在横向的刚度及稳定。在连接节点设计时必须保证两端门架端竖杆与端部横梁的连接点为刚接。同时,端竖杆又是桁架组成部分。端竖杆截面的选择必须考虑两者的内力组合。端门架的横梁及立柱通常均选用H型钢。 立柱的底部基板应与地面平行, 从而保证斜栈桥桁架在重力作用下不产生整体水平滑移。

5 桁架构件截面选择与桁架杆件的计算长度

桁架上下弦一般采用H型钢,在第一种承重桁架中腹杆全部由双角钢组成的T形截面构成。在第二种承重桁架中,不难看到,在竖向力作用下,斜杆全部受拉,垂直腹杆全部受压。这是一种比较理想的受力状态。斜杆按拉杆长细比选择双角钢组成的T形截面,垂直腹杆按照压杆选择截面。桁架受竖向荷载较小时可以选择双角钢,荷载大时可以选择H型钢。实践中一般选择等边双角钢组合。

6 栈桥支座

火力发电厂的栈桥一般为倾斜放置的, 铰支座布置在栈桥的下方,动支座(滚动支座、滑动支座)布置在栈桥的上方,以适应栈桥的自然形变。桥跨大于35m 时, 不应再采用滑动支座, 应采用滚动支座。

第9篇

关键词:钢结构 实践性课程 教学改革

我国《建筑钢结构产业“十五”计划和2010年发展规划纲要》早在10多年前就已颁布[1],《纲要》明确提出了大力培养钢结构技术人才的要求,但钢结构领域中专门技术人才缺乏的现象至今没有太大的改变,人才问题仍然是我国钢结构发展的一个“瓶颈”。为此,许多高校对土木工程类专业钢结构方向理论性课程的教学进行了改革,有些高校在实践教学方面也做了一些探索研究工作[2~5],文献[6]对机械类钢结构专业方向课程体系改革进行了研究,建立了钢结构方向课程体系的足球队模型,由于受篇幅限制,该文对实践性教学环节方面的改革只作了简单介绍,未展开讨论。本文在文献[6]研究工作的基础上,对机械工程及自动化(简称为机自)专业钢结构方向实践性课程教学改革开展研究,探讨改革的思路,对其它专业方向实践性课程的教学改革提供参考。

1、实践性课程教学的现状分析

实践性课程结构方面,我院钢结构方向设立在机自专业整体平台上,现行教学计划中除大平台课程外,钢结构方向理论教学课程仅开设5门:结构力学、弹性力学与有限元法、起重机械、钢结构原理、钢结构设计,相应的集中实践性教学环节只安排了三门课程:两门课程设计(包括弹性力学与有限元法课程设计、钢结构设计课程设计)和毕业设计[6]。在实践性课程教学内容方面如下:(1)弹性力学与有限元法课程设计:使学生进一步巩固、充实和提高理论知识,并较系统地掌握复杂结构的强度、刚度分析方法;(2)钢结构设计课程设计:完成简单钢结构物(平面钢闸门或普通钢屋架)的设计计算,绘制相应图纸;(3)毕业设计:进行金属结构设计或相应水工、电力机械设计。实践性课程教学方法和教学手段方面,目前仍然沿用传统的指导方法和教学,即教师布置课题任务,学生分别查阅相关资料,开展设计工作,过程中教师指导为辅,学生在规定时间内上交设计内容。考核方法方面,主要根据设计结果给出成绩。

从以上实践性课程教学计划的安排可以看出:目前我院钢结构方向实践性课程的教学存在诸多问题,主要反映在:实践性环节薄弱,实践课程教学内容欠缺,教学内容重理论轻应用,不利于提高学生的动手能力,难以达到培养学生工程观念和创新能力的目标;教学方法和教学手段落后,考核方法不能准确反映学生的知识掌握程度。其结果是学生缺乏钢结构工程观念,创新能力不强,毕业后不能较快适应钢结构行业要求。为了培养钢结构领域高素质应用型专业技术人才,必须对钢结构方向实践性课程教学进行改革。

2、实践性课程教学改革的几个方面

2.1 改革的总体思路

实践性课程是工科高等院校教学体系中的一个重要组成部分,是培养学生动手能力和创新精神的重要教学环节,从这种意义上来讲,它甚至比理论课程更为重要。钢结构工程技术包括设计计算技术、制造安装技术和防护技术等,钢结构方向实践性课程的教学应符合人才知识结构的要求。实践性课程教学改革的总体思路是:在钢结构方向课程体系改革的基础上,结合钢结构工程相关技术,对课程结构和教学内容、教学方法和教学手段、考核方法等几个方面进行全方位、立体化改革。第一:强化实践课程,确保模块化课程体系中实践性教学课程不断线;第二:调整实践性教学内容,加强能力培养;第三:采用多样化教学方法,利用先进的教学手段,提高教学质量;第四:完善考核方法,鼓励创新思维。

2.2 课程结构和教学内容的改革

(1)课程结构方面:文献[6]提出理论教学需增设三门课程:结构振动、焊接技术、钢结构制造与安装。按钢结构领域专门技术人才知识结构的要求,实践性课程也必须强化,建议增设“焊接操作”和“生产实习”两门实践课程,培养学生动手能力和工程观念,同时为学习钢结构设计、钢结构制造与安装这两门专业课程打下基础。以培养应用型人才为目标,集中实践性教学进程调整如下:1)将弹性力学与有限元法课程设计更名为有限元技术应用(1学分,第五学期); 2)在专业方向课程体系中增设焊接技术课程的基础上,增设焊接操作(1学分,第六学期);3)增设生产实习(1学分,第七学期);4)将钢结构设计课程设计更名为钢结构设计技术应用(1学分,第七学期);5)毕业设计(论文)(12学分,第八学期)。通过以上调整,从而保证钢结构方向模块化课程体系中各个学期都有实践性课程,并形成钢结构方向完整的模块化实践性课程体系。

(2)教学内容方面:改变传统的重理论轻应用,调整实践性教学内容,注重应用能力的培养。1)有限元技术应用:作为弹性力学与有限元法的课程设计内容,通过对有限元软件的实际运用,对典型钢结构进行强度、刚度、稳定性进行分析,从而掌握有限元技术的分析方法,培养学生进行工程结构数值分析的初步技能;2)焊接操作:作为焊接技术的实训内容,结合钢结构方向培养目标,通过实际焊接操作,制作简单钢结构模型(如刚架、网架等),培养学生应用焊接技术的基本能力;3)生产实习:主要参观钢结构生产制造单位、在建工程或已建工程现场,使学生了解钢结构生产制造、施工安装过程和防护技术的应用,培养学生的工程观念;4)钢结构设计技术应用:作为钢结构设计的课程设计内容,通过应用钢结构设计软件,培养学生从事钢结构设计的基本技能;5)毕业设计:通过独立地分析、解决钢结构工程实际问题,培养学生综合运用钢结构基础理论、专业知识和基本技能的能力。

2.3 教学方法和教学手段的改革

实践性课程也可以采用多样化教学方法,利用先进的教学手段进行教学。

(1)示范教学法。如前所述,在传统的实践性课程教学过程中,教师的指导作用并不十分明显。例如在两门课程设计的教学中,学生在遇到问题和困难时才会与教师进行交流与沟通,但在课题任务下达后的一段时间内,往往由于不清楚整个设计过程,从而无从下手。焊接操作这门实践性课程主要在现场进行教学,教学方式以指导老师做示范操作,学生观察并学习模仿为主,这种教学方法可称为“示范教学法”。实践表明示范教学法受到广大学生的普遍欢迎,同时提高了学生的学习兴趣和教学质量,效果很好。在新的模块化实践性课程体系基础上,受焊接操作课程教学的启发,可将示范教学法引入到两门课程设计(有限元技术应用、钢结构设计技术应用)的教学中。例如:在有限元技术应用的教学过程中,第一个单元可以安排在机房进行,由指导教师介绍有限元商用软件进行分析计算的整个过程。以ANSYS软件为例,可针对几种基本结构:桁架、刚架、四边简支板等,演示前处理、求解、后处理三个基本过程。重点介绍几何模型的建立、单元类型(杆、梁、板和壳)的选用和单元相关参数的确定、网格划分方法、如何加载(集中载荷和分布载荷)、求解过程中算法的选用、计算结果的获取(应力或位移云图显示、具体结点或单元的数据结果等)。通过近几年的实践表明:这种方法有事半功倍的作用,实践性课程的教学质量明显得到了提高,取得了预期的教学效果。

