美章网 精品范文 流体力学现象及解释范文

流体力学现象及解释范文

前言:我们精心挑选了数篇优质流体力学现象及解释文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

流体力学现象及解释

第1篇

[论文摘要]结合学习主体所处的时代环境变化和流体力学知识体系的学科跨度大以及对数学基础知识要求很高的特点,分析了流体力学教学中存在的问题和难点,提出大量采用实验模型和实例教学以加强流体流动现象的观察理解对提高流体力学教学效果的必要性和重要性。

前言

流体无固定形状,即使受到的剪切力再小,只要持续存在,其变形便会随时间持续增大,不像固体那样,一定的受力只能产生一定的变形。流体力学的基本理论非常严密,描述流体流动现象的数学方程非常复杂,高度非线性[1],因此学生对流体力学敬而远之的现象比较严重。此外由于因特网及电子计算机的普及,各种虚拟现象泛滥,在这样的环境下成长的学生接触和感受实际发生的各种流体流动现象的机会大大减少,对自然现象的观察和理解能力很弱。很多学生在接受流体力学教育之前所受的应试教育的影响下[2],学习只是为了在短时间内对给出的试题做出接近正解的答案获得高分,这种教育具有多大的意义,近年来许多学者从教育学的角度提出了疑问[2]。只有直面实际的流体流动现象,抓住问题的本质,才能诞生真正的学问和研究。笔者基于对本科和研究生的流体学教学中存在的难点和问题,指出了重视流体流动现象的观察和理解对提高流体力学的教学效果的必要性和重要性。

一、流体力学教学面临的问题

(一)新形势下学生所处的社会环境变化

学生从小利用电脑打电子游戏的玩耍时间和机会大大超过了自己亲自动手制作道具及模型的体感玩耍时间,通过体感玩耍接触和观察自然现象的机会大大减少。

因特网的普及使得在短时间内获得大量的信息或实时获得信息成为可能,近年来出现学生过度依赖因特网的倾向,疏远了纸质图书及相关文献这些知识比较系统逻辑性也有保证的传统信息载体。但因特网上除了正确的信息外,还有很多不准确甚至错误的信息,即使是正确的信息,各信息段之间也缺乏系统性,因此学生仅通过因特网难以建立系统的知识体系的。

手机在学生中的普及也使得学生们在实际问题时,不是自己独立分析问题,找出问题发生的原因,而是直接利用手机询问他人求得答案,这样很难培养独立制定计划,对可能事态进行预测,独立进行解决问题的能力。这恰恰是对一个未来走向社会成为一个优秀的技术人员的必经的磨砺之道。

(二)流体力学教学面临的问题

流体流动的力学模型及其运动的物理意义难以理解[3]。流体粘性产生的模型与牛顿粘性定律之间的对应关系就是最好的一个例证。大多数学生虽然能够使用牛顿粘性定律进行计算,但对运动的流体为何会产生粘性却不能正确的理解。的确,对于涉及到流体力学的某些技术或产品设计,只要懂得一定的计算即可,但是对于开发和设计全新的产品,如不能准确把握所涉及到的相关流体流动的物理本质,有时会产生完全错误的设计结果。

流体的运动状态繁多,流体力学融合领域广,要求学生掌握更多的学科预备知识,尤其对数学知识的要求更高,使部分学生觉得流体力学是难以接近的一门课。同一流动现象常常可以从多个角度进行解释,容易使学生产生混乱。比如对翼型的流体力学工作原理,可以从流体流动的动量变化、伯努利方程、压力积分、流线的曲率变化等几个方面进行解释,解释方法之多反而会使学生产生混乱,但每一种解释方法都是正确的,解释的都是一个本质,只有完全理解各种解释方法所依据的理论,才可以解除认识上的混乱,将学到的知识条理化、系统化。

描述流体流动的数学方程高度非线性化,数学上求解比较困难。描述流体流动的纳维斯方程和能量方程是否可以求解以及数学解的唯一性的证明需要微分方程、偏微分方程、多元积分等很深的数学功底,但近年来学生的数学和力学基础存在下降的趋势。

学生在进入大学前所接受的应试教育的影响很大,以考试成绩自评学习效果的认识根深蒂固[4]。实际的流体流动现象往往没有单纯的标准答案,有时甚至存在多个解,重要的是抓住流动现象的物理本质,系统的理解流体力学的基本原理。

二、教学方法对应

解决上述问题的根本方法,笔者认为只有从流体力学教学上,直面涉及流体的各种现象,使学生准确的把握物理本质。为此在流体力学课堂上,广泛采用流体模型教学和实例教学,增加学生观察理解各种流动现象的机会,唤起他们对本门课的兴趣的同时,让他们形成为探究流动现象背后的物理本质进行思考的习惯,这对解决流体力学教学所面临的问题至关重要。

使用电吹风斜向上吹一个让学生事先准备好的气球模型,没经验的学生会意外的发现气球会向斜上方飘起。这一流体流动现象可从风从气球上部通过时,由于气球表面的影响风的流向会产生变化,也就是流线产生弯曲,根据风的动量变化必然产生使得气球浮起的升力得到解释,还可以从物体绕流边界层效应得到解释。从这一简单的模型教学,还可以解释飞机的机翼通过改变空气的流向进而获得升力的流体力学上的工作原理。

在一个装满水的塑料瓶内分别放入密度大于水和小于水的钢球和泡沫小球,然后放在一个可移动桌面上,使桌面等直线加速运动,可发现钢球运动较慢留在瓶底,而泡沫球运动较快停在瓶嘴附近。观察这一个现象引导学生:泡沫球运动得较快是因为等加速运动瓶内流体的静压在运动方向上递减形成压力梯度,小球的前进方向的压力大于等加速运动产生的惯性力,因此小球相对于塑料瓶向前运动;而作用于钢球的前进方向的静压力虽然与泡沫小球相同,但惯性力大于前进方向的静压力,因此钢球相对于塑料瓶向后移动。这一模型教学比一般教科书上关于流体等加速直线运动流体的静压分布的例题更容易使学生抓住问题本质,且能培养学生独立思考之习惯,使学生体会到透过流体流动现象来正确观察和理解把握流体力学基本规律的乐趣。

经常使用立式洗衣机的人都知道,洗完衣服后,衣兜总要被翻过来,假如原来兜里装有硬币等硬物,也会被掏出来[5]。把这个实例在课堂上讲出后,学生们甚有兴趣,追问其中的奥秘,当教师根据伯努利定律做出解释并介绍伯努利这位集物理学家、数学家、力学家及医学家于一身的瑞士的大科学家的基本情况后,学生们顿时对这位科学家充满了崇敬之情,通过大量这种实验模型及实例教学,学生们对学习流体力学这门课更有了兴趣和信心,教学效果的提高自不待言。

三、结语

本文详尽的分析了计算机、因特网、手机等现代化通讯工具普及后对学生产生的影响,由于流体力学课程知识体系的特点,这种影响产生的负面问题很多,尤其是教授成长在应试教育体制下走入大学的学生,更需要转换认识,改变教学观念,在课堂教学中广泛植入实验模型教学和实例教学,让学生直面实际存在的各种流体流动现象,通过实际的流体流动现象的观察和理解,达到生动及形象的把握这些流动现象背后的流体力学的基本定理,有效提升教学效果的同时,通过简单实验模型的制作还可提高学生的动手能力,这对学生走向社会成为一个具有创造性思维能力、独立思考的优秀技术人员也是一个必不可少的雏形磨砺。

[参考文献]

[1]黄卫星.工程流体力学[m].北京:化学工业出版社,2008.

[2]李丹,杨斯瑞.应试教育与创造性人才的培养[j].继续教育研究,2009,25(2):180-185

[3]向文英,程光均.流体力学教学与实验创新[j].重庆大学学报(社会科学版),2003,18(4):21-26.

