前言:我们精心挑选了数篇优质输电技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
1.1氧气:中性介质中金属腐蚀主要为氧的去极化过程。
没有氧气,金属的大气腐蚀不会发生。有资料证明,镀锌的铁钉泡在脱氧的海水中几十年仍保持光泽。金属表面上吸附的水膜相当薄,大气中的氧易溶于其中并扩散到金属表面阴极区,使氧的进极化过程进行甚为顺利,故氧在大气对金属腐蚀中常起着主要作用。
1.2温度:输电线路铁塔在大气腐蚀中,当相对湿度处于临界面状态以上时,反应速度才随温度的提高而增加。
每当温度提高10℃,腐蚀速度增加一倍。如果温度急降时,相对湿度大大增加,甚至产生凝露,就会促进腐蚀。例如在昼夜温差大的地区或季节,环境温度大幅度下降,金属表面就很容易凝结水膜而锈蚀。
1.3大气中污染物:大气中除了水汽和空气以外,还含有各种各样的污染杂质,并且因地区而异。
气体杂质如:SO2、氮的氧化物、CO2、HCl等。海洋大气中包括有含盐分的粒子。在工业地区,固体的尘埃每月每平方公里上落降数量达数十吨之多。这些尘埃包括有腐蚀性的与非腐蚀性的,有促进腐蚀作用的各种粒子。
2输电设备防腐的由来
镀锌角铁塔是输电线路常用铁件材料,已有相当长的历史应用。另外其它镀锌件也在逐渐扩大应用范围,如钢管杆、钢管组合塔、镀锌横担、金具、镀锌灯杆等。一般镀锌件表面在涂装前,施工单位一般要做一下擦净油污的简单表面清洁、除锈工作后就涂以普通的油漆,如醇酸磁漆,油性红丹漆等,这样的涂装效果就很差,使用不久后就发生脱落。许多应用部门并未了解镀锌件表面漆膜剥落的原因,往往认为是油漆质量不高,而不知是选择涂料和涂装工艺不当所引起。油脂类涂料或醇酸涂料均含有干性油,含许多双健,在钴、锰皂等催化下迅速氧化而干燥成膜,但它们成膜后氧化作用并不停止,还在缓慢地进行。由于氧化作用,会产生许多副产品物醛和羧酸,包括蚁酸。这类酸能与锌元素起反应,生成如蚁酸锌的盐类,具有一定的水溶性,而使体积膨胀许多倍,这样就造成涂膜的附着力下降,结果是涂膜的大片剥落。
3输电设备防腐方案的设计关键
3.1材料的选择
正确地选择防腐材料对于输电线路的防腐蚀是非常重要的一个环节,由于广东地区多数是潮湿海洋性气候,所以只有选择耐潮耐碱、耐酸及抗击紫外线曝晒的涂料,才能使设备得到有效的保护。
3.2防腐蚀结构涂层的设计
涂层的结构形式对输电线路因化工大气、酸、碱、引起的大面积腐蚀、缝隙腐蚀等关系很大。应根椐设备所处实际环境状况及结合涂料的准确数据来制定涂层的结构,目前比较流行的主要采用3~4层,由面漆、中间漆和底漆组成。常用的底漆包括红丹防锈底漆、环氧富锌防锈底漆;常用的中间漆包括J6502铝铁氯化橡胶中间防锈中间漆、环氧云铁防锈中间漆;常用的面漆包括醇酸磁漆、氯化橡胶面磁漆、丙稀酸面磁漆。针对高压输电线路所处的地理位置和气候情况,杆塔的防腐工作必须要多道涂层才能满足防腐蚀的要求,并且底漆、中间漆、面漆设计要根椐周边环境的工业及污染状况而定。
4现场的对比分析