(2)引导教学法。人们的思维都是从问题开始的。在钢结构方向理论课程(如理论力学、材料力学、钢结构原理等)的教学过程中,经常是从自然现象和工程实际先提出问题,引导学生进行思考,这种教学方法称为“引导教学法”,是一种启发式教学方法。问题的提出犹如在学生平静的“脑海”中投入一粒石子,可以起到“一石激起千层浪”的作用,能提高学生的学习兴趣,激起学生思维的浪花,使学生处于思维的最佳状态,从而能更好地理解和掌握学习内容。将引导教学法运用于钢结构方向各门实践性课程的教学中。指导教师根据课程教学的需要从不同角度、不同层次提出相应问题,引导学生思考,可以使学生在掌握知识的同时发展思维能力,提高思维的积极性、灵活性和创造性。对于生产实习这一实践性教学环节,引导教学法不仅能使学生巩固所学知识,而且能为后继理论和实践课程打下良好基础。在生产制造单位和在建、已建工程现场,首先让学生仔细观察钢结构的结构形式,如城市中体育场馆中屋顶的网架结构和屋面的网壳结构、各类桥梁结构的结构形式(桁架式、悬索式、斜拉式等)、水工钢闸门的板梁结构、起重机械和工业厂房的刚架结构等,在此基础上提出相关问题,例如:为什么采用这类结构形式,有何特点,引导学生思考与分析;其次针对具体钢结构让学生观察构件截面的形状,联系结构力学和钢结构原理知识提出相关问题,例如:构件主要承受哪种内力,引导学生思考所采用的截面和其放置方位是否符合力学基本原理,能否对其设计进行改进,如何改进等;然后让学生观察连接件和构件的连接方式,针对节点板、球铰等具体连接件提出钢结构连接的相关问题,例如:为什么采用焊接(或螺栓连接、铆接),能否用其它连接方式,从而达到巩固钢结构原理知识的目的。教学实践表明:生产实习中采用引导教学法极大地提高教学质量,有效地培养学生的工程观念和创新意识。在有限元技术应用的实践教学中,可以引导学生在建立模型时如何对实际工程钢结构中构件、连接件、约束进行简化,怎样选择单元类型(如工业厂房的梁、柱单元类型,各类闸门的面板、主梁、次梁、隔板的单元类型,载荷如何确定,数值计算结果的分析与处理等。从而使学生全面的掌握好有限元分析软件的应用,达到培养学生进行工程结构数值分析的能力。引导教学法也适用于钢结构设计技术应用和毕业设计这两门实践性课程,这里不再详述。

(3)利用多媒体和网络资源进行教学。对于生产实习,参观钢结构生产制造单位、在建工程或已建工程现场时,由于时间和条件所限,能见到的钢结构类型毕竟有限,不可能面面俱到。可以在实习前后或实习期间安排适当的时间,利用多媒体教学课件进行教学。对于钢结构形式、构件和连接件的掌握,可结合实际工程,用大题的动画、工程图片和视频作介绍;对于钢结构的制造与安装,可以先在生产制造单位与建设单位拍摄录像,然后用视频对钢结构的加工制作过程、焊接工艺、安装施工流程等进行教学。这种形象化教学方式,不仅可增强学生的感性认识、提高学生学习的兴趣,还能调动学生学习的主动性和积极性,从而提高教学效率和质量。多媒体教学也可以应用到焊接操作这一实践性课程。焊接操作在现场进行教学,由于学生人数较多,指导教师有时穷于应付,因此可以在条件允许的情况下,在现场播放焊接操作的图片或视频,使学生掌握焊接方式、工艺和操作规程,在较短时间掌握焊接操作实用技术。网络资源也可用于实践性课程的教学环节中。在建立实践性课程教学网的基础上,学生可以利用教学网进行自学,指导教师可以在网上进行辅导与答疑;另外,指导教师可以在教学过程中,给学生适当布置一些与课程相关的任务,让学生利用网络收集资料并消化吸收。对于21世纪的大学生,这种方法不仅能提高他们的学习兴趣,更能激发他们的激发学习热情。

2.4 考核方法的改革

改革实践性课程的考核方法,全面考核学生学习情况,鼓励创新思维。课程设计传统的考核方法主要是根据设计或计算结果进行评分,而毕业设计(论文)的考核方法由三部分组成,包括指导教师评分、评阅教师评分和答辩成绩等。可将毕业设计(论文)的考核方法引入到各门实践性课程的考核中来,在课程开始时指导教师即下发任务书,明确课程学习的目标和任务。课程结束时,由3至5位教师成立课程学习考核小组,对学生课程学习的各方面综合进行考核,包括工作态度、基本知识和操作(或应用)能力的掌握情况、任务完成情况、创新思维的体现、报告或论文的质量等。指导教师根据学生在教学过程中的工作态度、操作或应用能力和最终任务的完成情况等进行评分;报告或论文评阅教师则根据任务完成的质量、学习报告或论文的规范性和创新情况进行评分;考核小组根据学生在答辩过程中表现出来的知识点掌握情况、表达能力等集体决定答辩成绩;最后考核小组根据课程的类型和性质,将以上3个成绩按一定比例加权平均得到课程学习的总成绩。表1给出了有限元技术应用考核时内容和各项所占的建议比例。

钢结构设计技术应用和毕业设计(论文)的考核可参照表1,焊接操作和生产实习这两门课程的考核可由考核小组对各项比例进行适当调整。

3、保障机制

钢结构实践性课程教学改革是该专业方向教学体系改革的重要内容,在某种意义上它决定了教学改革的成功与否,而教学改革能否顺利开展和进行取决于保障机制是否完善。

(1)领导大力支持。钢结构方向的实践性课程和理论课程共同组成了该方向的教学体系,两个方面都进行教学改革才能满足21世纪钢结构人才培养目标的要求。学校各级领导应充分认识到实践性课程教学改革的重要性,必须高度重视和大力支持,这是进行教学改革的根本保障,可以制定相关政策鼓励和支持教师开展实践性课程教学改革。如果得不到领导的支持,任何教学改革都必将以失败而告终。

(2)教师积极投入。指导教师是实践性课程教学改革的主要实施者,应充分认识到实践性课程教学改革的重要性和必要性,积极投身到改革中来。实践性课程全方位教学改革实施,需要指导教师花更多的时间和精力用于教学过程中,可能还会触及到部分教师的一些利益,指导教师不能过于计较得失,为了改革的顺利开展和人才培养的整体目标实现,其付出是完全值得的。

(3)经费确保到位。实践性课程的教学改革需要一定的经费作保证,首先,实践性课程的教学需要一定的设备,如有限元技术应用和钢结构设计技术应用这两门课程设计,由于计算量大,所用软件需在高性能计算机上运行,因此需要一次性投入用来购置计算机。另外,生产实习或参观实践基地、材料及其加工、聘请专家讲学等都需要一定的经费,指导教师必须做好预算,确保教学时经费到位。

(4)实践基地建设。实践基地是实践性课程教学的最基本、最重要的基础条件,必须将其放在战略高度上予以重视。实践基地需要长期建设,可结合钢结构专业方向特点,充分利用产学研合作关系、校友资源等,与钢结构生产制造单位、建设单位或工程管理单位等建立长期合作关系,共建实践基地。学校或学院可聘请实践基地有丰富工程实际经验的钢结构专家担任兼职教授,在生产实习的教学过程中,可请他们给学生作专题报告,另外,在其它的实践性教学环节中,也可以将他们请到学校来讲学。这样不仅能深化双方的合作关系,又能提高实践性课程的教学质量。

4、结语

钢结构方向实践性课程的教学改革是该方向课程体系改革的重要组成部分,本文探讨了钢结构方向实践性系列课程的教学改革,对实践性课程教学环节相关的几个方面提出了具体的改革措施和建议。改革措施的实施将有利于提高教学质量,有利于培养学生的应用能力和创新意识,从而为实现培养应用型人才这一目标奠定坚实基础。

参考文献

[1]建设部、国家冶金工业局建筑用钢技术协调组钢结构专家小组.建筑钢结构产业“十五”计划和2010年发展规划纲要[J].新型建筑材料,2001,1(2):47~49.