第2篇

[论文摘要]结合学习主体所处的时代环境变化和流体力学知识体系的学科跨度大以及对数学基础知识要求很高的特点,分析了流体力学教学中存在的问题和难点,提出大量采用实验模型和实例教学以加强流体流动现象的观察理解对提高流体力学教学效果的必要性和重要性。 

 

前言 

流体无固定形状,即使受到的剪切力再小,只要持续存在,其变形便会随时间持续增大,不像固体那样,一定的受力只能产生一定的变形。流体力学的基本理论非常严密,描述流体流动现象的数学方程非常复杂,高度非线性[1],因此学生对流体力学敬而远之的现象比较严重。此外由于因特网及电子计算机的普及,各种虚拟现象泛滥,在这样的环境下成长的学生接触和感受实际发生的各种流体流动现象的机会大大减少,对自然现象的观察和理解能力很弱。很多学生在接受流体力学教育之前所受的应试教育的影响下[2],学习只是为了在短时间内对给出的试题做出接近正解的答案获得高分,这种教育具有多大的意义,近年来许多学者从教育学的角度提出了疑问[2]。只有直面实际的流体流动现象,抓住问题的本质,才能诞生真正的学问和研究。笔者基于对本科和研究生的流体学教学中存在的难点和问题,指出了重视流体流动现象的观察和理解对提高流体力学的教学效果的必要性和重要性。 

 

一、流体力学教学面临的问题 

 

(一)新形势下学生所处的社会环境变化 

学生从小利用电脑打电子游戏的玩耍时间和机会大大超过了自己亲自动手制作道具及模型的体感玩耍时间,通过体感玩耍接触和观察自然现象的机会大大减少。 

因特网的普及使得在短时间内获得大量的信息或实时获得信息成为可能,近年来出现学生过度依赖因特网的倾向,疏远了纸质图书及相关文献这些知识比较系统逻辑性也有保证的传统信息载体。但因特网上除了正确的信息外,还有很多不准确甚至错误的信息,即使是正确的信息,各信息段之间也缺乏系统性,因此学生仅通过因特网难以建立系统的知识体系的。 

手机在学生中的普及也使得学生们在实际问题时,不是自己独立分析问题,找出问题发生的原因,而是直接利用手机询问他人求得答案,这样很难培养独立制定计划,对可能事态进行预测,独立进行解决问题的能力。这恰恰是对一个未来走向社会成为一个优秀的技术人员的必经的磨砺之道。 

(二)流体力学教学面临的问题 

流体流动的力学模型及其运动的物理意义难以理解[3]。流体粘性产生的模型与牛顿粘性定律之间的对应关系就是最好的一个例证。大多数学生虽然能够使用牛顿粘性定律进行计算,但对运动的流体为何会产生粘性却不能正确的理解。的确,对于涉及到流体力学的某些技术或产品设计,只要懂得一定的计算即可,但是对于开发和设计全新的产品,如不能准确把握所涉及到的相关流体流动的物理本质,有时会产生完全错误的设计结果。 

流体的运动状态繁多,流体力学融合领域广,要求学生掌握更多的学科预备知识,尤其对数学知识的要求更高,使部分学生觉得流体力学是难以接近的一门课。同一流动现象常常可以从多个角度进行解释,容易使学生产生混乱。比如对翼型的流体力学工作原理,可以从流体流动的动量变化、伯努利方程、压力积分、流线的曲率变化等几个方面进行解释,解释方法之多反而会使学生产生混乱,但每一种解释方法都是正确的,解释的都是一个本质,只有完全理解各种解释方法所依据的理论,才可以解除认识上的混乱,将学到的知识条理化、系统化。 

描述流体流动的数学方程高度非线性化,数学上求解比较困难。描述流体流动的纳维斯方程和能量方程是否可以求解以及数学解的唯一性的证明需要微分方程、偏微分方程、多元积分等很深的数学功底,但近年来学生的数学和力学基础存在下降的趋势。 

学生在进入大学前所接受的应试教育的影响很大,以考试成绩自评学习效果的认识根深蒂固[4]。实际的流体流动现象往往没有单纯的标准答案,有时甚至存在多个解,重要的是抓住流动现象的物理本质,系统的理解流体力学的基本原理。 

二、教学方法对应 

 

解决上述问题的根本方法,笔者认为只有从流体力学教学上,直面涉及流体的各种现象,使学生准确的把握物理本质。为此在流体力学课堂上,广泛采用流体模型教学和实例教学,增加学生观察理解各种流动现象的机会,唤起他们对本门课的兴趣的同时,让他们形成为探究流动现象背后的物理本质进行思考的习惯,这对解决流体力学教学所面临的问题至关重要。 

使用电吹风斜向上吹一个让学生事先准备好的气球模型,没经验的学生会意外的发现气球会向斜上方飘起。这一流体流动现象可从风从气球上部通过时,由于气球表面的影响风的流向会产生变化,也就是流线产生弯曲,根据风的动量变化必然产生使得气球浮起的升力得到解释,还可以从物体绕流边界层效应得到解释。从这一简单的模型教学,还可以解释飞机的机翼通过改变空气的流向进而获得升力的流体力学上的工作原理。 

在一个装满水的塑料瓶内分别放入密度大于水和小于水的钢球和泡沫小球,然后放在一个可移动桌面上,使桌面等直线加速运动,可发现钢球运动较慢留在瓶底,而泡沫球运动较快停在瓶嘴附近。观察这一个现象引导学生:泡沫球运动得较快是因为等加速运动瓶内流体的静压在运动方向上递减形成压力梯度,小球的前进方向的压力大于等加速运动产生的惯性力,因此小球相对于塑料瓶向前运动;而作用于钢球的前进方向的静压力虽然与泡沫小球相同,但惯性力大于前进方向的静压力,因此钢球相对于塑料瓶向后移动。这一模型教学比一般教科书上关于流体等加速直线运动流体的静压分布的例题更容易使学生抓住问题本质,且能培养学生独立思考之习惯,使学生体会到透过流体流动现象来正确观察和理解把握流体力学基本规律的乐趣。 

经常使用立式洗衣机的人都知道,洗完衣服后,衣兜总要被翻过来,假如原来兜里装有硬币等硬物,也会被掏出来[5]。把这个实例在课堂上讲出后,学生们甚有兴趣,追问其中的奥秘,当教师根据伯努利定律做出解释并介绍伯努利这位集物理学家、数学家、力学家及医学家于一身的瑞士的大科学家的基本情况后,学生们顿时对这位科学家充满了崇敬之情,通过大量这种实验模型及实例教学,学生们对学习流体力学这门课更有了兴趣和信心,教学效果的提高自不待言。 

 

三、结语 

本文详尽的分析了计算机、因特网、手机等现代化通讯工具普及后对学生产生的影响,由于流体力学课程知识体系的特点,这种影响产生的负面问题很多,尤其是教授成长在应试教育体制下走入大学的学生,更需要转换认识,改变教学观念,在课堂教学中广泛植入实验模型教学和实例教学,让学生直面实际存在的各种流体流动现象,通过实际的流体流动现象的观察和理解,达到生动及形象的把握这些流动现象背后的流体力学的基本定理,有效提升教学效果的同时,通过简单实验模型的制作还可提高学生的动手能力,这对学生走向社会成为一个具有创造性思维能力、独立思考的优秀技术人员也是一个必不可少的雏形磨砺。 

 

[参考文献] 

[1]黄卫星.工程流体力学[m].北京:化学工业出版社,2008. 

[2]李丹,杨斯瑞.应试教育与创造性人才的培养[j].继续教育研究, 2009, 25(2): 180-185 

[3]向文英,程光均.流体力学教学与实验创新[j].重庆大学学报(社会科学版),2003,18(4): 21-26. 

第3篇

关键词:计算流体力学;软件;流体力学教学

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2016)11-0248-03

一、引言

英国著名教育学家J.K.Gilbert教授在其组织编著的“Visualization:Theory and Practice in Science Education”一书别强调:可视化技术在现代科学教育教学中的应用是一个亟待深入研究的问题[1]。Gilbert教授从认知模型的角度考虑了可视化在宏观、亚微观和符号层面认知中的作用,讨论了照片、示意图、图表等可视化技术在科学知识描述中的功能。本文在总结“流体力学”、“空气动力学”和“计算流体力学”教学内容以及“飞行器部件空气动力学”教学经验的基础上,结合参考文献[1]中的教学思想,系统探讨计算流体力学(CFD)可视化技术在流体力学课程教学中的应用。

CFD是采用计算机模拟流体流动及相关现象的一门科学,主要涉及物理、数值数学和计算机科学等学科。CFD的应用历史可追溯到上个世纪70年代,理论研究的历史则更早一些。随着计算机技术的发展,CFD所能求解问题越来越复杂,最早是求解简化方程控制的跨声速流动,到了80年代初就可以求解二维或三维的Euler方程,随后Navier-Stokes方程的求解也成为可能。经过本世纪近十年来的快速发展,CFD技术基本成熟,相应的软件被广泛的应用于航空、航天、汽车、船舶、生物、材料、气象、海洋以及石油工业等领域。