根据以往的施工经验,我们选择设计了三种不同的防腐方案,于2004年9月份分别在110kV碧开线和碧开线文冲支(同塔双回路)上进行了实验对比:方案A——底漆:红丹防锈底漆两遍;面漆:醇酸磁漆面漆两遍。用于110kV碧开线#01~#04铁塔防腐。方案B——底漆:环氧富锌防锈底漆一遍;中间漆:J6502铝铁氯化橡胶中间防锈中间漆一遍;面漆:氯化橡胶面磁漆两遍。用于110kV文冲支线#01~#05铁塔防腐。方案C——底漆:环氧富锌防锈底漆一遍;中间漆:环氧云铁防锈中间漆一遍;面漆:丙稀酸面磁漆两遍。用于110kV文冲支线#06~#09铁塔防腐。
4.1方案A
4.1.1红丹防锈底漆的技术特点红丹:又名铅丹,分子式Pb3O4,含有2%~15%的PbO。红丹应用历史悠久,从19世纪中叶起就一直作为缓蚀材料使用,至今仍未衰败。它和亚麻油配制的油性底漆具有良好的防锈性能,对于被涂装的铁塔金属表面处理要求不高,涂在铁塔带锈带油状态下的表面仍有很好的防锈效果。(1)红丹防锈底漆的优点①红丹防锈漆主要是靠晶格离子的交换作用在阳极区和阴极区均起缓蚀作用。红丹防锈漆在阴极区的作用是能破坏新生的过氧化氢,抑制钢铁表面不再氧化。红丹在水和氧的存在下,能与油性漆料生成铅皂,进一步分解成短链产物后,具有很好的缓蚀作用。②红丹具有很高的氧化能力,在与钢铁表面接触时,能使表面氧化成Fe3O4的均匀薄膜,使钢铁表面钝化而防腐。(2)红丹防锈底漆的缺点①油漆的毒性和对环境的污染。红丹防锈漆含有大量的铅化物,不仅在油漆生产和施工中会引起工作人员的慢性铅中毒,而且在去除旧红丹漆膜时会造成环境严重的污染。②红丹防锈漆的油性基料耐碱性差,不耐盐雾、海水的浸渍或化学品溅滴。而且漆膜交联度低,不耐酮类、酯类、芳烃等强溶剂,红丹防锈底漆只能配套醇酸面漆涂料,不可与强溶剂的环氧、聚氨酯等涂料配套,以免咬起,故红丹防锈底漆只能适宜于城乡的普通钢结构、江河的桥梁等,不宜适用于海洋环境、化工厂的镀锌钢结构上。③由于红丹防锈漆含有铅类重金属,不可用于铝、镁、镀锌的输电铁塔等轻型金属表面上,以免引起电偶腐蚀。4.1.2醇酸磁面漆的技术特点醇酸磁面漆是以醇酸树脂以多元醇和多元酸的酯为主链,以脂肪酸为侧链构成的。醇酸脂中含植物油的百分数不同而分为短油度(45%以下)、中油度(46%~60%)和长油度(61%)。醇酸磁漆价格便宜,原料宜得,在国内涂料总产量中约占25%~30%。自干醇酸涂料品种众多,应用面广泛。有代表性的户外醇酸品种有CO4-42各色醇酸磁漆,CO4-53醇酸防锈底漆。其中用于输、变电设备的醇酸磁漆耐久性只能达到3年左右,抗紫外线、抗酸雨能力较差。4.1.3应用与效果2007年10月对110kV碧开线#01~#04段进行检查、检测发现漆面颜色变淡,失去光泽,小部分脱落,漆面硬度变软,有部分经摩擦起粉状,防腐功能明显降低,综上所述,方案A的防锈周期是三年左右。
4.2方案B
4.2.1环氧富锌的特点它是用环氧树脂、超细锌粉、填料和混合有机溶剂制成组分一,使用时按比例加入组分二,使用时按比例混匀。在被涂金属表面不能完全清除锈蚀后,不能做到完全渗入表面的不规则部位时,采用环氧富锌防锈底漆能提供优良渗透及保护性能。锌做为一种牺牲金属,保护了钢铁不受腐蚀。4.2.2J6502铝铁氯化橡胶中间防锈漆的特点它是由氯化橡胶加入氧化铁红等颜料经研磨后加入铝银浆、助剂及有机溶剂调制而成。漆膜干燥快、耐水、防潮,具有良好的防腐性和防锈性。4.2.3氯化橡胶磁面磁漆的特点它是由天然橡胶或合成的异戊橡胶降解后氯化而得,呈白色粉末。氯化橡胶磁面磁漆有优良的耐水性、耐候性,在防腐及其它方面得到了广泛应用。