[2]李方慧,田春竹.钢结构设计课程实践教学方法探讨[J].高等建筑教育,2011,20(1):135-137.

[3]李昆.基于实践能力培养的“钢结构设计”课程教学改革研究[J].中国电力教育,2011,16:22-123.

[4]贾玉琢,李曰兵,龚靖.钢结构课程设计改革探索与实践[J].东北电力大学学报,2007,27(5):49-51.

第10篇

关键词:门座起重机、模态分析

金属结构故障诊断成为工程机械领域的一个重要的研究课题,对大型化、老龄化的门座起重机而言,其金属结构的故障时有发生,严重地影响生产的安全。本论文以SDMQ1260/60E型门座起重机为研究对象,采用大型有限元结构分析软件ANSYS对其模态进行分析,得出相应的结果。为今后的维修提供可靠的数据。

1. 门座起重机建模

该起重机的转柱、门架和起重臂等构成一空间杆系结构,可简化成刚架结构,主要用梁单元进行分析计算;大平衡架为钢板焊接而成的箱体结构,应采用三维实体单元进行分析计算。

1.1 有限元网格

门座起重机结构主要是由无缝钢管和钢板组成,根据SDMQ1260/60E型门座起重机的结构特点和受力特点,可把起重机的转柱结构、门架结构和起重臂一起简化成空间杆系结构,采用ANSYS提供的空间梁单元BEAM188进行离散化,整个结构共划分了9920个单元,18717个节点。

1.2 材料物理参数

该起重机的型材选用两种材料,分别为Q235-A和16MnR,这两种材料在常温下的屈服极限分别为235MPa和325MPa,弹性模量为2.1×105MPa,材料的泊松比取为0.3,密度为7800kg/m3。

1.3 载荷工况

根据该起重机的运行状况,在考虑自重的情况下,研究起重臂处于起吊重量为60t的位置,但是空载的工况。取重力加速度g=9.8m/s2:

1.4 边界条件

门架上四个与大平衡架相连的绞点采用固定端约束形式,即6个自由度全部约束。

2. 模态分析

模态分析,也叫特征值的提取,用以求解多自由度系统自由振动的固有频率和相应振型。模态分析用于确定设计中的结构或机器部件的振动特性(固有频率和振型)。它是承受动态载荷结构设计中的重要参数,同时也可以作为其它更详细的动力学分析的起点。

本文通过分析计算,得到了起重机在工况位置时的固有频率和模态振型。表1为起重机起重臂处于起吊重量为60t的位置(工况1)时整机的固有频率,由考虑篇幅问题,出图1~图3,其分别为在工况1时整机的前三阶模态振型。

图1 起重机工况1第一阶模态振型图

图2 起重机工况1第二阶模态振型图

图3起重机工况1第三阶模态振型图

表1 在工况1时起重机的固有频率(Hz)

3.总结

1.通过上述 模态分析结果可知,其整体结构动刚度较好,各阶振型主要表现为塔式起重机的塔臂上下、水平和转扭运动的耦合。

2.本文计算所得结果可以为进一步研究门座起重机的动力响应分析和使用条件的合理选用奠定了技术基础,也为今后的维修提供可靠的数据。

参考文献:

[1]黄大巍,李风,毛文杰,等.现代起重运输机械[M].北京:化学工业出版社,2006.

[2]徐克宁,束志明,徐克晋,等.起重运输机金属结构设计[M].北京:机械工业出版社,1995.

[3]孙靖民,梁迎春,陈时锦,等.机械结构优化设计[M].哈尔滨:哈尔滨工业大学出版社,2004.

第11篇

关键词:力矩分配法;多格水池;内力计算

多格水池是城市给水排水工程重要的水工构筑物,因具有占地面积少、便于工艺设备布置和操作等优点,被广泛应用于生活污水处理、市政工程供水、工业废水等工程,尤其近年伴随大型自来水厂及城市生活污水处理厂工程的增多,多格水池的建设数量也随之增多。水池内力计算方法及理的发展历程是一个在不断总结积累工程经验的基础上逐步完善的过程,并且它与结构力学及计算分析理论的发展密切相关。作用于水池的外荷载通常有池顶活荷载、覆土荷载、过车荷载、土的侧向压力及内外水压力等,求解多格水池内力时,需将上述荷载作为边界条件并建立于未知数相等的条件方程,联立进行求解。多格水池常见的内力计算方法有:传统的结构力学计算方法(包括位移法和力法);利用Ansys、SAP2000、Midas/civil2006、世纪旗云等有限元结构分析软件模拟并计算内力;采用弹性地基梁法的结构内力计算,这些方法也各有其优缺点。

力矩分配法是以位移法为基础的一种数值渐近方法,由美国H.克罗斯于1932年发表的,主要用于杆系刚结结构(如连续梁和刚架)的受力分析。随着结构力学理论水平的不断提高力矩分配法在土木工程界已经广泛应用,其涉及工民建、市政、道桥、水利、港工等领域,也得到工程界专业人士的认可。力矩分配法主要用于连续梁和无结点线位移(侧移)刚架的计算。其优点是不需要建立和解算联立方程组,而在其计算简图上进行计算或列表计算,就能直接求得各杆断弯矩,正在被更多的设计者所接受和应用。

1 多格水池底板计算原理

1.1 计算原则

对于底板跨度较小的水池,底板内力适用于地基反力直线分别假定,分别在底横、纵向取单位截条进行计算。但对于多格水池底板,由于组合工况繁多,截条计算方式非常繁琐,总结以为工程经验,可对多格水池在满足以下原则情况下进行简化计算。

(1)底板与外墙池壁按简支考虑,底板与内隔墙池壁按固结考虑,池壁在侧向荷载作用下的底端弯矩作为力偶荷载传递在底板上。

(2)地基反力计算时仅考虑池底板以上所有竖向荷载,不含池内液体重和底板自重。

(3)底板根据每格水池平面尺寸长宽比,分为单向和双向受力底板,分别根据底板四周支承条件查取《建筑结构静力计算手册》中均匀荷载作用下板的计算系数表,得出各格底板在地基反力作用下跨中和支座的弯矩。

(4)底板位于外墙池壁根部的支座弯矩即为该处池壁底板弯矩;各池格底板跨中弯矩等于地基反力作用产生的跨中弯矩加上该池格满水工况下相应方向池壁底端弯矩;各池格底板在中间隔墙处的支座弯矩等于地基反力作用产生的支座弯矩加上该池格满水工况下相应方向池壁底端弯矩。

1.2 力矩分配法的基本原理

1.2.1 基本方程

力矩分配法的理论基础是位移法,为此通过位移法基本体系来说明力矩分配法的基本原理,如图1所示的刚架,该刚架仅有一个基本未知量(只有角位移无线位移)。

如图1中(a)、(b)所示,可得系数和自由项为

表示汇交于结点1的各杆端转动刚度之和。

是附加约束上的约束力矩,它等于汇交于结点1的各杆端固端弯矩的代数和,它同时表示各固端弯矩所不能平衡的差额,故又称为结点上的不平衡力矩。由此解基本方程得:

基本未知量求出以后,由叠加原理求最后的各杆端弯矩,即汇交于结点1的各杆端为近端,另一端为远端。则各近端弯矩为:

以上各式中的第一项表示荷载单独作用时所产生的弯矩,即固端弯矩。第二项表示结点转动角度为时所产生的近端弯矩,相当于把约束力矩或不平衡力矩反号后按汇交于同一结点的各转动刚度所占的比例分配给近端,故称为分配力矩,其中、、、称为分配系数,可统一写为:

显然,汇交于同一结点各杆端的分配系数之和应等于1,即,此条件主要用于校核。各远端弯矩为:

以上各式中的第二项为近端结点转动时产生的远端弯矩,如果我们暂不考虑固端弯矩,它就等于近端分配力矩乘以传递系数,因此称之为传递弯矩。

1.2.2 基本运算步骤

为此,在画连续梁、无结点线位移的刚架或虽有结点线位移但线位移已知的刚架弯矩图时,不必绘制图和图,也不必列位移法的基础方程,直接计算各杆的杆端弯矩,其步骤如下:

(1)锁住结点,求约束力矩。约束力矩等于汇交于同一结点的固端弯矩之和,以顺时针转向为证。

(2)放松结点,求分配力矩和传递弯矩。分配力矩等于将约束力矩或不平衡力矩反号后乘以汇交于同一结点的各近端的分配系数,传递弯矩等于分配力矩乘以传递系数。

(3)叠加以上结果。各近端的杆端弯矩等于固端弯矩加上分配力矩,各远端的杆端弯矩等于固端弯矩加上传递弯矩。

2 算例验证

2.1 设计资料

以《湖南省新化县经济开发区污水处理项目》预处理组合池为例,水池平面尺寸为26.4m×20.6m,水池高H=5.9m,池壁顶部简支于顶板,底部固定支承于底板上。水容重,修正后的地基承载力特征值。由于底部较大,选取比较有代表性的四格底板进行计算。

2.2 荷载计算

(A)已知,在水侧压力作用下,

甲板

乙板

(弯矩以池壁内侧受拉为正)

(B)顶板和池壁自重

底板自重:

一格水池重:

2.3 地基承载力验算

2.4 内力计算

(弯矩以底板上面受拉为正)

(1)自重作用

查《给水排水工程结构设计手册》表3.2.7-3,X31=0.74

跨中弯矩

支座弯矩

(2)根据工艺要求,只存在(Ⅰ)(Ⅱ)池放空其余满水最不利工况

(3)底板计算弯矩

利用文章方法所求结果如表1所示,同时为作比较,将理正结构工具箱及世纪旗云软件计算结果也列于表1中。从表1的底板各弯矩值分析可知,底板板跨中都为正弯矩,表明底板最不利工况时底板上部受拉,且底板边缘弯矩与跨中弯矩相比呈逐渐增大的趋势,结果符合板一般受力特点。变1中显示,两者求解的弯矩所得结果基本吻合,相对误差基本控制在5%之内。

3 结语

(1)通过将力矩分配法与理正结构工具箱及世纪旗云计算软件所得弯矩图进行对比,表明力矩分配法对多格水池底板进行内力计算所得结果是科学合理的且具有较高的精确度,为多格水池底板计算提供了新的计算方法。

(2)力矩分配法不必求解联立方程组,而且可以直接求得底板边缘弯矩,运算式可以按照一定得步骤重复进行,比较容易掌握,适合手算。通过该方法计算内力可以加深对结构受力的理解并复核计算软件的合理性及准确性,对实际工程有一定指导意义。

(2)通过上述计算结果对比,表明文章提出的计算方法对多格水池底板内力进行计算是很有效的,它能较好反映上部结构和底板的相互作用,该方法还可以适合于市政工程中常见的泵房、沉井、涵洞等给排水工程结构的设计及计算。

参考文献

[1] 张军齐.矩形混凝土水池与地基作用设计理论和方法研究[D].西南交通大学硕士论文,2008.

[2] 夏桂云,李传习,张建仁.圆形水池底板与池壁的相互作用[J].中南大学学报(自然科学版),2013,44(01):345-349.

[3] 康锐,孙雪松.基于梁格法的水池结构空间有限元计算[J].建筑技术,2010,41(05):457-458.

[4] 魏小文,X继龙,赵振伟.多功能力矩分配法[J].力学与实践,2007(29):76-78

[5] 龙驭球,包世华,袁驷.结构力学I:基本教程(第3版)[M].北京:高等教育出版社,2012.

[6] 给水排水工程结构设计手册编委会.给水排水工程结构设计手册(第二版)[M].北京:中国建筑工业出版社,2006.

第12篇

关键词:门式刚架; 优化设计; 柱距 ;跨度 ;计算长度

中图分类号: S611文献标识码:A 文章编号:

1 概述

在轻型房屋钢结构体系中,门式刚架以其施工快、造价低、扩建灵活、维护费用低等优点广泛应用于各类建筑房屋。本文就门钢结构耗钢量的影响因素进行论述,总结归纳出其常用数据和有用结论,为实际工程设计提供有益指导。

2 柱距

柱距对用钢量的影响表现为:柱距越小,刚架数量越多,刚架的用钢量相应增多,反之刚架用钢量偏少,但是次结构如檩条,系杆等的用钢量相应增加。当柱距大到一定程度,主刚架的用钢量减少趋于平坦,次结构的用钢量增加会完全抵消甚至超过主刚架用钢量,使得总用钢量呈偏高趋势。

王元清等[1]结合18m和24m跨的两个带有吊车的双连跨门钢厂房工程实例,通过大量设计方案的研究分析,发现其用钢量的最优柱距为6~8m,而同等荷载条件下的不设吊车的最优柱距为8~9m,且用钢量大大减少。

任兴平[2]通过大量实际工程总结出了常规荷载条件下6米高门式刚架的经济间距,见表1。

表1 相同条件下各种跨度对应的最优刚架间距

柳锋等[3]等通过对210个门式刚架的设计分析发现:常用刚架的经济柱距为7~9m, 当无吊车或吊车吨位较小时, 经济柱距为8~9m; 当吊车吨位较大时, 经济柱距为7 m 左右, 用钢量比常规6m 柱距可节省3%~12%, 总造价可节省2% ~6%, 经济效益非常可观。

牛保有[4]借助3D3S软件对6m、12m、18m三种檐口高度的不同柱距刚架进行分析,得出结论:无吊车轻钢房屋的经济柱距为7~8m之间,当柱距需要大于8m时,将柱距定为9~9.5m左右会较为经济。有吊车轻钢房屋轨顶标高6~9m,经济柱距为7~8m,轨顶标高12m时,经济柱距向上移动至9m左右。随着轨顶标高的增加,经济柱距向变大,相同的轨顶标高,最优柱距与吊车起重量关系不大。

2.跨度

实际工程表明荷载是经济跨度的主要因素,荷载越大时,总用钢量对跨度越敏感。荷载越大则需要的柱截面也大,若此时跨度小,其单位用钢量必然上升。若跨度大,梁截面又显著增大,也会导致单位用钢量的上升[5]。

文献[4] 通过对6m、12m、18m三种檐口高度的不同跨度刚架进行分析比较,得出结论:对于无吊车厂房,刚架的经济跨度与檐口高度密切相关,经济跨度随着檐口的增加而增加;对于有吊车厂房,经济跨度随着吊车吨位的增加向高位攀升。

实际工程表明门式刚架的经济跨度一般在18~36m,吊车吨位较大时,经济跨度在24~36m,无吊车或吊车吨位较小时,经济跨度在18~24m,采用合理经济跨度可以节省钢材5%~15%,降低总造价2%~7%。

3.采用变截面和最优腹板高度

门式刚架屋面梁为受弯构件,柱为压弯构件,通常也是弯矩大于轴力。根据刚架的弯矩包络图的特点采用变截面的结构形式进行设计可以有效节省材料。

针对门式刚架截面腹板高度,杨娜等[6] 应用编制的结构分析设计程序,通过大量的算例分析发现:等截面轻型门式刚架结构梁的最优腹板高度范围L/30~L/38,柱的最优腹板高度范围H/12~H/19;变截面的柱端最优腹板高度范围L/35~L/40,梁跨中的最优腹板高度范围L/40~L/50。