在应用需求的牵引下,目前大部分CFD软件都已经具有非常友好的人机交互界面,不仅能够以一定精度计算流体运动控制方程、模拟复杂的流体流动,更能够通过一定的可视化技术显示所计算流场的空间结构和时间演化特征。因此,流体力学本科与研究生教学中涉及的诸多基本概念、一般规律和关键问题等,都可以结合CFD软件进行直观而科学的探讨。

二、基本概念的解释

在传统的教科书中,流体力学中的基本概念,如流场、梯度、散度、旋度、流线、迹线、点源和偶极子等,常常采用一定的数学公式或抽象语言来描述,这对学生理解实际的流体流动问题是十分不利的。借助于CFD软件,上述概念可以采用云图、矢量图和等值面等十分直观的显示出来,下面举例来说明。

标量场可采用云图来显示,所谓云图就是采用不同的颜色对应不同的标量数值。图1所示为利用云图显示喷管流场中马赫数的分布情况,其中黑色到白色的渐变表示马赫数从0.1变化到5.0。由喷管内部流场中颜色的分布可以看出,喷管内部马赫数从左到右是一直增加的。这样一种显示方法不仅直观的显示了什么是流场,更从物理上说明了流场中马赫数的变化规律。

由于矢量既有大小又有方向,矢量场不能像标量场那样仅仅以颜色的变化来区分。在CFD中矢量一般用具有一定长度的箭头来表示,箭头的方向对应矢量的方向,箭头的长度代表矢量的大小。图2所示为喷管内部速度矢量场,由图可以看出流场中每个点处的速度相对大小和方向,很直观的表示了喷管内部气体逐渐加速的过程。图3所示为喷管内部流线,每条曲线表示定常流动条件下流体质点在喷管中的运动轨迹,同样直观的表现了喷管的流场结构。

在流体力学教学中经常会从简化的模型出发,讨论理想状态下的流动问题,如点源、偶极子等的流动。这种流场在现实中是不存在的,通过电磁学或其他方式类比来显示相应的结构往往也不够直观。借助于CFD软件则可以很容易地通过求解简化的控制方程,得到理想状态下的流场,然后通过可视化技术实现三维、动态的流动演示。随着CFD技术的越来越成熟,大部分流体力学教学中涉及的基本概念、假设等,均可以通过CFD可视化的方式展现给学生,改变传统教学方法,提高教学质量。

三、流体力学基本物理现象的演示

CFD软件是通过求解不同初、边值条件下的流动控制方程来研究流体运动特征,能够客观地反映流体运动的物理规律。因此,在流体力学教学中,很多关键物理现象,如边界层、激波、射流、混合层、卡门涡街等,也可以通过CFD技术进行分析,并通过可视化的方式展现给学生。

在流体粘性的作用下,绕流物体表面一般都会存在紧贴物面非常薄的一层区域,这层区域被称为边界层。边界层概念的提出是流体力学发展史上里程碑式的事件[3],然而在流体力学教学中往往很难把边界层的重要性讲清楚。借助于CFD软件,可以直观地观察水流、气流中边界层的形成过程及其差别,通过显示边界层速度剖面的形状解释边界层如何影响流场结构,如图4所示。从图中可以很明显地看出壁面附近气流速度的降低,体现了气体的粘性效应在近壁附近的作用。

激波是超声速流动中广泛存在的流场结构[4],采用CFD技术可以模拟各种类型的物体绕流,显示对应的正激波、斜激波和弓形激波等现象,从不同的角度加深学生对激波这一物理现象的理解。射流、混合层和卡门涡街同样可以通过适当的CFD技术模拟,甚至可以显示其中非常精细的流场结构。图5所示为混合层涡结构的CFD数值模拟结果,由图可以看出混合层流动的失稳过程,类似的数值模拟结果对流体力学专业高年级本科生和研究生教学是大有助益的。

四、流体力学应用问题分析

在流体力学专业的研究生教学中,常常会涉及生物流体力学、飞机空气动力学、环境流体力学、化工流体力学、汽车空气动力学等一系列应用流体力学课程。CFD软件在工业上的广泛应用为这些课程的教学提供了大量的素材。图6、图7和图8所示为鳗鱼[5]、高超声速飞行器和F1赛车绕流流场的CFD数值模拟结果,从中可以分析绕流物体的流动和受力特征,探索隐藏在背后的物理规律,加深学生对问题的理解。

五、小结

CFD软件在流体力学课程教学中有着非常广泛的应用前景,本文以具体实例展示了CFD软件在流体力学基本概念解释、基本物理现象演示和应用问题分析方面的关键作用。通过在教学中恰当的应CFD软件,可以有效地增强学生的学习兴趣,提高教学质量。

参考文献:

[1]J. K. Gilbert,M. Reiner,M,Nakhleh,Visualization:Theory and Practice in Science Education,Springer Science+Business Media B.V. 2008.

[2]J. H. Spurk,N. Aksel. Fluid Mechanics,Springer-Verlag Berlin Heidelberg,2008.

[3]G. E.A. Meier,K. R. Sreenivasan,IUTAM Symposium on One Hundred Years of Boundary Layer Research,Springer,2006.

第4篇

论文关键词:高职院校;流体力学;学习兴趣

“流体力学”课程是我国高等院校工科专业的一门主干专业基础课,涉及土木、能源、医学、环境、化工等许多领域。该课程是联系前期“高等数学”、“理论力学”等基础课程和后续专业课程的桥梁和纽带,在学生能力培养和知识体系构建过程中起着“承上启下”的作用。流体力学因曾经在20世纪五六十年代对航空航天事业的巨大推动而倍受世人瞩目。近年来,流体力学广泛深入地向边缘学科交叉渗透,这就要求相关领域的工作者要善于从错综复杂的工程实际中独立地提出问题和解决问题。

民办高职院校的学生入学成绩较差、自主学习的能力较差。很多学生对流体力学现象认识模糊,学生普遍感觉流体力学概念抽象,难以理解,对“流体力学”产生畏难情绪和厌学现象,学习积极性不高。2011年,江苏省高职院校招生实行注册入学,更意味着生源素质的良莠不齐,这对工科专业的民办高职院校的“流体力学”课程教学是个严峻的挑战。

一、民办高职院校学生的特点

1.入学成绩较差

民办高职院校在高等院校中处于较低的地位,这尤其体现在招生中,往往是录取批次的最后一批。这就意味着入学的学生往往入学成绩较差,从这几年金肯职业技术学院(以下简称“我校”)的录取成绩来看,从90分~330分都有,大多是在180分左右。因此民办高职院校的学生往往数学物理基础较差,计算能力较差,影响他们对工科课程的学习。

2.自主学习的能力较差

从和学生的交流情况来看,学生在课后很少主动学习、看相关的书籍,甚至连作业都有不能按时保质完成的时候。

二、如何调动学生学习“流体力学”的主观能动性

民办高职院校和公办本科院校以及公办高职院校有很大的区别,使得在“流体力学”课程教学中不能照搬上述公办院校的方法,而要根据民办高职院校的特点来实行教学。

陶行知在《中国教育改造》中指出:“大凡选择职业科目之标准,不在适与不适,而在最适与非最适。所谓最适者有二,一曰才能,二曰兴味。才能足以乐业。”学习最有兴趣的专业,因其兴趣,才会有乐趣,才会安于学习。托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的兴趣。”对民办高职院校的学生更应注重兴趣的培养。

1.教学内容优化,降低难度

(1)教学内容精简,理论够用为度。鉴于高职院校学生的特点,再结合高职专业所实现的目标——技能性人才,根据各专业的侧重点,对教学内容进行优化。理论难度够用为度,不求理论的系统性和完整性。以给排水工程专业为例,流体静力学经优化后,保留静压强及其特性、静力学基本方程的应用、平面和曲面的静水总压力的内容,侧重基本概念、基本定律和方程式,取消了平衡微分方程的内容。对我校学生而言,难以听懂,不如加强基本知识的介绍,如能透彻理解,对工作和生活更有用。