由于制造过程中需要大量四氯化碳,产生大量四氯化碳蒸汽,带来污染问题,有致癌的报道,处于不发展状态。国外采用其它氯化烯烃树脂代替氯化橡胶。4.2.4应用与效果2007年10月对110kV文冲支线#01~#05段进行检查、检测发现漆面颜色光亮,未发现脱落现象,漆面硬度正常,经摩擦不会起粉状,防腐功能完好。2009年9月又对110kV文冲支线#01~#05段进行检查、检测发现漆面颜色变淡,失去光泽,小部分脱落,漆面硬度变软,有部分经摩擦起粉状,防腐功能明显降低,综上所述,方案B的防锈周期是五年。
4.3方案C
4.3.1环氧富锌防锈底漆的特点它是以环氧树脂、超细锌粉、填料和混合有机溶剂制成组分一,使用时按比例加入组分二,使用时按比例混匀。在被涂金属表面不能完全清除锈蚀后,不能做到完全渗入表面的不规则部位时,采用环氧富锌防锈底漆能提供优良渗透及保护性能。锌做为一种牺牲金属,保护了钢铁不受腐蚀。4.3.2环氧云铁防锈中间漆的特点它是以环氧树脂、云母氧化铁粉、防锈颜料、有机溶剂调制为甲组分,由聚酰胺树脂液组成乙组分。云母氧化铁简称云铁。它的主要成分是a-Fe2O3,一种特殊形状的赤铁矿,呈薄片状的结晶体。它的耐碱性好,但对酸较为敏感,颜料很容易为所有的涂料基料和溶剂所润湿,且水溶性很低。4.3.3丙稀酸面磁漆的特点它是以(甲基)丙烯酸及苯乙烯为主的含双健的单体,在一定条件下通过自由基聚合的高聚物。该涂料具有极高的装饰性、突出优点是耐候性好,在长期暴晒下,涂层保光、保色性好,在航空航天器材、汽车工业、户外输、变电设备等方面得到广泛应用。国内定型产品有B04-11各色丙稀酸磁漆(自干)、B04各色丙稀酸烘干磁漆。4.3.4应用与效果2007年10月对110kV文冲支线#06~#09段进行检查、检测发现漆面颜色光亮,未发现脱落现象,漆面硬度正常,经摩擦不会起粉状,防腐功能完好。2009年9月第二次对110kV文冲支线#06~#09段进行检查、检测发现漆面颜色稍为变淡,未发现脱落现象,漆面硬度正常,漆面经摩擦不会起粉状,防腐功能完好,2012年9月份第三次对110kV文冲支线#06~#09段进行检查、检测发现漆面颜色变淡,未发现脱落现象,有小部分漆面澎胀,漆面硬度正常,漆面经摩擦不会起粉状,对环境污染影响较少,防腐功能开始下降,综合上述,方案C的防锈周期达八年以上。
5选择涂料的实用性和经济性
正确的选择材料对于输电线路的杆塔防腐是非常重要的一环,在选择涂每条输电线路之前,都要确定使用该涂料的预定寿命。通过对材料组成、使用检测情况、经济指标等一系列的分析比较,丙稀酸是一种防腐性能优异、保色、保光性能良好的环保型涂料,有效耐用时间已证实了这方面的性能优势,虽然比普通涂料昂贵一些,但有效地减少设备的维护周期。它一次性投资相比普通涂料高,但保护设备耐蚀时间最长,是氯化橡胶磁漆的2倍,是普通涂料的3倍。防腐工程成本,环氧丙稀酸漆每吨塔材的防腐成本是普通醇酸磁漆1.6倍,是氯化橡胶磁漆1.2倍。
6结语
1.1直流输电系统构成