4.屋面梁的平面外计算长度

工程实践表明:在特定荷载条件下,门钢梁的强度条件容易满足,其破坏甚至倒塌往往是由受压翼缘屈曲引起的。《门式刚架轻型房屋钢结构技术规程》CECS 102:2002规定:实腹式刚架斜梁平面内可按压弯构件验算强度,平面外应按压弯构件验算稳定,见式1:

(1)

根据式1,对于给定的荷载条件的按材料弹性状态设计,N、M均为常量,稳定系数φy和φyb是主要影响因素,稳定系数与计算长度的大小密切相关,因此设计合理的屋面支撑体系,减少屋面梁的平面外计算长度是优化设计的关键。

《门规》CECS 102:2002规定:实腹式刚架斜梁的出平面计算长度,应取侧向支撑点间的距离;当斜梁两翼缘侧向支撑点的距离不等时,应取最大受压翼缘侧向支撑点的距离;当实腹式刚架斜梁的下翼缘受压时,必须在受压翼缘侧面布置隅撑作为斜梁的侧向支撑,隅撑的另一端连接在檩条上。

《冷弯薄壁型钢结构技术规范》GB50018-2002规定:实腹式刚架梁和柱在刚架平面外的计算长度,应取侧向支撑点间的距离,侧向支撑点间可取设置隅撑处及柱间支撑连接点。当梁(或柱)两翼缘的侧向支撑点间的距离不等时,应取最大受压翼缘侧向支撑点的距离。根据其条文说明:刚架梁的平面外的计算长度应当取侧向支撑点的距离,对于墙皮板材与檩条、墙梁有可靠连接的情况,可以考虑檩条、墙梁作为侧向支撑,但是并未对可靠连接极其相应的构造措施进行说明,这给设计带来不便。文献[7]把梁的平面外计算长度的常见方式归纳如下:

1)上翼缘计算长度

1.1) 取上翼缘横向支撑的节距

1.2) 取隅撑间距

隅撑通过檩条连接于有弹性侧移的下翼缘上,故其不能作为上翼缘受压时的侧向支点。在某些情况下可将其作为下翼缘受压时的侧向支点。

1.3) 取3m

3m是基于两个檩距考虑的,当屋面刚度大,与檩条的连接可靠时,考虑屋面实际存在的蒙皮作用,取2个檩距3m,这按规程的精神在实践中也是可行的。

2)下翼缘的计算长度

2.1) 设置隅撑

不分情况取隅撑间距。另一种观点取与上翼缘横向支撑节点处檩条相连的隅撑间距,亦即横向支撑的节距。文献[7]认为以取后者为妥。

2.2) 不设隅撑,取Ly=0.4L

取Ly=0.4L前提与弯矩图形有关。正常情况下,梁端为负弯矩,跨中为正弯矩,考虑柱面风荷载使梁反弯点内移,故偏安全地取反弯点距梁端为L/5,借用格构式刚架平面外长度的计算公式进行计算,得到Ly=0.4L。

由此可见,将刚性系杆视为梁的侧向支撑是合乎结构受力特征的。对于能否将隅撑--檩条体系作为梁的侧向支撑还存在争议。为此,国内学者也进行相应的研究。文献[8]提出将檩条作为刚性系杆时,通常采用两个檩条的组合截面以满足弱轴刚度,而且檩条与钢梁必须用高强螺栓连接,可靠的传递轴力。付占明[9]为研究梁的平面外计算长度能否取2倍檩距,分析比较了多根隅撑支撑的的简支梁和两倍檩距简支梁的临界弯矩,认为屋面横向支撑的相应位置都应该设置系杆,不宜用檩条兼做系杆,那样可能造成檩条的连接节点破坏。陈友泉等[10]引用隅撑--檩条体系下纯弯构件稳定弹性临界弯矩计算公式,发现:当主梁尺寸较小, 受压翼缘截面面积A300mm×12mm 时,隅撑--冷弯薄壁型钢檩条体系难以构成主梁的侧向支撑条件,需另行考虑主梁的稳定设计或按大于2 倍的隅撑间距取为主梁平面外计算长度考虑。

综上所述,对于门式刚架设计过程中隅撑-檩条体系的侧向支撑作用和梁的平面外计算长度问题可以按如下考虑:

Ⅰ 对于一般门式刚架梁的平面外计算长度取侧向支撑距离,侧向支撑距离即为刚性系杆的距离,由于目前还没有与计算模型相适应的成熟的构造措施,尽量避免使用隅撑--檩条体系作为侧向支撑,可仅将隅撑作为安全储备考虑。

Ⅱ 对于不需考虑冰雪荷载地区的轻钢屋面建筑可以有选择的利用隅撑的作用,此时与隅撑相连檩条、钢梁应当采用高强螺栓。当屋面梁高度小于500mm,受压翼缘截面A

5.小结

本文结合门式刚架的特点,针对门式刚架优化设计的技术措施,从柱距、跨度、变截面和截面高度、刚架梁平面外计算长度四方面进行了论述,归纳总结了从这四方面进行优化设计的可用结论和应该注意的问题。实际设计过程中可选的优化措施是灵活多样的,如选用高强度钢材、利用摇摆柱减少刚架梁平面内的计算长度、设置刚结柱脚增加刚架的抗侧刚度等等,设计者可根据实际情况选用可操作的方法进行优化设计。

参考文献

[1] 王元清, 王春光. 门式刚架轻型钢结构工业厂房最优柱距研究. 工业建筑, 1999

[2] 任兴平. 门式刚架轻钢房屋结构的优化设计. 钢结构, 2000

[3] 柳锋, 郭兵, 陈长兵, 杜刚. 门式刚架的经济尺寸与优化初设计. 钢结构, 2003

[4] 牛保有. 轻型门式刚架钢结构的优化设计分析:[西安建筑科技大学硕士学位论文]. 西安: 西安建筑科技大学, 2007

[5] 陆赐麟. 轻钢结构的重量应该更轻. 建筑结构, 2003, 133(10): 15~21

[6] 杨娜, 王娜, 吴知丰. 轻型门式刚架结构及其最优腹板高度的研究. 哈尔滨建筑大学学报, 2001

[7] 钢结构设计手册(第三册). 北京: 中国建筑工业出版社, 2004

[8] 李永国. 轻型钢结构门式刚架设计探讨. 钢结构, 2005

第13篇

关键词:土木工程结构、可靠性、设计规范

前 言:

工程结构是指由钢、木、砖石、混凝土及钢筋混凝土等建造的各种建筑物和构筑物,在我国将结构可靠性的概念及计算理论引入建筑结构设计的规范体系,并在评价结构性能时将它作为基本指标而制定了相应的国家标准以来,在结构工程中的各个领域内,结构可靠性的研究工作在国内先后得到广泛的开展。

1、影响土木工程结构可靠性的一些不确定因素和设计规范研究

1.1 影响工程结构可靠性的一些不确定因素

结构可靠性是指结构在规定的时间内、在规定的条件下完成预定功能的能力,它包括结构的安全性、适用性、耐久性等方面。其在设计、施工、使用过程中具有种种影响这些方面的不确定性因素:

(一)工程全过程中事故发生的随机性:工程在设计,施工,使用过程中可能会出现由于事件发生的条件不充分,使得在条件与结果之间不能出现必然的因果关系,从而事件的出现与否表现出不确定性,这种不确定性是难以预料的,其在数学方法上表现为随机性.研究事物随机性问题的数学方法主要有概率论、随机过程和数理统计。

(二)工程结构具有模糊性:人们对客观事物认识的不确定性,除了由于无法控制的因果关系形成的随机性外,确实还存在着很多模棱两可的模糊因素。自美国zadeh创立模糊集合论以来,用数学语言描述事件的模糊性就有了可能,以往将这类不定性归为主观不定性,对这类不定性习惯上也武断地按随机性对待。引入由隶属函数刻划的模糊性后,以概率度量的结构可靠性将改为模糊概率来度量。

