前言:我们精心挑选了数篇优质细胞生物学论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
RT-PCR检测耐药相关基因MDR1、BCL2L1、LRP、PRKCA的表达取对数生长期细胞,TRIzol试剂提取细胞总RNA,反转录试剂盒合成cDNA,SYBYGreen方法进行实时荧光定量PCR实验。引物设计由Invitrogen公司合成,见表1。PCR反应体系:cDNA1μl,2×SYBRGreenPCRMastermix12μl,引物F/R(上下游引物的终浓度各为15pmol/μl)各0.3μl,DEPC水11.4μl,共25μl。PCR循环设置:50℃2min95℃10min(95℃15s60℃1min)×40个循环(生成扩增曲线)95℃15s60℃15s95℃15s(生成溶解曲线)。SDS2.2软件分析处理数据,管家基因校正目的基因的表达,得到相对定量结果。1.6耐药细胞的保存耐药细胞SKOV3/TAX30分别冻存于含0、10、30nmol/L紫杉醇药物的冻存液里。于冻存后1、3、6月分别复苏细胞,观察复苏情况,MTT法检测IC50。1.7统计学方法对有关数据采用SPSS13.0软件进行独立样本t检验(independentsamplet-test)、单因素方差分析(OnewayANOVA),P<0.05为差异有统计学意义。
2、结果
2.1耐药细胞的建立
SKOV3经300μg/ml大剂量的紫杉醇作用2h后,大部分细胞死亡漂浮,剩余细胞肿胀,伸出树枝状突起呈蜘蛛状,胞质见空泡形成、颗粒增多。少量存活的细胞克隆生长,恢复生长至对数期消化传代,再进行下一次冲击;SKOV3经10~30nmol/L小剂量的紫杉醇作用24h,约50%的细胞死亡,细胞体积增大,形态不规则,胞质内颗粒增多,贴壁性变弱,给药24~72h内最明显,96~120h后逐渐恢复原状。经两种诱导方法获得的耐药细胞系,分别命名为SKOV3/TAX300和SKOV3/TAX30。
2.2耐药细胞的生物特性
2.2.1耐药指数MTT实验结果显示,耐药细胞及其敏感细胞的IC50值及耐药指数,可见小剂量浓度递增诱导的耐药细胞SKOV3/TAX30耐药性较强,见表2。2.2.2平板克隆形成实验在无药物作用时,SKOV3敏感细胞较两种耐药细胞系的克隆形成能力强,见图1A的d组,SKOV3敏感细胞的克隆形成数为(934±16.37),SKOV3/TAX300的克隆形成数为(440±13.75),SKOV3/TAX30的克隆形成数为(579±9.50)。与敏感细胞SKOV3相比,两种耐药细胞克隆形成数少,差异有统计学意义(P均=0.000),见图1B。而在相同浓度紫杉醇作用下,耐药细胞形成的克隆明显多于敏感细胞。在紫杉醇浓度为5nM时,SKOV3/TAX30可形成(1206±9.50)个克隆,SKOV3/TAX300可形成(870±32.30)个克隆,而SKOV3形成的克隆数仅(202±6.08),差异有统计学意义(P均=0.000);当紫杉醇浓度进一步升高为50nM和500nM时,SKOV3/TAX30和SKOV3/TAX300形成的克隆数仍明显高于敏感细胞SKOV3。紫杉醇浓度为50nM时,SKOV3细胞与SKOV3/TAX300细胞形成的克隆数相比,差异有统计学意义(P=0.013),SKOV3细胞与SKOV3/TAX30细胞形成的克隆数相比,差异也有统计学意义(P=0.000);紫杉醇浓度为500nmol/L时,SKOV3细胞与SKOV3/TAX300和SKOV3/TAX30细胞形成的克隆数相比,差异有统计学意义(P=0.009、0.0001),见图1B。2.2.3生长曲线倍增时间的差异SKOV3敏感细胞和两种耐药细胞系在相同条件下培养7天,细胞增殖产生一定的差异。耐药细胞的生长较敏感细胞减慢,生长曲线的斜率减小,见图2。同时,根据生长曲线计算出SKOV3/TAX300和SKOV3/TAX30细胞的倍增时间分别为28.90h、24.0h,与敏感细胞的倍增时间20.84h相比也有所延长。