(2)教学内容体现职业特点。应该在教学内容中体现本专业的专业内容。对于面向给排水工程专业开设的“流体力学”课程,其专业和自来水、污水的运输和输送紧密相关,都离不开管、泵的设计与使用,这就涉及到流体力学的许多方面。例如,分析流体在管道内的流动规律、压力、阻力、流速和输量的关系时,应向学生指出此处知识点的学习是为了根据流动规律和各参数关系来设计管径、校核管材强度、布置管线以及选择泵的大小和类型、设计泵的安装位置等,把知识点融入到职业特点中,编成例题进行讲解。有些概念和理论是学生首次在“流体力学”里学到的,并且会贯穿到整个专业知识的学习过程中,例如雷诺数、水头损失、沿程水损等,所以,对于此类知识的反复强调也是非常必要的。把“流体力学”和“泵与风机”、“管道工程”、“水处理工程”等专业课联系在一起,相关知识点能做到心中有数,为以后专业知识的学习打下坚实的基础。优化内容的同时,也不同程度地降低了学习内容的难度,这在客观上为提高学生的学习积极性铺平了道路。

2.活跃教学课堂气氛,营造轻松的学习环境

(1)用重大事件激发学生学习“流体力学”的自觉性、主动性和积极性。在教学中适当地穿插讲述一些有关的重大事故、重大灾害和重大建设项目(统称“重大事件”),对于学生认识现在的学习与未来工作之间的关系、提高学习自觉性、培养热爱专业的思想和严谨的科学作风很有帮助,同时也有助于活跃课堂气氛。

在讲授“流体静力学”这一章节内容时,可举1993年青海沟后水库垮坝事件。1993年8月27日夜间,库容为330万m3的青海省海南藏族自治州沟后水库在库水位低于设计水位0.75m3的情况下突然垮坝失事,造成288人死亡,40人失踪,直接经济损失1.53亿元。水利部专家组调查认定,沟后水库在设计上有缺陷,施工中又存在严重质量问题,运行管理工作薄弱,这次垮坝属于重大责任事故。结合流体静力学讲述这一事件时指出:不管在什么岗位,责任心和专业技术素质也许会关系到千百人生命财产的安全。

(2)用工程或生活实例让学生感受到科学很奇妙,身边处处有科学。兴趣是学习的最大动力,教师应该让学生直观形象地了解流体力学的广泛应用性以及内容的趣味性,将与日常生活或生产实际有关的例子介绍给学生。“流体力学”的理论性较强,公式较多,学生理解比较困难。如果教师在课程的讲解过程中,多穿插一些实际生活中的现象,与课本中的理论结合起来讲,一定会大大提高学习兴趣,使学生更好地熟记和应用知识。在静力学章节的学习过程中,可举“人能下潜多深?”的例子,帮助理解静力学基本方程。小时候经常玩的一个游戏——吹纸条。拿出一个小纸条,让它自然下垂。沿水平方向在它上面吹气,纸条就会飘起,这是由于流动气体的压强小。而解释流动气体压强为什么小,要借助伯努利方程来解释。“站台安全线的由来”,“神奇的香蕉球”是如何踢出来的?这也要用伯努利方程来解释。身边的科学无处不在,只要仔细观察,便能从中领悟到许多道理。

从奇妙的鱼缸、小鸟喝水的杯子到饮水机的原理,介绍静力学基本方程的应用及等压面的概念。简单的原理,小小的发明,却给生活带来极大的方便,这就是创造发明的价值所在。

(3)增加语言的艺术性,让枯燥的流体力学变得优美和富有哲理。子曰:“学而时习之,不亦悦乎?”学习应该是快乐轻松的事。从幼儿园到小学,都倡导素质教育、快乐教育。高等教育也应该贯彻这一思想,学习才能持久。

传统的课堂教学极容易枯燥乏味,使学生听课索然无味,这必将不利于教学质量的提高。如果我们的授课语言优美,讲述形象生动,把美的气息、哲理的意味注入“流体力学”的教学,使学生学得轻松、自由,甚至浪漫,营造出轻松、快乐的学习氛围。

在绪论中,可以谈谈流体力学中的人文文化。水与空气都是流体的典型代表,是一切生命不可缺少的物质,自古至今人们对它的了解、探索和应用创造了丰富的文化物质成果。“楚天千里清秋,水随天去秋无际”。秋风,天水一色,是大自然的美景,也是流体的流动现象。它们赋予我们灵感,承载着我们的喜怒哀乐。古圣人喜欢从哲理上描述水性,歌颂水德。老子说“智者乐水,仁者乐山”。老子的名言是“上善若水”。通过此类讲述,使流体力学增加美的气息,使力学融入人文,既说明我们的生活与其息息相关,又轻松了课堂气氛。

在讲授粘性流体流动存在着两种流态时,可以借用古代文学中相关的名句,如描述湍流的有李白的“飞流直下三千尺,疑是银河落九天”,描述层流的则有“半亩方塘一鉴开,天光云影共徘徊”等佳句。这样可以帮助学生建立对流态十分形象而深刻的印象,从而有助于学生理解、掌握相关知识。

在教学过程中,还可穿插着向学生介绍定律知识背景的形成过程,以及相关科学家的工作,让学生领悟科学思想,轻松接受相关知识。“牛顿粘性定律”是牛顿对流体力学的主要贡献之一,是流体力学教学的重点内容。我们不仅仅要教给学生科学知识的本身,还应重视如何使学生感悟科学精神。此时穿插介绍牛顿的哲学思想和科学方法。牛顿用引力理论和运动三定律把天上行星和它们的卫星运动规律,同地上重力下坠的现象统一起来,实现了天上人间的统一,这是牛顿在自然哲学上的伟大贡献。

3.突出实验教学的特殊地位,让学生乐在其中

突出实验教学的特殊地位,使教学贴近实际,贴近生活。通过演示实验、学生验证性实验、竞赛型的设计性实验、实验录像、照片、仿真实验教学等多种方式贯穿教学的全过程,让学生看到各类实验最深刻、真实的一面,从而丰富学生的经验,增强学生的见识,培养职业意识和实践能力。

(1)开发课堂演示教具和演示实验。开发一系列课堂教学演示教具,可以使学生耳目一新,课堂气氛变得活跃起来。课堂演示教具和演示实验的使用,必须简单易行,价廉物美,且能解决教学问题,这对民办高职院校的教师提出了较高的要求。讲授表面张力和毛细管现象时,可演示毛巾浸湿的现象,顺带告诉学生如何在无人时给花草自动滴灌的方法;演示移液管移液凹面的现象时,告诉学生如何读数,如何避免毛细管现象引起的误差,同时可教学生化学实验操作的细节。讲述“流体静力学”章节时,演示倒扣水杯的实验,让枯燥的方程变得形象,易于理解。从废弃饮水机上拆下的“聪明头”,介绍静力学基本方程的实际应用。这些教具都非常简单,也易于获得,甚至无需额外花钱,学生也非常感兴趣。

(2)应用多媒体教学演示。并不是所有的教学内容都能找到适合课堂演示的案例。随着多媒体在教学中应用的普及,一些复杂的演示实验和昂贵的演示教具可以通过多媒体教学来实现。如雷诺实验、水跃实验、水击现象,在生产实践中所应用的各种堰,都可一一演示,远胜贫乏的语言描述。

(3)用设计性实验让学生参与其中,乐在其中。设计性实验围绕职业特色专题,依据学生的实际情况而设,如:“自动虹吸管的改进与应用”。指导教师根据学生对所学知识的掌握及兴趣度,将他们分成几个不同的实验小组,然后指导和协助学生自己设计实验方案,动手组装,最后依据实验结果给出实验成绩。

该实验教学模式的优势体现在以下几个方面:激发学生的求知欲望和培养学生的创造能力;加深学生对理论知识的理解并向外延展;节省高校实验室资金投入。

文中所提到的方法,最终需要教师来完成,这对教师提出了较高要求。虽然高职院校的教师的教学任务很繁重,尤其是民办高职院校的教师,但这些方法都可以在平时的积累中完成,只需平时阅报、听新闻、上网浏览、注意周遭事物,多和同行交流就可以做到。

第5篇

关键词:流体力学;教学理念;内容调整;教学方法;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)04-0041-02

流体力学是研究流体平衡和运动规律的一门科学,是力学的一个重要分支,已广泛应用到国民经济的各部门。工程流体力学课程在哈工大是机械类、材料类、仪器仪表类、航空航天类、建筑工程类、热能动力类、流体动力工程类等专业必修的技术基础课程,既有基础学科的性质,又具有鲜明的技术学科的特点,既与高等数学、大学物理、理论力学等课程有紧密的联系,又是专业课的基础,是一门理论性和工程实际意义都较强的课程[1]。哈工大流体力学教研室成立于1956年,历来重视教学研究及教学质量,不断积累教学经验,改进教学思想,在基础教学与实验设施、师资队伍建设、教学质量、教学研究与改革等方面都取得一系列成果,居于国内领先水平,并于2009年被评为国家精品课程,目前正在进行国家精品资源共享课程的升级。虽然取得了一系列的重要成绩,但是仍然存在一些问题,需要进一步转换观念,从当前社会的实际需求出发,深入进行教学模式和教学内容等方面的研究和探索。