糯扎渡直流输电系统的构成主要由整流站(普洱换流站)、逆变站(江门换流站)和直流输电线路构成,江门换流站在糯扎渡工程中必要时也可作为整流站向云南普洱换流站送电,实现功率反送。直流输电工程有双极方式、单极大地回线方式、单极金属回线方式、单极双导线并联大地回线方式等多种运行方式,糯扎渡直流工程采用双极(正极和负极)两端中性点接地方式,利用正负两极导线和两端换流站的正负两极相连,构成直流侧闭环回路。两端接地极所形成的大地回路,可作为输电系统的备用导线,正常运行时,直流电流的路径为正负两根极线。正负两极在地回路中的电流方向相反,地中的电流为两极电流的差值。两极中的任一极均能构成一个独立的运行单极输电系统(如糯扎渡工程2013年9月3日投运的极2阀组2系统)。
1.212脉动换流器
江门换流站采用的12脉动换流器是由两个6脉动换流器在直流侧串联而成,其交流侧通过换流变压器的网侧绕组并联。换流变压器的阀侧绕组一个为星形接线,另一个为三角形接线,从而使得两个6脉动换流阀的交流侧得到相位相差30°的换相电源。12脉动换流器由V1-V12共12个换流阀组成,在每一个工频周期内有12个换流阀轮流导通,它需要12个与交流系统同步的间距为30°的按序触发脉冲。12脉冲换流器的优点之一就是其直流电压的质量好,所含谐波成分少。其直流电压为两个换相电压相差30°的6脉冲换流器的直流电压之和,在每个工频周期内有12个脉动数,称为12脉动换流器。直流电压中仅含有12k次的谐波,而每个6脉动换流器直流电压中含有6(2k+1)次谐波,因此彼此的相位相反而相互抵消,有效的改善了直流侧的谐波性能。12脉动换流器的另一个优点是其交流电流质量好,谐波成分少。交流电流中仅含12k+1次谐波,每个6脉动换流器交流电流中的6(2k-1)次谐波在两个换流变压器之间环流,不进入交流电网,12脉动换流器的交流电流中不含这些谐波,有效的改善了交流侧的谐波性能。
1.3换流阀
换流阀作为“心脏”存在于直流输电系统中,江门换流站换流阀采用400+400kV配置,0-400kV为低端阀厅,400-800kV为高端阀厅,当直流输电线路电压升至800kV时,高、低端阀厅同时投运,如果任何一个阀厅出现问题,另一个桥可在400kV的电压下继续运行,此时输电线路电压为400kV。每个12脉动桥包括2个串列的6脉动桥。每个6脉动桥包括3个200kV直流电压的双重阀塔,每个双重阀塔由2个单阀组成,单阀由2个晶闸管组件组成,每个双重阀塔包含4个晶闸管组件。一个晶闸管组件包括两个阀段,每个阀段由15个晶闸管单元、一台阀电抗器(限制晶闸管开通时电流突增和关断状态下瞬态dU/dt)、一台均压电容(均衡阀塔内电压、为RPU提供电源)组成。一个晶闸管单元包括晶闸管、TVM、直流均压电阻(均衡晶闸管上的电压)、阻尼电阻(减少阻尼电容和电感引起的震荡,承担阻尼电容电流)、阻尼电容(吸收晶闸管关断时的冲击电压)等元件。
1.4阀基电子(VBE)
阀基电子(VBE)设备:对换流阀晶闸管进行触发与监视,将各阀连接至控制和保护系统,包括晶闸管控制与监视系统(TC&M)模块,光发射和接收模块,控制保护恢复模块(RPU),电源模块和接口。晶闸管控制与监视系统(TC&M):接收来自极控制盒保护的信号,将这些信号转换成触发晶闸管的脉冲和对每个阀段内的控制脉冲,这些脉冲通过光发射板或RPU接口板转换为光脉冲,通过光缆送到每只晶闸管和RPU。光发射板:从TC&M接收信号,将其转换为触发光脉冲。光接收板:接收每个TVM的回报信号,将信号传送到TC&M系统。晶闸管电压检测(TVM):检查晶闸管的闭锁能力、检测晶闸管能否开通、检测晶闸管导通结束时刻、检测晶闸管的过电压保护电路是否能够正常工作。