(三) 工程结构理论的不完善性:工程结构理论是由若干相互联系、相互作用的要素所构成的具有特定功能的有机整体.人们常用颜色来简单地描述掌握事物知识的完善程度,并把事物(或称系统)分为三类:白色系统、黑色系统、灰色系统.对知识的不完善性处理还没有成熟的数学方法,在工程实践中只能由有经验的专家对这种不确定性进行评估,引入经验参数。

1.2 工程结构的设计标准和规范体系研究

自20世纪20年代起,国际上开展了结构可靠性基本理论的研究,并逐步扩展到结构分析和设计的各个方面,包括我国在内,研究成果已应用于结构设计规范,促进了结构设计基本理论的发展。同时我国在工程结构可靠性研究的发展过程中,进行了大量的理论研究、资料收集和数据实测工作,总结了我国工程实践经验,采用以随机可靠性理论为基础、以分项系数表达的概率极限状态设计方法,作为我国土木、建筑、水利等专业结构设计规范改革、修订的准则.全国土木、建筑、水利各专业直接为工程技术人员使用的结构设计规范在“统一标准”的统一指导下,进行了大规模的修订或编制,工程界形象地称之为规范的“转轨”,就是指从原规范的以经验为主的安全系数法转为以概率分析为基础的极限状态设计法.这项工作的规模和深度已超过了世界上一些先进国家,大大提高了我国结构设计规范的科学水平,使我国工程结构设计规范跻身于世界先进行列。

2、工程结构可靠性研究的进展研究

2.1 工程结构的概念分析

钢、木、砖石、混凝土及钢筋混凝土等建造的工业与民用建筑的承重结构,公路和铁路的桥梁、港口工程的码头,水利工程的堤坝、水闸,给水排水构筑物的水池、水管等,统称为工程结构。这些结构需要安全可靠地承受设备、人群、车辆等使用荷载,经受风、雪、冰、雨、日照或波浪、水流、土压力、地震等环境的作用.它们安全可靠与否,不但影响工农业生产,而且还常常关系到人身安危.特别是一些重要的纪念性建筑物,作为一个时代的文化特征,将留传后世,对安全可靠、适用、美观、耐久等方面,有更高的要求.

2.2 工程结构可靠性进展的一般理论研究

2.2.1 结构体系可靠性研究

随着结构可靠度理论在建筑、铁路、公路、港工和水利水电五大工程部门中的应用日益广泛逐步深入,人们深知一个结构体系的可靠度不能仅由其局部元件对某种失效形态可靠度加以度量。因此,现在设计规范中规定的结构目标指标,实际上是指失效问题而言的。对由诸元件组成的结构体系,其可靠度应由诸元件以及体系的各种失效模式所确定的极限状态方程得出。为了不断提高设计规范的质量水平,全国工程结构基础标准技术委员会1986年第二次全体委员会制定的科研项目中,对体系可靠度的研究十分重视,将连续梁、简单刚架、高桩码头、重力坝等结构体系的可靠度分析列为研究课题,这种形势在客观上促进了结构体系可靠度理论的发展。

2.2.2 结构抗震可靠性研究

在工程结构的设计中,要考虑的动态作用主要有地震、强风、波浪力等,这些作用不仅在事件发生的时间和空间上是随机的,而且每次事件作用的强度随时间的变化规律,也是随机的。因此,结构抗震可靠性的研究在我国日益受到重视,抗震可靠性的分析一般采用首次超越和低周疲劳破坏的分析方法,其中首次超越的界限,在弹性分析中一般沿用了结构构件承载能力的允许值,在弹塑性分析中采用了延性系数的允许值。这些界限值假定具有某种概率、分布,近来也有学者提出应考虑界限模糊性的观点。这些方法都是可取的,值得沿承的。

2.2.3 岩石工程的可靠性研究

国内在岩土工程中应用概率统计方法的问题,在80年代初期开始得到了重视。并进行了深入的研究,通过多年的研究与发展,大致确定了以下几个方面:(一)在概念方面的探讨,这部分虽然数量不多,但内容却十分重要。(二)岩土参数估计的研究,这是岩土工程可靠度分析中的关键和难点,以此为主的论文约占四分之一。(三)将可靠性方法引入到各类岩土工程的问题,包括计算分析方法的研究,除了一次二阶矩验算点方法外,随机有限元、高阶矩、Monte一Carlo等方法也开始引入到岩土工程的可靠性分析中来。目前在岩土工程可靠性研究方面,与上部结构相比,其成果尚未成熟到可供实用的阶段,但与上部结构采用不同设计原则的状况也不容许持续太久,加速实用化研究是势在必行。

2.2.4 结构疲劳可靠性研究

近年来随着铁路和公路桥梁、吊车梁、铁路混凝土轨枕、海洋建筑物等承受疲劳荷载的

结构物的发展以及结构可靠性理论在土木工程中的广泛应用,结构疲劳可靠性问题日益受到

重视: 例如:开展了以可靠性理论为基础的轨枕疲劳设计方法和不稳定重复荷载下的混凝土受弯构件的疲劳可靠性设计问题,同时在原国家建委支持下,中国建筑科学研究院、太原工学院、冶金部建筑研究总院等单位进行了大量的混凝土受弯构件正截面和斜截面在等幅荷载下的试验研究工作,为进一步开展疲劳可靠性的研究积累了可供利用的资料。

结束语:

一直以来,土木工程结构的安全性与耐久性一直是设计者与使用者非常关注的问题,它关系到安全与经济的协调、基础设施的投资等,并与国家现行政策、法规以及未来的经济发展息息相关,由此可见,其是一个复杂的系统工程问题.,国家对其高度重视,加强研究力度。

参考文献:

[1] 赵国藩 我国土木工程结构可靠性研究的一些进展[J] 大连理工大学学报,2000.40(3)

第14篇

关键词:工业;钢结构;设计;施工;

中图分类号:F287文献标识码: A

引言

农业是我国国民经济的基础,因为它提供给人们的基本生存保障,但在整个国民经济中光靠农业是远远不够的,其它产业部门,如工业、交通、商业等都必须大力发展,尤其是工业,它是国民经济的主导产业。作为发展中国家,工业中还存在如总体水平低,现代化程度差,科学技术上明显滞后,工业生产效率也较低等许多问题。因此,工业经济的转型势在必行,配合着工业方面的转型,钢结构在工业领域的应用也将进入到一个新的阶段,在这个阶段中面临着一定的考验,但更多的是机遇。对于工业来讲,钢结构的应用范围相当广泛,历史也相当悠久,其体系也较为成熟和固定。工业中体量大小不同且差异很大的建筑物很多,需要满足的功能要求也多种多样,各方面的限制因素等都导致结构样式要比较灵活,因此钢结构的应用必将占据很大的部分,辅助材料的性能发展,如防火材料、防腐蚀材料及保温材料等,也使钢结构能满足越来越高的使用上的要求。随着时间的不断推移,工业与钢结构之间形成了一种相互促进、互利互惠的关系,这种关系也决定了两者紧密的联系。