一、改革教学理念

课程建设的目的是提高教学质量,归根到底是提高学生培养的质量,而学生质量的衡量标准则是其综合素质及能力。工程流体力学课程的特点是抽象概念多,数学分量重,理论性较强,许多复杂的流动物理现象难以用言语和具体图像清晰地表述[2]。工程流体力学课程中有很多较难的知识点,例如流体微元运动的Cauchy-Helmholts速度分解定理、粘性流体的运动微分方程、边界层基本方程及近似计算等,这些知识点包含了大量的数学推导,往往要占用很多课时,同时这些理论知识的讲解又是空洞和死板的,无法激发学生的学习热情。即使是多数教师能够本着负责的态度将这些知识难点讲解清楚,也往往并不能使学生对这些难点留下深刻的印象。这种教学过程是事倍功半的,容易引起学生对这些知识做机械的符号记忆或者陷入对推导严密性的过度钻研,无法建立起流体力学的全局思维方式,进而也不能提高学生的综合分析应用能力。因此,教师在授课过程中要不断引导学生梳理所讲授的知识,使学生能够运用流体力学知识进行综合分析。要让学生明白,流体力学的学习不是背定理、记公式,而是要通过学习这门课程,掌握一门新的科学知识,了解它的人文背景,学习它的思想和方法,掌握它的原理和应用。学生是课程学习的主体,在教学过程中需要注意教与学的同步,授课时关注学生的反映,根据学生的反应对授课进行调整,必要时放慢节奏或变换讲解方法,也可以让学生参与讨论。学生有必要参与到深层的学科知识应用中,因此可以让同学参加与学科相关的科学研究,引导同学应用流体计算模拟软件,实现模拟实验[3]。教师对学生的实践引导可以消减同学对流体力学公式繁多的苦恼,而在实践能力不断提高的过程中,学生的创新意识和能力将得到很大的锻炼。实践证明,学生可以完成适当的工程流体力学课程内容的拓展研究,实现课程与科研工作的相互促进。在积极开展第一课堂的同时,还应该引导学生参加第二课堂活动,激发学生创造热情,培养学生科学素质和创新精神,提高学生获取知识、运用知识的能力和创新能力。例如科技创新和节能减排大赛这样的大学生科技活动是开展素质教育的重要平台,为学生提供了施展才能、张扬个性的舞台,使学生得以将课本所学知识充分的运用,并从制作和创新过程中学到了比课本更多的知识,提高了其知识综合运用能力、实践动手能力。流体力学教师应该充分利用流体力学知识应用面广、基础性强的特点,引导并指导学生参与此类科技活动。另外,流体力学教师还应该经常举行科技讲座,丰富学生的专业和学科知识,培养学生的科研意识和科学精神。

二、课程内容调整

目前所使用的工程流体力学课程内容包括了流体静力学、流体动力学、漩涡理论基础、理想流体平面势流、粘性流体动力学、相似理论基础、流动的阻力与损失、管路的水力计算、粘性流体绕物体流动、气体动力学基础、机翼及叶栅理论、流体要素测量等内容。总的来说涵盖了流体力学工程应用的多数情况,但是结构仍然需要进一步调整。首先,工程流体力学课程内容较多,多年未更新,有些知识也趋于老化,应适当地对内容进行增减。2006年专业调整后,能源与动力工程本科教学按一级学科制定教学内容,在这种体系下,工程流体力学课程应在主体结构保留的情况下,对于涉及到工程热力学和空气动力学的内容进行删减,避免不同课程的内容重复,使课程之间的界线更加明晰。这样的好处就是,学生利用有限的课时可以将流体力学主体结构体系学得更好。另外,由于工程流体力学更多的应该涉及流体力学的工程应用,所以关于漩涡理论、理想流体平面势流及粘性流体绕物体流动章节内涉及的较多理论性知识且与工程应用关系不大的应该适当精简,减少课时占用。其次,工程流体力学课程内容应适当增加与工程应用相关的内容。美国著名的流体力学教材《Mechanics of Fluids》(Prentice Hall International Editions出版)选取了贴近工程实际的管道流动、叶轮机械流动、环境流体力学等内容,作为经典流体力学主题内容的有机补充[4]。哈工大工程流体力学课程也应该针对学校定位及专业设置,在广泛调研开课专业的需求基础上,适当增加有普遍性、代表性的工程应用知识。最后,工程流体力学课程内容应更新与近期科技发展紧密联系的内容。由于教材不可能年年更新,教师应该在教材内容基础之上,适当增加与科技进展相关的内容,例如流动的虚拟实验、流体参数的现代化测量、流体力学的发展现状、流体力学的最新应用情况等,让学生了解到流体力学的科技前沿,开拓学生视野,增强其学习流体力学的热情和兴趣。

三、改革教学方法

关于教学方法,哈工大流体力学教师较早地采用了不完全教学法、潜科学教学法、社会探究法、问题教学法、角度教学法等创新性教学法,将教学内容、教学媒体、教师活动、学生活动等课堂教学要素有机组织起来,发挥整体的最大效能。强调学生通过主动探求问题解决的途径和方法,培养能力,以展素质;并将多媒体技术的运用与传统教学手段、教学形式的改革统一起来,突出重点,突破难点,从而充分调动和激发学生的学习兴趣和积极性。目前多媒体教学在高等教育中的应用越来越广,在如何正确使用多媒体教学的问题上目前还有一些争议和讨论。工程流体力学课程知识点多,公式推导多,难度大,对于具体的知识点利用板书详细推演在课堂教学中占用了大量的课时,同时也会影响到学生对流体力学整体思维的把握。由于工程流体力学课程的特点,很多流动现象概念比较抽象,难以用板书表达清楚,很显然传统教学方式达不到理想的教学效果。利用多种媒体手段可以更好地创设教学意境,变抽象为具体,变静态为动态,变黑白为彩色,变无声为有声,通过丰富的图例、连贯的动画以及真实的实验录像,可以使枯燥、乏味的内容变得趣味盎然,使抽象、晦涩的内容变得直观生动,同时也丰富了学生的信息量,可以更好地激发学习兴趣[5]。另外,流体力学的特点是数学分量重、理论性强,所以又不能过多依赖多媒体教学。对于涉及到重要理论公式推导的内容,简单地将推导过程搬到课件上去,并不能使学生了解重要理论公式的来龙去脉,也难以加深学生对这些关键知识点的理解程度。这个时候需要收起屏幕,用板书认真书写每个符号,推导每个关键公式,并解释其中的物理概念和意义。多媒体和板书都有各自的优缺点,因此我们可以取其长而避其短,采用两者兼顾而又两者不弃的原则,交互使用,相辅相成。

四、更新考评制度

哈工大工程流体力学课程作为技术基础课,目前采取了综合性的考评方法,总成绩由作业、实验、考试三部分组成,学生共计要完成60题左右的作业,由教师进行判分并作为总成绩的10%;共计要完成11项左右的实验,根据学生对每个实验原理和操作技能的掌握及实验报告的质量情况分为优、良、及格、不及格来评定成绩,若有两次不及格或者缺席者必须重做否则不得参加期末考试。实验课成绩占课程总成绩的10%。期末考试为闭卷,占总成绩的80%。流体力学考试的组卷与课堂教学内容息息相关,课堂教学如果注重内容的应用性、灵活性和综合性,则在组卷时应适当减少客观题,丰富试题类型,加大理解性和综合性题目的分量,避免记忆性成分所占比重较大,而学生临近考试加班加点应付考试的现象。另外,根据课堂教学和课外科研实践的特点,对于偏重于工程应用的专题,可以探索利用撰写科技论文、提交科研作品的方法进行考试,与传统考试成绩综合来建立起更合理、更具实践意义的考评制度。

工程流体力学课程是面向工程应用人才的课程,所以教学核心始终应该是学生知识应用能力的培养。为此,在教学中贯穿流体力学思维模式和综合分析解决问题能力的锻炼,使学生学有所成、学有所用,是工程流体力学课程改革的一个长期方向。

参考文献:

[1]陈卓如,金朝铭,等.工程流体力学[M].北京:高等教育出版社,2004.

[2]赵超.“流体力学”课程教学方法探索.中国冶金教育[J].2010,(5):63-64.