反向恢复保护单元(RPU):每个阀段有一块RPU板,RPU板串联到阀组件均压电容上,RPU板工作电源取自均压电容两端,晶闸管关断且处于反向恢复时,VBE发送信号,如果RPU监测到阀段上正向电压的上升速率超过允许值,就会向该阀组件中的MSC发出触发光脉冲,控制阀段内所有晶闸管的导通。多路星形光耦合器(MSC):每个晶闸管组件安装有一台多路星形耦合器MSC,MSC包含两个单元,一个单元对应一个阀段,MSC接收三路激光二极管发出的光脉冲,并均匀发送到与其相连的光触发晶闸管。
2结束语
1.1高压直流电网的技术发展
欧洲专家介绍了近海岸直流电网示范工程的研究结论,这项研究工作包括近海岸间歇性能源,直流电网经济,控制保护等问题。两个著名硬件设备开发商参与了该项目,完成用于测试控制技术开发的低功率模拟器,并证明保护算法可用于直流电网,开发出了基于电力电子和机械技术创新的直流断路器;另有专家提出了利用有限的直流断路器操作,设计具有故障清除能力直流网络,模拟研究表明使用直流断路器可迅速隔离直流侧电网故障,即可在点对点的电缆方案中使换流器继续支撑交流网络。针对此问题,中国专家发言指出可采用全桥型子模块拓扑结构来清除直流侧故障,实现与电网换相换流器(LCC)相同的功能。德国专家提出了关于采用电压源换流器(VSC)的交直流混合架空线运行的特殊要求,虽然混合运行可提高现有输电通道的容量,但存在一系列挑战,包括利用可控、有效的方式实现多终端的操作管理,交直流系统的耦合效应,直流电压和电流匹配原则以及机械特性差异等。韩国专家提出了用于晶闸管换流阀的新型合成运行试验回路,该回路可向测试对象施加试验用交、直流电压和电流脉冲,并配置了可在试验前给电容充电的可控硅开关,以及为试验回路中晶闸管门极提供触发能量的独立高频电源。
1.2可再生能源的并网
美国专家提出了近海岸高压直流输电系统设计方案的可靠性分析方法,研究了平均失效时间和平均修复时间等可靠性指标,并结合概率(蒙特卡洛)技术来评估风速波动对风电场的影响,且评估不同的系统互联、系统冗余以及使用直流断路器与否等技术方案的能量削减水平,提议将能量削减作为量化直流电网可靠性的指标。为设计人员选择不同的技术方案、拓扑结构和保护方案提供依据。近海岸直流输电换流站选址缺乏相关的标准、项目参考及工程经验,难以给项目相关者提供合理的建议,并且可能会在项目的开发过程中引入风险。挪威专家针对此情况提出了一种从石油和天然气行业经验总结得出的技术资格要求,将有助于更加快速、高效、可靠地部署海上高压直流输电系统。
1.3工程项目规划、环境和监管
哥伦比亚和意大利专家提出了哥伦比亚与巴拿马电气互联优化设计方案,初步设计方案额定容量为600MW/±450kV,经过综合比较,方案优化为300MW/±250kV,400MW/±300kV的双极结构,并使用金属回线作为最佳的技术和经济解决方案。线路长度由原来的600km变为480km,但考虑到哥伦比亚输电系统的强度问题,决定保留原来的输电路线。贝卢蒙蒂第一条800kV特高压直流输电线路项目规划构想了额定参数为2×4GW/±800kV双极结构,直流线路长2092km,连接巴西北部与南部的直流输电工程方案;印尼第一条Java-Sumatra直流输电工程,额定参数为3GW/±500kV,双极结构,直流线路包含架空线和海底电缆,考虑采用每极双十二脉动换流器和备用海底电缆来提高系统的可靠性和可用率;太平洋直流联接纽带介绍了延长太平洋北部换流站寿命的最佳方案,将原有的换流器变为传统的双极双换流器结构,但保留多余的2个换流器阀厅,现以3.8GW/±560kV为额定参数运行。