一、工业钢结构设计的内容

工业设计目前看起来在软件的应用深度上落后于民用设计,但是工业设计的内容对于一名设计人员来说反而是更有挑战性的。工业设计对于设计人员的要求更加全面,要求对不同的结构形式都要比较熟悉,对各种结构体系都要有一定理解,基本的结构概念要很清晰。正是因为设计要求及设计内容上比较复杂,因此对设计人的结构基本知识及对实际问题的分析能力要求很高,一旦在分析当中出现不合理或者有所遗漏的状况,结构的安全性将会受到直接的影响。对于其中的钢结构设计而言,不同于混凝土结构。在方案设计阶段,钢结构可以选择的结构形式更多,不过需要考虑的因素也更复杂:经济因素、设计周期及施工周期、材料采购及运输等。钢结构一般受力更为明确,也更直接;在静定结构体系中,结构体系的完整性和结构构件的重要性都比一般的混凝土结构更高,在设计过程中,除了结构主体计算之外需要考虑更多的因素,节点设计、加工、安装、运输、防火防腐蚀等都要根据具体的情况选择不同的方式。工业钢结构大的结构形式一般包括:框架、排架、网架、刚架等,还包括诸如烟囱等特种结构,以及桁架等较大跨度结构等。工业改造项目经常也是以钢结构为主,需要根据具体的形式选择不同的结构体系或者构件,在结构设计时,对于墙面板、屋面板及平面钢板作用对结构的影响是不可忽略的,需要我们根据不同的条件及要求予以考虑,对于这方面的认识随着各种概念的不断成熟,将会在实际中有更多的应用。除了对钢结构体系要很熟悉之外,钢结构对于单个构件的设计计算也很重要。在构件的计算中也需要考虑很多的因素:构件的强度计算、稳定性计算、变形计算等。在有需要的时候还要进行疲劳计算,塑性设计,动力计算等,在这个过程中有很多需要根据实际情况进行假设或者调整的地方,比如平面内外的支撑长度,刚接铰接和实际能达到的效果的判断等,最后的节点设计需要考虑从最开始的计算条件、制作安装等全过程的状态,也是使结构实际与计算相符合的关键。

二、工业钢结构施工要点

在制作过程中,应保证钢材的抗拉强度、屈服强度、截面收缩率、伸长率和磷、硫等有害元素的极限含量,对焊接结构还应保证碳的极限含量;要严格控制钢材切割质量,切割前应清除切割区内油污、铁锈,切割后断口处不得有裂纹和大于1.0mm的缺棱,并应清除边缘熔瘤、飞溅物和毛刺等;检查构件外观,要求正面无明显凹面和损伤;顶紧面贴紧不少于75,且边缘最大间隙不超过0.8mm;允许偏差项目应符合(GB50205-2001)钢结构工程施工质量及验收规范。

(一)钢结构的焊接

焊接工程是钢结构制作工程中最重要的环节,焊接工程质量控制必须得到高度重视。结构的承载力直接受到钢结构焊接连接强度的影响,结构性能,如承载力、稳定性、疲劳性能、脆性等,受其质量好坏的影响,焊接连接的强度取决于焊接材料强度及其与母材的匹配、焊缝质量和缺陷、焊接工艺及其检查和控制,焊接对母材热影响区强度的影响等;焊条型号在注意焊条的药皮类型时必须与母材匹配。焊条的使用要符合《低合金钢焊条》(GB/T5118-1995)和《碳钢焊条》(GB/T5117-1995)规范。在使用前必须按质量证明书规定对焊剂、焊条和粉芯、焊丝进行烘熔;要提高焊工的专业素质和专业技能,必须经过考试合格,要求持证上岗;加强对焊缝表面裂纹、夹渣、弧坑、焊瘤、飞溅物和针状气孔等缺陷的改进和控制。气孔、咬边必须符合施工规范规定,按焊缝的设计级别对其进行严格检查;要保证焊波的均匀,就要对焊缝的外观进行质量检查,必须对明显处的飞溅物和焊渣清除彻底;按照《钢结构焊缝外形尺寸》(JB7949-1999)要求对焊缝尺寸进行控制,如果发现不合格的焊缝,需要定出修改工艺后再处理,要求同一部位的焊缝返修次数不允许超过2次以上。

(二)钢结构的安装

在钢结构安装时,吊点位置和起吊方法必须符合设计要求。吊点位置选择不当会造成构件局部较大的压力,从而可能导致影响局部失稳;临时支撑体系应符合施工组织设计的要求。由于其整体结构刚度较弱或并未形成一个设计要求的受力整体,因而需要设置一些临时支撑体系来维持构件或结构的整体稳定。若临时支撑体系不完善,不仅会使部分的构件丧失稳定性,还有可对整个结构造成倾覆或倒塌的严重后果;运输时要加强对较长构件的中间或构件单元的两端设置横隔,保证几何形状截面的稳定性否则极易丧失局部稳定性;必须矫正由于运输、吊装和堆放等造成的变形问题;要明确垫铁规格、位置,保持与基础接触面和柱底面平稳紧贴,保持点焊牢固;结构外观表面干净,结构大面无油污、焊疤和泥砂;要控制顶紧面紧贴高于70,边缘最大间隙低于0.8mm。与此同时,还应该加大对钢结构油漆质量控制,钢结构虽然环保但是其抗腐蚀性能力较差,腐蚀会减少钢结构杆件净截面面积,降低结构的可靠度和承载力,腐蚀形成的“锈坑”对钢结构的脆性破坏有很大的影响。尤其是抗冷脆性能下降。油漆、固化剂和稀释剂种类及质量必须符合设计要求。涂漆时钢材基层表面严禁有锈劈,并无焊渣、焊疤、尘灰、油污和水等杂质。无误涂、脱皮、漏漆、反锈。涂刷均匀,色泽一致,分色线清楚整齐,无皱皮和流坠。干膜厚度符合《钢结构高强螺栓连接的设计、施工及验收规程》(JGJ82-2011)规范要求和设计要求,在安装过程中加大对钢结构的质量控制是很有必要的。

(三)高强螺栓连接

高强螺栓连接强度也是影响结构承载力的重要因素,其主要影响因素为:螺栓及其附件材料的质量以及热处理效果,加强控制螺栓连接施工技术工艺,特别是对高强螺栓摩擦面的处理和预应力控制,螺栓孔引起被连接构件截面的削弱和应力集中;高强度螺栓的规格、形式和技术条件必须符合钢结构高强螺栓连接的能明确出《钢结构高强螺栓连接的设计、施工及验收规程》(JGJ82-2011)规范要求和设计要求。高强螺栓必须经试验确定扭矩系数或复检螺栓预拉力,合格后方准使用;连接面的摩擦系数必须符合设计要求。严禁表面有氧化铁皮、焊疤、毛刺、油污和油漆;高强螺栓必须分两次拧紧,初拧、终拧质量必须符合钢结构用高强螺栓的《钢结构高强螺栓连接的设计、施工及验收规程》(JGJ82-2011)规范要求;加强外观的控制,确保正面的螺栓穿入方向一致,外露长度不少于两扣。

(四)钢结构体系的设计

设计钢结构体系时,由于随机的变化会影响到最终的数值。通常随机影响到的处理问题主要是结构参数与随机荷载输入等范围。但是,在实际的工作过程当中,由于具体的结构参数的变化,会直接导致数值的巨大差异。因而,必须把随机参数方面的结构极值失稳与干扰型屈曲和跳跃型失稳三个方面的问题作为研究的重点。

结束语

钢结构要面临不断开发的新产品的竞争和挑战,这就需要经过自身不断的改革创新,使自身更具竞争力。目前,钢结构的设计取得了一定的成绩但是还有很多的问题存在,想要更好地发展,我们还要不断的对其进行开发研究,具体问题具体分析。在不断解决问题的同时满足市场的需求,凭先进的科学技术说话,我相信在不久的将来我们的钢结构设计一定会取得更大的成绩。

参考文献:

[1]王美言.浅谈工业钢结构设计[J].价值工程,2014,05:76-77.

[2]刘明亮,王超,赵亮.浅谈钢结构设计[J].科技致富向导,2011,20:213-214.