[3]李岩,孙石.《工程流体力学》课程教学改革与实践.科教文汇[J].2008,(11):88-89.

[4]C.P.Merle,C.W.David.Mechanics of Fluids(second edition)[M].NJ(U.S.A.):Prentice Hall International Editions,1997.

第6篇

关键词:工程流体力学;环境类;教学难点;教学方法;衔接技巧

作者简介:齐旭东(1981-),男,河北唐山人,河北工业大学能源与环境工程学院,讲师。(天津 300401)

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)34-0130-02

一、环境类工程流体力学的学科特色分析

环境类专业涉及流体力学的内容广泛,而且与机械、热能动力、水利等传统学科对流体力学的要求有明显不同。[1-3]河北工业大学(以下简称“我校”)环境工程专业采用闻德荪先生编著的《工程流体力学》教材,由高等教育出版社出版,分上下两册,上册为《理论流体力学基础》,下册为《应用流体力学》。该教材与其它传统学科所采用的流体力学教材相比区别较大:由于人类生活和生产主要局限在生物圈,生物圈中水和气是无处不在的,环境类专业主要围绕水和气,因此,上册《理论流体力学基础》的覆盖面极大,包括静力学、运动学、动力学、恒定平面势流、流动相似原理、流动阻力和能力损失等模块;下册《应用流体力学》包括孔口和管嘴出流、有压管流、明渠流、堰流、渗流等模块。下册以水为主,旁及气体,实际上是水力学基础。但是,与传统水力学又有着明显的不同,这一不同并不是教材主要内容的差异,而是学科体系的构建不同。传统水力学在学科构建上有着鲜明的学科特色,而环境类专业所学习的《应用流体力学》(教材下册)是采用更加简单的方式初步介绍水力学。换言之,是上册《理论流体力学》的动力学在几种特殊边界流场中的具体应用,这些特殊流场的研究对于设计和计算环境类的反应器、构筑物的形式和尺寸,以及流体输配具有重要意义。

工程流体力学与三大力学(理论力学、材料力学、结构力学)相比,其主要概念和原理几乎没有相似之处,[4-6]与大学物理学相比也无相似之处。[7]换言之,在工程流体力学中涉及的概念和原理对本科生来说几乎是全新的。工程流体力学建立在连续介质假设基础上,是通过牛顿经典力学和高等数学知识对流体静止和运动规律进行研究,通过欧拉法或拉格朗日法对流动现象建立数学模型,从而用微积分等高等数学方法解决流体流动问题。该学科的基本概念和原理在三大力学或大学物理学中几乎是从未提及过的。

可见,工程流体力学的学科特点鲜明,是环境类专业的重要骨干课程。笔者从事工程流体力学教学7年有余,并主动向老教师或其他同行学习探讨,发现除了要把握好该课程的学科特点外,对教学难点也要广泛筛选、收集和研究,并结合教学方法进行探讨论证,[8-12]具体分析见表1及下文。

表1 若干教学难点与教材章节对应一览表

序号 教学难点 教材章节[1]

1 连续介质假设 第一章绪论

2 隔离体受力分析 第一章绪论

3 流体相对平衡 第二章流体静力学

4 流体静力学基本方程、阿基米德原理 第二章流体静力学

5 拉格朗日法、欧拉法 第三章流体运动学

6 亥姆霍兹速度分解定理 第三章流体运动学

7 理想流体动力学、实际流体动力学 第四章理想流体动力学和平面势流、第五章实际流体动力学基础

8 牛顿一般相似原理、单项力相似准则 第六章量纲分析和相似原理

9 普朗特混和长度理论 第七章流动阻力和能量损失

10 孔口、管嘴出流和有压管流 第九章有压管流和孔口、管嘴出流

11 堰流 第十章明渠流和闸孔出流及堰流

12 渗流 第十一章渗流

二、环境类工程流体力学的教学难点与教学方法衔接技巧分析

连续介质假设(序号1)是工程流体力学的基础,其重要性不言而喻,但是作为一门新课程的开始,学生往往很难接受这样的模型假设。因此,宜采用讨论法处理该问题,讨论法的难点是避免讨论课的无计划性。质点的概念对于研究流体运动是至关重要的,但是有大半学生掌握不到要领。具体体现在,把流体质点的概念与物理学刚体质点的概念混淆,觉得二者完全一致,没有特殊涵义。面对这一问题,与学生针对两个“质点”概念进行详细的机理分析是很必要的。连续介质假设的核心理念是流体质点概念的提出,流体质点是这样定义的:流体质点是指尺度大小同一切流动空间(流场)相比微不足道又含有大量分子,具有一定质量的流体微元;物理学中的刚体如果只发生平移运动的话,该刚体可简化成质点处理,即用一个质点代替刚体,使物理运算变得很方便。因此,这两个“质点”概念有着不同的涵义,流体的主要特点之一就是易流动性,流场的形状受制于边界条件,流场在流动过程中,边界形状不断变化,所以,流场形状也在不断变化,因此,流体质点不能替代流场,而是由大量的流体质点组成连续介质,填充整个流场。

工程流体力学本质上讲是力学问题,需要在解题前进行受力分析(序号2)。在中学物理学中,受力分析贯穿始终,为中学生所熟知。所以,该部分的学习推荐采用自学指导法和对比分析法,这样可以充分调动学生的学习积极性。由于流场形状受制于边壁,流体的受力分析规律性不明显,这与中学物理学的刚体受力分析区别较大。流体受力分析,均可从两个方面进行,即质量力和表面力。质量力包括重力和惯性力,属于远程力,作用在整个流场的所有质点上,其中,惯性力的存在与否取决于坐标系的选择。如果选择惯性坐标系,则惯性力肯定不存在;如果选择非惯性坐标系,则惯性力肯定存在。表面力包括切应力和压应力,概念的内涵与刚体的表面力相似,切应力和压应力之间的区别在于作用力方向的不同。

很多学生不了解学习流体相对平衡(序号3)的意义何在,根据该知识的特点,可采用探究发现法处理该部分内容。流体相对平衡的意义,在于将特殊的运动问题转化成相对静止的问题,从而使计算得到简化。当整个流场与固体边壁无相对运动时,选择非惯性坐标系,根据达朗贝尔原理引入惯性力,可用相对平衡条件来处理该问题,即对隔离体采用受力平衡条件,可使计算过程大大简化。

中学物理学所熟悉的流体静力学基本方程()和阿基米德原理(F浮=ρgV排),二者如何从流体静力学的角度来重新定义(序号4),也是这一章的难点。该难点的讲解宜采用启发性谈话法,该方法一定要注意谈话内容的设计合理性,以期对整个谈话过程有的放矢。流体静力学基本方程的限定条件是质量力仅有重力,也就是说,坐标系为惯性坐标系。如果将其推广到非惯性坐标系,则计算方法应为欧拉平衡微分方程的积分式,欧拉平衡微分方程是建立在牛顿第二定律基础上的。该部分需要学生将流体静力学基本方程与欧拉平衡微分方程积分式进行对照。阿基米德原理是计算浮力的基本原理为中学生所熟知,在中学物理中往往解释成由实验研究获得,实际上在大学工程流体力学中可以解释成曲面所受静压力的合效应使其意义更广泛。

流动现象如何用数学语言描述,这是流体力学建立的基础,该难点的处理宜采用讲授法。描述流体运动的方法有两种,即拉格朗日法和欧拉法(序号5)。拉格朗日法是从流场中选择关键性流体质点组成流体质点系,跟踪每一个流体质点,研究其运动规律,进而总结出质点系运动规律,从而推演出整个流场运动规律,该方法概念清晰,但是分析和计算过程复杂。欧拉法是从流场中选择有代表性的空间点,分析这些空间点的运动规律,从而总结出整个流场运动规律。在计算流体力学中,常常采用拉格朗日法,在工程流体力学中常常采用欧拉法。

流体微元运动的基本形式包括平移、转动、角变形、线变形等。在流体微元内部,如果已知其中一点的运动要素,在微元内其他空间点的运动要素可以用已知点的运动要素表达出来,该定理称为亥姆霍兹速度分解定理(序号6)。很多学生对该定理存在疑问:微元内部这两个空间点之间怎么会存在联系?该问题适合采用探究发现法进行介绍,教师可首先将其转化成高等数学的模型,提示学生用微积分的方法来处理,具体而言,二者之间的联系是通过高等数学中的泰勒公式建立的。