2.3耐药相关基因
MDR1、BCL2L1、LRP、PRKCA在各细胞中的表达MDR1、BCL2L1、LRP、PRKCAmRNA在SKOV3、SKOV3/TAX300和SKOV3/TAX30细胞中的相对表达丰度见图3A、3B。两种耐药细胞中,MDR1的表达明显增高,提示SKOV3/TAX300、SKOV3/TAX30对紫杉醇的耐药与MDR1高表达有关。SKOV3/TAX300细胞中PRKCA、LRP的表达均高于SKOV3细胞,差异有统计学意义(P=0.016,P=0.005),BCL2L1的表达与敏感细胞比较,差异无统计学意义(P=0.815)。而SKOV3/TAX30细胞的PRKCA、LRP的表达与敏感细胞比较差异无统计学意义(P=0.154,P=0.206)。BCL2L1的表达低于敏感细胞(P=0.001),见图3B。以上数据表明不同诱导方式导致耐药细胞发生不同生物学变化,可能存在不同的耐药机制。
2.4耐药细胞的保存
耐药细胞SKOV3/TAX30分别冻存在含有0、10、30nM紫杉醇的冻存液中,于冻存后1、3、6月复苏,检测IC50,见表3。1、3月后检测结果提示,在3种药物浓度条件下的细胞IC50没有明显区别,但冻存6月后,无药冻存组的耐药细胞与两种加药冻存组的细胞比较,其IC50明显下降,差异有统计学意义(P<0.01)。同一个药物浓度条件下,无药冻存组的耐药细胞在冻存6月时,出现耐药性下降,而两种加药冻存组细胞在6月的冻存过程中,细胞IC50虽然出现轻度下降,但差异无统计学意义。
3、讨论
3.1耐药细胞的建立
本实验结果提示:增加给药剂量、适当延长无药间歇期,可能延缓细胞的耐药性。由于大剂量冲击诱导与临床治疗模式相似,临床上体内耐药指数≥2倍即足以导致化疗失败[5],因此大剂量冲击诱导产生的耐药细胞虽然耐药指数较低,也是模拟临床耐药的良好模型。
3.2耐药细胞的特性
本研究的结果表明:在无药物作用时,SKOV3细胞的集落形成能力强于两种耐药细胞SKOV3/TAX300和SKOV3/TAX30,但在不同浓度紫杉醇药物条件下,耐药性最强的SKOV3/TAX30集落形成能力也最强,而敏感细胞SKOV3的集落形成能力最弱,此结果与MTT法检测的耐药性一致。紫杉醇的作用机制是促进微管蛋白二聚体装配成微管,抑制纺锤体形成,将细胞阻断于G2/M期,细胞的有丝分裂异常或停止,使多核细胞的形成增多[6]。诱导的过程中耐药细胞膨胀、形态不规则、细胞体积的增大可能与细胞群体中多核细胞的增多有关。本研究的生长曲线实验中,SKOV3/TAX300和SKOV3/TAX30的倍增时间分别为28.9、24.0h,与敏感细胞SKOV3的倍增时间20.84h相比有明显延长,显示耐紫杉醇的卵巢癌细胞生长速度减慢。细胞周期的阻滞,除导致一些细胞周期特异性药物失效外,肿瘤细胞处于相对静止状态,易对化疗药物产生耐受。
3.3耐药相关基因的检测