第15篇

关键词:轻钢结构,发展

 

“建筑是用石头写成的史书”在雨果先生生活的那个时代是没有疑问的,然而当今世界的史书恐怕没有多少是用石头写的。在几千年的人类历史中,建筑结构经历了木结构、砖石结构、钢筋水泥结构、钢混结构及钢结构。钢结构的出现,又将建筑业领向另一个高峰。钢结构已是发达国家主导建筑结构,以英国为例,其新建的非居住类房屋建筑中 90%的单层和 60%的多层建筑都采用轻钢结构。 九十年代国外的轻钢生产厂家将整套的结构体系推向我国市场加之我国钢产量的提高,极大地推动了轻钢结构在我国的发展。由于国外轻型钢结构体系研究、应用已经较为成熟,所以技术引进之后在我国发展很快。目前国内常用的轻钢结构承重体系包括:焊接门式刚架结构体系、冷弯薄壁型钢结构体系多层房屋钢结构体系、金属拱型波纹屋盖体系等。经过相关设计、生产、施工单位已经积累了一定的经验,轻钢结构在我国显示出非常广阔的应用前景。

1.轻钢结构概述

轻型钢结构是指这样一种结构:围护结构自重轻,承重结构截面小,标准化、自动化 、机械化快速制作安装,采用新结构钢材、新结构体系。它分为一般轻型和超轻型钢结构。论文参考。一般轻型钢结构主要采用薄钢板焊接截面或冷弯薄壁型钢构件,典型的结构体系为门式刚架 ,也可采用轧制型钢板截面。超轻型轻钢结构主要采用压型钢板,冷弯薄壁构件和圆钢为承重构件,典型的结构体系是褶皱拱桥屋面。轻钢结构主要体系有焊接(轧制)门式刚架结构体系、冷弯薄壁型钢结构体系、薄壁褶皱拱桥屋面体系、多层框架结构体系、空间和张拉结构体系。

2.轻钢结构的优势

2.1自重轻, 抗震性能好, 安全性高。轻钢结构采用高效轻型薄壁型材, 承载力高, 构件尺寸小, 围护结构采用自重小的轻质墙体和楼面材料, 一般可减轻建筑结构自重的30% , 质量是钢筋混凝土住宅的1/2 左右。轻钢结构整体刚度大, 钢材强度高、延性好, 因此抗震性能好, 用于结构抗震措施的费用少, 适用于地震多发区; 结构自重轻, 基础负担小还可大幅减少基础造价,尤其适用于地质条件较差的地区。

2.2建筑造型简洁美观, 内部空间布置灵活丰富。钢材强度高, 可以采用大空间柱网布置, 建筑设计不受结构限制, 这种住宅为建筑师的创维设计提供了无限想象空间。因此,轻钢结构住宅外形轻巧美观, 墙体与屋面色彩丰富, 屋顶造型别致, 尽显现代风格。室内大空间无梁无柱, 跨度可达12 m , 为业主提供了个性化分隔室内空间的可能。真正体现“以人为本”的设计理念; 同时, 墙柱等构件截面尺寸小, 可增加净使用面积5 %~8 % , 当考虑楼板的组合作用, 使用组合梁或扁梁时, 还可以增加净高, 实现大空间住宅设计理念。

2.3施工快捷、工期短, 不受季节限制。与传统住宅体系相比, 轻钢结构住宅至少可缩短1/3的工期。真正做到既快又经济, 因此最大限度地为业主节约了投资。

2.4防腐耐久, 舒适性好。轻钢墙体龙骨完全封闭在隔水层与石膏板之间, 不锈蚀, 不腐蚀, 不生霉菌, 防潮性能好; 墙体采用新型轻质围护材料, 不助燃, 不霉变, 不虫蛀; 装修一次到位, 少维修; 管线可暗埋在墙体及楼层结构中; 在保温、隔热、隔声等性能方面比传统结构的住宅好, 因此住宅的舒适性更好。

2.5绿色、环保, 符合国家可持续性发展的要求。轻钢结构住宅不使用粘土砖, 符合国家土地资源政策;施工过程中环境破坏及污染少, 符合国家环保政策; 而且大部分材料可回收和再生, 具有很高的可重复使用性和可循环性, 符合国家可持续发展战略。因此, 轻钢结构堪称绿色环保型建筑典范。

2.6设计技术先进。利用先进的计算机辅助设计(CAD) 和计算机辅助制造(CAM) 技术, 能全面按用户要求进行设计, 且效率高、报价快、造价低、供货迅速。

轻钢结构除了上述的优势,自身还具有强度高,自重轻,具有较好的塑性变形能力,抗震性能好等特点。加之随着经济与技术的发展,我国钢产量大大提高,而使其在建筑领域的应用越来越广泛。论文参考。国家对于钢结构“鼓励使用”的政策,也对轻钢结构在我国的推广起到了很好的促进作用。2003 年我国的钢产量已经超过 2 亿吨,居世界第一。同时,随着我国加入 WTO,建筑行业与国际接轨的速度加快。经济的快速发展,使得城市建设对于大跨、高层建筑的需求量大量增加。与混凝土结构相比,钢结构由于自重低、强度高、工业化程度高等优势,更适合于大跨、高层建筑。尤其是钢结构限制较少,建筑表现力强,给建筑师的发挥提供了广阔的空间。同时,钢结构在环保方面具有混凝土材料难以比拟的优势。在环保意识日益强化的现代社会,钢结构建筑成为必然的推广方向。

3.我国发展轻钢结构住宅的意义

轻钢结构是近十年来发展最快的领域,轻钢住宅的研究开发已在各地试点,是轻钢发展的一个重要方向,现已经有多种的低层、多层和高层的设计方案和实例。因其可做到大跨度、大空间,分隔使用灵活,而且施工速度快、抗震有利的特点,必将对我国传统的住宅结构模式产生较大冲击。而目前轻钢在我国应用最广的还是工业厂房。但与国外相比,我国钢结构建筑的发展相对滞后,目前我国建筑设计界普遍存在着对钢结构建筑认识不足,观念落后;对钢结构体系积极性不高,管理跟不上等问题。这些都阻碍着钢结构建筑在我国的发展。尽管目前还存在着种种不尽人意或有待提高的方面,但钢结构的发展潜力巨大,前景广阔。我国 20 年来的改革开放和经济发展,已经为钢结构体系的应用创造极为有利的发展环境。发展钢结构住宅,扩大钢结构住宅的市场占有率,将会加速住宅产业化进程,对我国建筑、冶金及相关产业的发展具有重大意义;经原国家经贸委批准,将“轻型钢结构住宅建筑通用体系的开发和应用” 作为我国建筑业用钢的突破口,并正式列为国家重点技术创新项目。可见,轻钢结构住宅产业在我国大有发展前途。

4.我国发展轻钢结构住宅的有利条件

4.1我国的钢材年产量已居世界第一位,可以充分保证建筑住宅市场的用钢需要。

4.2新型建材业正处于快速发育阶段,与轻钢住宅相配套的国产化建筑材料种类较多,并且会随着钢结构住宅的发展逐步增长。

4.3国际上已经有相当成熟的轻钢结构的建筑技术和经验可以借鉴。我国这方面的有关技术标准和规范也相继颁布,并且多个钢结构设计软件也已投入使用。论文参考。

4.4发展轻钢住宅符合全面建设小康住宅一二十年不落后,三四十年可改造的要求。

5.展望

随着钢结构春天的到来,今后10年钢结构的发展将会更快。为了使我国轻钢结构在新世纪经济领域中发挥更大作用,缩小和国外同行的差距,除了政府部门加强行业管理以外,科研、设计、施工单位和轻钢结构厂家要团结合作、共同促进我国轻钢结构事业的发展。只要加强领导,合理规划,积极组织,轻钢结构产业将会出现兴旺发展的新局面!

参考文献:

[1]刘承宗,周志勇.我国轻钢建筑及其发展问题探讨[J ] .工业建筑.2000 , 30 (4)

[2]候兆欣.大力推广应用钢结构新技术[J] .施工技术,2000(8):7-8.

[3]陶忠,何保康.发展我国新型轻钢结构建筑体系[J ] .中国工程科学, 2000 (3)

[4]张亦静.发展轻钢结构存在的问题与对策[J ] .株州工学院学报, 2001 (5)

[5]王元清,石永久.现代轻钢结构建筑及其在我国的应用[J ] .建筑结构学报, 2002 (1)

[6]王元清,石永久,陈宏等.现代轻钢结构建筑及其在我国的应用[J] .建筑报,2002,23(1):2-8

精品推荐