理想流体动力学和实际流体动力学(序号7)在工程流体力学中是可以合并讲授的,采用系统讲授法更合适,这样更有利于知识的完整性。流体动力学主要涉及三大方程的后两个,即能量方程和动量方程。首先介绍理想流体运动微分方程和实际流体运动微分方程,前者也称为欧拉运动微分方程,后者也称为N-S方程,这两个重要方程均由牛顿第二定律推导获得,二者可作为计算流体力学基础,由此也可推导出能量方程。另一点需要注意,能量方程有两种形式,理想流体能量方程和实际流体能量方程,前者可以统一到后者中去,由于实际流体存在粘滞力,可产生能量损失,即单位重量流体从计算断面1-1运动到计算断面2-2时的平均能量损失;如果是理想流体,则粘滞力不存在,产生的能量损失为0。

量纲分析和相似原理主要涉及到(动力)相似准则里的牛顿一般相似原理和单项力相似准则之间的辩证关系(序号8)。该部分知识琐碎,宜采用讲授法。两个流动,即原型和模型流动,如果要实现流动相似,几何相似和初始条件、边界条件相似是基础,动力相似是保证,运动相似是目标。如果要实现动力相似,需要对应空间点处各个同名力方向相同,大小成固定比例,这称为牛顿一般相似原理。但如果在几何相似和牛顿一般相似原理都成立的前提下,原型和模型的几何形状和大小完全一致,失去了模型实验可缩小原型几何尺寸的意义。正是基于此,所以提出单项力相似准则,在流动中起主导作用的力往往只有一种,这是流动现象的特点,所以如果在原型和模型中,起主导作用的力相似的话,可认为二者的动力相似已实现。

普朗特混和长度理论(序号9)是学生学习的难点,大多数学生感觉该部分不知所云。比如说,该半经验理论的意义是什么,问题从何而来?该部分宜采用讨论法。流体处于湍流状态时,运动参数可以分为时均流速和脉动流速,时均流速产生时均切应力,脉动流速产生附加切应力,时均切应力的计算采用牛顿内摩擦定律,附加切应力计算采用脉动流速计算,即,其中脉动流速ux’和uy’计算困难,需要通过普朗特混和长度理论进行计算,该理论通过将湍流脉动与理想气体自由程理论进行类比,提出自由程概念,从而将脉动速度与时均速度建立联系,实现了附加切应力的计算可行性。

孔口、管嘴出流和有压管流(序号10)是研究水力设备和输配水管网的基础,这一部分的模型主要涉及孔口、管嘴、短管、长管、管网,对这些模型的深入研究需要采用上册流体动力学的连续性方程和能量方程,在深入分析流动规律后,可得最一般的规律性,即流量和断面平均流速的计算公式。这部分可以看成针对几种特殊边界应用动力学方程来求解计算题,所以在介绍了孔口或短管以后,其他形式的边界流动由学生通过练习法和讨论法来自学,最后由教师进行总结。

在缓流中,为控制水位和流量而设置的顶部溢流的障壁称为堰,缓流经堰顶溢流的局部水流现象称为堰流(序号11)。在环境类专业中,堰是常用的溢流集水设备和量水设备,在一确定的堰流中,流量与其它特征量的关系明确。薄壁堰可在环境类构筑物中作为出水设施,如二次沉淀池出水等。该部分内容生疏,宜采用演示法和讲授法。

渗流(序号12)是指流体在孔隙介质中流动,该流动状态在地下水中广泛存在,对地下取水井的设计往往要采用该模型的相关理论。该部分多在研究生阶段深入学习。

三、结语

工程流体力学在环境类专业中的现实意义和理论意义重大,在注册环保工程师基础考试中份额可观。该课程学习难点颇多,对于本科生来说学习的压力较大,需要教师在知识点梳理、难点筛选、师生沟通、教学方法总结等方面多做工作,笔者通过对环境类专业工程流体力学教学的自身体会完成此文,希望对教学一线的教师有所帮助。

参考文献:

[1]闻德荪.工程流体力学(水力学)[M].第3版.北京:高等教育出版社,2010.

[2]陈卓如.工程流体力学[M].第2版.北京:高等教育出版社,2008.

[3]吴持恭.水力学[M].第4版.北京:高等教育出版社,2008.

[4]哈尔滨建筑工程学院,沈阳建筑工程学院.理论力学[M].哈尔滨:哈尔滨船舶工程学院出版社,1992

[5]刘鸿文.简明材料力学[M].北京:高等教育出版社,2007.

[6]王焕定,章梓茂,景瑞.结构力学[M].第3版.北京:高等教育出版社,2011

[7]东南大学等七所工科院校.物理学[M].第五版.北京:高等教育出版社,2008

[8]教育部人事司.高等教育学[M].北京:高等教育出版社,1999.

[9]教育部人事司.高等教育心理学[M].北京:高等教育出版社,1999.

[10]河北省教师教育专家委员会.教育原理[M].石家庄:河北人民出版社,2007.

第7篇

【关键词】实验考核体系;实验能力;流体力学实验

实验教学是高等学校教学工作的重要组成部分。高校实验教学应该注重培养学生的实验能力,满足高等教育应用型、创新型人才培养的要求。学生在实验室通过观察、思考和操作,来提高判断能力和创新能力,做到有思想地做实验,自主完成实验任务。实验能力的培养应该配合实验考核来具体实施,文章就此提出了一套旨在提高学生实验能力的流体力学实验考核体系,对实验前、实验中、实验后的各个环节列出了具体的考核方法,主要包括五个考核部分:实验准备、实验操作、实验报告、实验创新和实验考试。

1.实验准备考核

实验准备要求学生在实验前理解实验原理,明确实验要求,熟悉实验内容及步骤,并按照要求言简意赅地编写实验预习报告。通过实验准备培养学生的自学能力,加深对流体力学理论知识的理解。实验教师根据学生的实验准备情况进行具体考核,对实验预习报告打分,对未完成实验准备的学生,取消其实验资格。实验准备考核占实验总成绩的10%,详细评分标准见表1,取所有实验准备考核分值的平均分作为实验准备考核成绩。通过实验准备考核,可以起到两个作用:一是实验准备考核成绩组成实验总成绩的一部分;二是实验准备考核对学生进实验室起到一个筛选作用。

表1 流体力学实验准备考核评分标准

序号

评分标准

分值

1

实验准备充分,实验预习报告规范认真,有预习思考

10

2

实验准备比较充分,实验预习报告规范认真,有预习思考痕迹

8

3

实验准备基本充分,实验预习报告规范认真,但仅是抄书,无思考痕迹 6

4

实验准备不充分,实验预习报告马虎,不规范,无思考痕迹

4

5

未完成实验准备,未完成实验预习报告

在实验准备这一阶段,实验教师需要给学生准备具体的预习资料,包括:学生实验守则,规定学生进实验室需要遵守哪些规则;流体力学实验要求细则,对学生说明参加流体力学实验的具体要求;流体力学分室平面布置图,以便学生了解实验室情况;流体力学实验指导书,主要给学生提供每个实验的具体指导,如:实验目的要求、实验仪器、实验原理、实验方法与步骤、实验成果及要求、实验分析与讨论、实验数据记录表、实验数据计算表;另外,还可以补充说明一下,实验预习报告书写要求、原始实验数据记录要求、实验报告要求书写哪些内容等等。

特别是实验仪器这一块,因为学生事先不熟悉仪器,实验时操作仪器比较困难,所以一定要先让学生熟悉仪器设备,有必要提供实验仪器的说明书。另外,实验教师还可以提供一些经典实验的介绍,如雷诺实验的工作环境,增加学生的学习兴趣。实验教师可以把这些资料编写成流体力学实验指导书,印发给每位学生,还可以把相关资料放到实验室网站上去,让学生自行下载查阅学习。

2.实验操作考核

实验操作考核作为实验教师对学生连续评估的主要形式,在平时实验当中对学生进行观察,并将观察记录作为对学生操作能力的直接评价。实验操作主要考核学生实验操作技能和分析问题、解决问题的能力[1]。实验教师在实验指导过程中,以启发学生思维为主,充分发挥学生的主动性,在学生提问时予以适当指点和提示,主要考察学生的动手能力和排除故障能力。因为这部分考核以实验教师的主观判断为主,所以在实验操作考核过程中要作定性定量处理,以便实验操作考核具体实施。实验操作考核占实验总成绩的20%,具体评分标准见表2。下面简要介绍一下流体力学实验操作考核的过程。