卵巢癌紫杉醇耐药机制的研究中,多药耐药(multidrugresistance,MDR)一直是热点。多药耐药是指对一种药物具有耐药性的同时,也对其他结构和作用机制完全不同的化疗药物产生交叉耐受的一种现象。多药耐药的产生是一个多因素的过程,主要包括:(1)细胞内有效药物浓度的降低;(2)细胞内药物活性的改变;(3)凋亡的抑制;(4)肿瘤细胞微环境改变化疗敏感度。P-gp是多药耐药基因MDR1编码的相对分子质量为17kD的一种跨膜糖蛋白,其功能是使细胞内药物浓度降低,药物的作用减弱或丧失,细胞由此获得耐药性。与大多数其他化疗药物的多药耐药机制相似,紫杉醇作为P-gp的作用底物之一,其耐药机制与MDR1基因扩增导致的P-gP高表达密切相关[7-8]。肺耐药相关蛋白LRP是在多药耐药的肺癌细胞株中发现的与MDR相关的非糖蛋白,相对分子质量为110kD,能阻止药物通过核孔进入细胞核,避免其作用于核内靶点,药物运送到胞质的囊泡中,再通过胞吐作用将药物排出体外,从而发生紫杉类药物耐药[9-10]。凋亡抑制基因也参于紫杉醇耐药。BCL2L1基因,全称为BCL-2样1基因(BCL-2-like1),编码蛋白属于BCL-2蛋白家族,BCL-2蛋白家族通过抑制肿瘤细胞凋亡,导致耐药性[11-12]。PRKCA基因为蛋白激酶Cα(proteinkinaseCalpha),也被称为PKCA、PRKACA、KPCA、AAG6。细胞过度增殖和抗细胞凋亡机制障碍都可导致肿瘤进展和耐药现象发生[13]。另外PKC的作用是使底物蛋白磷酸化而活化,p-gp是PKC的作用底物,当其表达增加或活性增强时,可使大量的P-gp磷酸化而活化,从而产生耐药性。本研究结果提示。SKOV3/TAX300细胞PRKCA、LRP的表达均略高于敏感细胞。但SKOV3/TAX30细胞的PRKCA、LRP的表达与敏感细胞比较差异无统计学意义。BCL2L1在SKOV3/TAX30细胞的表达低于敏感细胞,但SKOV3/TAX300细胞中BCL2L1的表达略高于敏感细胞,结果提示不同方式诱导的耐药细胞,可能存在不同的耐药机制。
3.4耐药细胞的保存
1.1组织块贴壁法分离培养hUC-MSCs脐带取自正常分娩的新生儿(征得其父母同意)。首先用含双抗的磷酸盐缓冲液(PBS)浸洗脐带3次,去除杂物;用无菌的手术剪刀将脐带剪成3~4cm的节段,再沿长度方向剪开,以暴露脐带胶质部分,去除血管;置于含双抗的PBS中清洗3次,去除血污,再剪成约0.5cm3的组织块,以胶质部分贴于基底平铺于24孔板中,每孔2~3块,置于37℃、体积分数5%CO2培养箱孵育1~2h;待组织块自然粘附于皿底部后加入含双抗、FBS的低糖DMEM培养基,继续置于培养箱内培养,每3d更换一次培养基,待观察到有小三角形或梭形细胞从组织中铺展出时,取出组织块。整个分离过程注意无菌操作。待细胞生长至70%~80%汇合时,即可传代。利用倒置相差显微镜观察细胞形态。取第5代细胞,采用细胞免疫荧光技术鉴定hUC-MSCs的表面标记物CD44。
1.2肝细胞标志基因的检测按照总RNA提取试剂盒的操作说明分别提取hUC-MSCs和人肝癌细胞HepG2的总RNA,用RNase-FreeDNaseⅠ去除基因组,最后检测RNA的浓度和纯度,立即进行反转录合成cDNA或保存于-80℃备用。采用Prime-ScriptTMⅡHighFidelityRT-PCR试剂盒反转录2μgRNA得cDNA,取2μL用于PCR。根据GenBank提供的人肝细胞标志基因序列,使用PrimerPremier5.0软件设计引物,引物序列和产物大小见表1。GAPDH为内参对照。PCR反应条件:94℃预变性5min;94℃变性30s,56℃退火45s,72℃延伸30s,30个循环;最后72℃延伸5min。PCR产物用20g/L的琼脂糖凝胶电泳,在凝胶分析系统下拍照。