1.4工程项目实施和运行经验
新西兰和德国专家提出“新西兰直流工程新增极3的挑战和解决方案”,该工程不仅要保证设备能承受较高的地震烈度,保障其在弱交流系统中安全稳定运行,还要设计合理的设备安装地点,以及新建极与原有极的一体化控制保护系统;巴西互联电力系统的Madeira河项目中SanAntonio发电厂对400MW的背靠背中第一个模块及额定参数为3.15GW/±600kV双极中的第一极进行充电,工程因交流系统没有足够的短路容量而延迟工期,后通过安装500kV/230kV联接变压器得以解决。印度的Champa-Kurukshetra±800kV/3GW高压直流工程首次在特高压输电工程中采用金属回线返回方式运行,输电线路长1035km,远期增加容量3GW,双极功率传输容量可达6GW;法国与西班牙东部互联案例中采用双回VSC-HVDC馈入交流网络,研究认为VSC-HVDC是首选的技术解决方案。
2FACTS装置及技术应用
2.1可再生能源并网
丹麦专家开发了多电平静止同步补偿器(STATCOM)通用电磁暂态模型,并基于伦敦Array风力发电厂多电平STATCOM现场测量和电磁暂态仿真结果对比研究进行了验证,仿真结果与现场测量结果比较相符,并显示出良好的相关性。
2.2提高交流系统的性能
加拿大专家提出了用于工程规划的通用VSC模型,开发了基于PSS/E的稳态和动态模型。验证了该模型部分交流侧和直流侧故障,结果表明具有良好的相关性,可在新的工程规划和规范研究中应用。伊朗专家提出了分布式发电并网中基于自适应脉冲VSC的新型控制方法,与另外两种控制方法相比,谐波补偿和电能质量改善比较表明,分布式发电中谐波含量减少,从而减少谐波注入交流网络。“智能电力线路(smartpowerline,SPL)实验研究项目”引入了在架空输电线路嵌入微型变电站的概念。电源交换模块,保护模块和在线监测系统可使输电线路变得更智能,该技术还可以用于管理功率潮流和额外参数测量。
2.3FACTS工程项目规划、环境和监管
印度专家进行了动态补偿装置在印度电力系统的配置及选址研究,以易受故障扰动影响的印度西部地区为重点研究区域,并提出了无功功率控制补偿器的最佳位置和动态范围。
3电力电子设备的技术发展
3.1直流断路器、直流潮流控制器和故障电流限制装置
Alstom进行了120kV直流断路器的开发和测试研究,该断路器包括电力电子元器件,超快速机械断路器,串联电容器和避雷器等重要组成部分,可在5.3ms内开断电流。ABB提出混合型直流输电工程断路器为未来高压直流系统的解决方案,描述了混合直流断路器的详细功能、控制方式和设计原则,混合断路器的核心部件同样为超快速机械断路器。ABB的专家还提出了低损耗机械直流断路器在高压直流电网中的应用,其可替代混合直流断路器,开断参数最大为10kA/5ms。断路器包含电磁制动器、并联谐振电路,已完成一个额定参数为80kV的断路器样机,并成功通过了开断目标电流的试验。
3.2新型半导体设备和换流器拓扑