1.3PAS糖原染色按照PAS染色试剂盒的说明书操作,对第5代hUC-MSCs和HepG2进行糖原染色,在倒置相差显微镜下观察并照相。
2结果
2.1hUC-MSCs的分离、培养、传代及鉴定组织块贴壁培养3~4d时,可观察到组织块间隙铺展出小三角形或长梭形的细胞,继续培养至7d左右,可观察到局部细胞呈集落生长,此时,在无菌条件下取出组织块,更换新鲜培养基,继续培养1周左右,细胞可达80%~90%汇合,即可传代。用胰酶/EDTA消化后细胞呈亮而圆的单个分散状,以1∶3的比例进行传代,约4h贴壁,2d后迅速生长。倒置相差显微镜下可观察到细胞较大,轮廓清楚,内部有清晰的应力纤维,多为突起的纺锤形或星形的扁平状结构,细胞核呈规则的卵圆形,核仁大而明显,呈典型的成纤维细胞样形态(图1A);持续培养大约2周时,细胞基本达到完全汇合,形态发生一定的变化,胞质变得狭窄,内部的应力纤维也不明显,呈平行排列或漩涡生长(图1B)。连续多次传代,细胞保持稳定的、相对均一的成纤维细胞样形态以及较强的增殖能力。经鉴定分离培养的细胞CD44呈阳性表达,且具有良好的均质性。
2.2肝细胞标志基因的表达以HepG2作为阳性对照,用RT-PCR检测hUC-MSCs的肝细胞标志基因的表达情况,结果见图2,hUC-MSCs表达ALB、CK18、G6P、GLUL和MET,不表达TAT。
2.3PAS糖原染色结果对hUC-MSCs和HepG2进行PAS糖原染色,染色结果显示两种细胞的细胞质中均有紫色颗粒物形成,即均呈糖原阳性反应(图3)。
3讨论
MSCs能分泌多种细胞因子和生长因子,具有直接或间接的抗炎及抗纤维化作用,可抑制肝细胞的死亡和纤维化;还可通过其分泌物抑制肝细胞的凋亡、刺激肝细胞再生、为受损肝细胞提供营养支持等。MSCs还具有低免疫原性及免疫抑制力,适用于进行同种异体移植,在移植后可迁移、归巢至受损的组织,发挥治疗作用。因此,MSCs在肝脏疾病的细胞移植治疗中具有广阔的应用前景。研究发现,相较不同来源的MSCs,脐带来源的MSCs不仅具有干细胞的特性,而且来源丰富、取材方便、增殖能力较强、无伦理法律限制,还具有较低的免疫原性和分化程度,从而成为一个非常有吸引力的移植治疗肝病的细胞来源。
作者采用组织块贴壁培养法从脐带基质中分离获得hUC-MSCs,与酶消化法和流式细胞仪或免疫磁珠分选法相比,该分离方法操作简单,消耗低,易于控制。分离培养的hUC-MSCs呈典型的成纤维细胞样形态,具有MSCs的表型特征,均质性良好,且在体外长期培养中能保持稳定状态。进一步的RT-PCR结果显示,培养的hUC-MSCs同时表达成熟肝细胞的标志基因ALB、CK18、G6P、GLUL和MET,而不表达TAT,与Campard等的研究结果一致,提示hUC-MSCs可能具有肝细胞的一些相关功能,如合成白蛋白、合成糖原及解毒功能等;PAS糖原染色结果则证明hUC-MSCs具有糖原合成和储存能力。
经济的迅猛发展带动科技的日新月异,网络技术与通信技术发展迅速,微信、微博等交流媒介成为大众知识共享的传播平台,而微课作为教学中的创新也备受关注,作为对传统教学模式的颠覆,其更注重教学效率的提升与教学质量的理想化。伴随移动学习时代的到来,微课使得当前学校教育及社会教育都发生了显著的变化。但是我们应该看到,时代催生的网络视频也带有某种弊端性,难以真实有效地满足各个层面的学习需求[1]。焦建利教授提出:传统的课堂实录视频资源已经难以实现互联网时代人们注意力模式的匹配,因此传统的教学方式也很难满足师生教与学的需求。
加上网速及宽带的硬性限制,教学资源周转率低,优秀教育教学资源被无形浪费。基于这样的背景,微课诞生,吸取了传统教学视频的弊端教训,更注重主题的突出明确,更具有针对性与服务性,在内容设置上也趋于短小精悍,实现了自由补充与延伸[2]。对于生物细胞学科教学来说,实验是教学的关键,在教学中发挥着重要的作用。不可否认的是生物学作为生命科学的前沿学科之一,无论是实验技术方法还是理论知识阐述都实现了深度的提升与广度的延伸,逐渐实现与遗传学、分子生物学及发育生物学的学科融合,逐渐在生命科学研究领域占据主导[3]。因此,实现微课与细胞生物学实验教学的结合,对学生创新能力与独立思考能力的培养逐渐成为生物实验教学关注的焦点,成为细胞生物学实验教学改革的要务。
一、微课简述
1.微课的起源。微课最早由美国爱荷华大学LeRoy A. McGrew教授提出,初衷是针对化学课程总结的60秒概述,设置了三大主体部分,分别为总体介绍、解释说明及举例分析。后来英国学者T.P.Kee在此基础上提出了一分钟演讲,所谓的一分钟演讲就是突出演讲的精练传神,要求具有缜密的逻辑结构及真实生动的案例阐述。在经过上述两个阶段的发展后,微课由美国新墨西哥州圣湖安学院大卫.m.彭罗斯提出并创建实施。其包括15到30秒的介绍及结论,服务与上文的关键概念导引。然后录制上述内容并限制时间为3分钟内,在微课程指引下提出书面作业要求,学会借助课外阅读或者实践活动完成关键知识的学习。目前最具代表性的当属Educause的微课理念,不是指微观学习中的微内容,而是以建构主义学习理论为支撑的在线教学或格式化教学中的教学实际。
2.我国微课发展现状。我国微课依然是新兴事物,起步晚,发展相对缓慢,目前涉及领域也有部分处于空白。基于微课的发展现状,当前学术界也未就微课理念达成共识。学者焦建利[4]认为,微课是对某一知识点的集中阐释,主要特点就是短小精悍,在线教学视频是其主要表现形式。学者祝智庭[5]则认为微课应该就某个教学主题展开延伸,组织精细化的课堂教学设计,时间限度最好控制在10分钟以内。而学者胡铁生[6]则认为微课程注重的是视频的微小,因此在针对单一学科或者单一知识点组织教学时应注重教学情景的融入,突出在线学习与自由学习。这一概念也逐渐被大众所认可。资源建设方面,我国微课也尚未成型,目前的应用研究还相对零散,评价模式也有待完善。实现微课程的规范化发展还有很长的路要走。
二、细胞生物学实验教学存在的问题
1.内容更新缓慢,亟待加强。我国的细胞生物学实验教学一直处于教学滞后阶段,仅仅作为理论教学的补充或者教学附属而开设,缺乏关注上必然影响教学的创新与跟进,加上该实验教学项目单一化趋势严重,时代气息不足,技术手段及知识的综合运用十分缺乏,内容更新十分滞后。
2.教学方式单一化,学生自主性不足。细胞生物学实验的基本流程就是提前由教师准备好实验材料、实验仪器及实验试剂,学生在教师的示范引导下按部就班地进行实验操作,整个操作过程趋于程式化、简单化。学生不仅无法在实验准备阶段有所参与,更挫伤了学生创新与研究的积极性。
3.教学方法贫乏,缺乏对学生创新能力培养的关注。传统的细胞生物学实验教学受有限的教学时间的限制,因此实验内容与要求也大多提前限定,教师单纯地演示讲解,学生被动地参与学习,双方互动交流不足,教师也无法引导学生进行实验的创新。
4.教学技术陈旧,现代教育技术参与较少。细胞生物学作为生物教学的前沿学科,理应注重教学的创新,特别是积极加入现代教育技术的创新元素,以信息技术为核心推动实验教学。但是我国细胞生物学的教学现状却是现代教育技术十分欠缺,传统实验教学维度单一化趋势严重。
三、微课在细胞生物学实验中如何应用
1.微课的特性和优势,传统多媒体教学的弊端:伴随多媒体技术的迅猛发展及教学融入,部分教师开始尝试运用多媒体辅助教学,但是当代大学生自由散漫的个性也成为多媒体辅助教学实施的制约因素,学生难以集中精力听取教师讲课,精品的视频资源难以得到高效率的运用。应用于课后学习的视频资料也难以受到学生的关注与重视,多数处于闲置。微课则突破了视频教学的局限,具有普通视频教学资源不具备的教学优势。首先,其教学内容浓缩,教学时间较短,借助移动端操作更为便捷,学生学习积极性显著提升。其次,其教学主题十分明确,学生能够迅速找到自己感兴趣的点,从而获得启发教育或者延伸学习。最后,微课视频的教学容量相对较小,符合学生的接受能力,学生更积极主动地参与到微课学习中去。
2.细胞生物学微课设计,把握10分钟原则:注意力10分钟。10分钟内有明确的教学目标,内容短小,集中说明一个问题的小课程。微课设计ADDIE模型:A,分析;D,设计;D制作;I应用;E,评价。通常来说,微课设计要想保证自身的完整性必须具备6个基本环节,分别为教学主题的明确、前段分析、微课基础知识点的切割与划分、微课资源要素的重点设计、微课视频录制及后期加工处理、微课的最终终端输出与展现。6个环节紧紧相扣,推动微课的高效开展。
四、微课引入实验教学的意义与应用前景
微课具有广阔的教育应用前景。2011年,手机将取代个人电脑成为个人信息中心。学生自带设备BYOD,包括个人电脑、手机、上网本、平板等越来越普遍化。这为微课的实施提供了必备的硬件前提。调查中发现,84.44%的被调查者认可微视频在微课教学中的核心地位与作用,并且70%以上的人认为配套的教学设计与课件也是不可忽视的部分。纵观当前的教育改革,多数一线教师已经充分认识到微课教学的魅力与优势,开始在课堂教学中尝试微课教学。其中范福兰等人在基于交互式微视频教学资源教学应用效果的调查显示,70.5%的学生认为交互式微视频资源能够激发他们对课程学习的兴趣,单一的图文及音视频资源则受关注度一般,这也从侧面说明随着流媒体技术的发展成熟,微视频的教学前景将是广阔而光明的。
五、一些值得思考的问题
1.有关微课适用性,微课程在全国范围内展开,带来教学思想、教学模式的重大转变,各个领域、各种培训、不同学科对于微课程应用的尝试存在“泛用”、“滥用”现象。微课程适用于哪些领域、哪些课程、哪些内容以及荧光怎样设计、怎样制作、怎样使用才是最科学合理的成为今后科学研究的新课题。
2.细胞生物学实验微课应用存在问题,我国针对该专业的微课理论研究及实践演练依然不足,多数高校在微课开展实施的过程中存在建多用少的资源浪费现象。因此必须将微课作为校本研修资源,对其加强引导宣传,让教师认可微视频教学的优势并拓展专业发展的新途径。此外微课程应奠定创新型教学模式的资源基础,以期为学生提供更实用的教学资源,做好教学辅助。当然微课作为新兴教学理念,应该在移动学习与泛在学习的基础上实现教学需求与教学实践的同步发展,最大限度提升微课程的开展利用率。
六、总结
微课作为新兴的教学模式理应受到关注,了解微课的本质内涵,在梳理其优势与缺陷基础上综合当前的运用实际,科学预测并规划后期发展,实现微课在设计开发与应用上的创新完善。本文就微课教学的几点问题进行了归纳分析,以期为微课教学的拓展应用提供有效思路,让微课的魅力更多地展现出来,服务于高校教学。