实验开始时,实验教师对每组学生的实验情况进行观察,签字确认。如能量方程(伯努利方程)实验开始时,检查每组学生是否将能量方程实验仪的所有测压管液面调整到齐平状态,签字确认。

实验过程中,实验教师检查学生的实验操作情况。如实验操作时间是否符合要求,实验次数是否达标等等。

实验结束时,实验教师对每位学生的实验原始数据记录进行初步分析,判断实验结果是否符合规律,确保实验质量。引导启发学生分析归纳实验结果,撰写好实验报告。对实验有重大错误、失败或不能完成者,安排其在实验室开放时间重做。

实验结束后,要求学生按要求关闭仪器,清理现场,做好环境清洁工作。实验教师检查每组学生仪器设备整理情况,电源是否关闭,水桶(水杯)水是否倒入水箱中,雷诺实验的有色水阀门是否关闭,桌面是否整理,并作相应记录。

表2 流体力学实验操作考核评分标准

序号

评分标准

扣分值

1

测压管齐平缺认可/次

–0.5

2

测压管测点未达到实验要求/次

–0.5

3

排气泡缺核查/次

–0.5

4

操作时间未达到实验要求/次

–0.5

5

操作次数未达到实验要求/次

–1

6

仪器电源未关、阀门未关水未处理、桌面未整理/项 –0.5

7

实验结果不符合规律/组数据

–0.5

8

没参加实验操作/个实验

–5

注:流体力学实验操作考核满分20分,如在实验过程中,发生上述情况,则扣除相应的分值,扣完为止。

3.实验报告考核

实验报告作为考核的依据,自身存在不足的地方,既不能反映学生的操作技能,不能表现学生动手解决实际问题的能力。即使学生不动手或不作为主要参与者,也可以写出一份较好的实验报告。另外,由于实验报告是在实验室外完成的,可能会出现修改数据的现象,实验教师也很难了解学生对某些问题的理解程度和真实的看法。因此,实验报告需要补充一些主观方面的报告成果,比如实验作业、实验总结等等。实验报告考核占实验总成绩的30%,由三部分组成:实验报告成绩、实验作业成绩和实验总结成绩。

实验报告主要考核学生实验后对所做实验进行的分析和评价,以及撰写报告的能力,达到总结和提高的目的。实验报告成绩满分20分,取所有实验报告分值的平均分作为实验报告成绩,详细评分标准见表3,主要根据实验数据计算是否正确,实验现象分析是否客观完整等评定。对于实验报告其固有的缺陷,流体力学实验报告考核采用数据记录复份,来避免学生修改数据。

表3 流体力学实验报告评分标准

序号

评分标准

分值

1 实验报告规范认真,图表清晰,实验数据计算正确,实验现象分析客观完整,能做较深层的探研,优秀 20

2 实验报告规范认真,图表清晰,实验数据计算正确,实验现象分析比较客观,良好

16

3 实验报告规范,图表清晰,实验数据计算基本正确,实验现象分析基本客观,及格

12

4 实验报告格式规范,实验数据计算不正确,实验现象分析不正确,不及格

8

5 未完成实验报告

实验作业是根据实验内容和实验要求精心设计的,可以加深学生对实验的认识、补充和扩展。实验准备时,教师对将要进行的实验提出问题,引导学生深入思考。学生通过查找资料,操作实验,编写实验报告,将问题引入深层次的探究,然后回答问题。如能量方程实验,提出问题:“测点2、3和测点10、11的测压管读数分别说明了什么问题?[2]”学生进行一系列思考后探究答案。实验作业成绩满分5分,每个实验作业以5分制为标准进行评分,最后求平均分作为实验作业成绩。

实验总结在流体力学全部实验结束后完成。此时,学生对实验知识、技能、仪器设备等都有了真切的体会、深刻的认识,每个人都会有不同程度的收获。学生可以在实验总结中写:实验后的收获和感想,对实验教学的意见和建议,对实验室发展的建设性意见。这些信息反馈给实验教师,可使教师进一步了解学生对实验的真实感受,从而总结出宝贵的经验和教训,改进实验教学方法。实验总结是教师提高实验教学水平的基础。实验总结成绩满分5分,以5分制为标准打分。

4.实验创新考核

实验创新主要培养学生的创新能力。流体力学实验创新分两个方向:学习性实验创新和创造性实验创新。实验创新考核占实验总成绩的20%。

对于那些创新能力比较薄弱的学生,可以从学习别人的已有成果开始,让学生收集现有的实验创新实例,运用学过的流体力学理论知识和实验知识重新剖析,在规定的时间内阐明自己的观点,进行答辩。学习性实验创新成绩满分10分。

对于创新能力较强的学生,鼓励学生在现有仪器设备基础上,进行创新性、设计性研究与探索,组合成为新的实验或量测新的内容,也可以通过电脑进行模拟。实验创新也鼓励改良改进设计实验设备装置。另外,鼓励教师教改项目、科研项目带进实验室,开设综合性、设计性实验,研制开发教学仪器设备,更新和改造旧的实验内容和手段。

开展实验研究可由团体进行,研究的一般步骤包括:确定题目、收集资料、制订研究计划、实验测试、分析与概括、反复论证或实践验证、完成实验报告或论文。学生在教师的指导下,自主选题、自主进行研究性学习、自主进行实验方法设计、开展实验性研究、进行数据统计分析处理,撰写研究性论文和总结报告等工作。实验创新小组向全体参加同学和指导老师介绍实验设计思路、实验过程、创新点等主要内容,并回答同学和教师的提问,由同学和实验教师一起打分考核。创造性实验创新成绩满分20分。

通过实验创新求得学生的发展,教师的发展,实验室的发展。

5.实验考试考核

流体力学实验考核分两种形式:教师与学生的交谈、闭卷考试。实验考试考核占实验总成绩的20%,实验考试成绩满分100分,其中教师与学生交谈成绩50分,闭卷考试成绩50分。

教师与学生的交谈,可以了解学生在实验室获得知识的掌握情况,可以评估学生对知识的理解及口头表达的技巧,以及对实验结果的解释等,具有教高的表面效度。

闭卷考试可以克服实验报告的某些缺陷。流体力学实验考试内容侧重于实验方法与原理的理解,流体流动的某些基本概念和基本原理的认识,静态流动参数测试方法的掌握。

综合流体力学实验五个部分的考核,可以给出完整的流体力学实验考核体系,如表4所示。

表4 流体力学实验操作考核体系

序号 实验考核

比例

分值 备注

结束语:

随着实验课程的独立开设,需要更精确、更契合实际的实验考核方法来适应实验课程的发展建设需要。实验考核要求能够公平合理地评价每个学生的实验成绩,能够对学生实验学习起到较好的引导作用,激发学生的实验兴趣,规范学生的实验过程,提高学生的实验能力[3]。流体力学实验考核体系根据实验教学的过程,对实验前、实验中、实验后各个环节,分别进行具体考核,提出了一套新的实验考核体系。该实验考核体系从实验整体出发,注重培养学生各项实验能力,提高学生综合素质,提倡自主实验来提高学生的学习自主性,通过定性定量的实验操作考核来提高学生的实际动手能力,以实验创新考核来推动学生的创新能力,从而真正提高实验教学效果。

参考文献

[1] 葛年明、周泉.电子电工实验考核方法的改革〔J〕.实验技术与管理,2008(4):146-147,166

第8篇

(甘肃农业大学 工学院,甘肃 兰州 730070)

摘要:启发式教学是现代教育研究当中的一个重要课题,尤其是在高等教育全面改革的大背景下,通过启发式教学引导学生自主学习,勇于创新,让学生的个性自由发挥,充分调动学习的积极性和热情,促进学生身心的健康发展。本文主要探讨的是启发式教学在《工程流体力学》课程教学中的运用,彻底摒弃传统的教学观念,让学生成为教学活动的主体,通过教师的启发引导,让学生更加主动地学习。

关键词 :工程流体力学;启发式教学;教学实践;运用

中图分类号:G642文献标识码:A文章编号:1673-2596(2015)03-0274-02

一、引言

《工程流体力学》是我国普通高等学校工科专业的基础课程,是一门研究液体和气体的机械运动规律以及应用的学科。工程流体力学在土木工程、能源、动力、环境、设备、化工、航空以及国防等领域都有很重要的应用,尤其是热能与动力工程专业的学生需要掌握系统、全面的《工程流体力学》理论知识,通过学习本课程,确保学生能够熟练地掌握流体力学的基本概念和原理,通过实验操作能够将理论知识运用到实际当中,为日后的工作和学习打下坚实的基础。鉴于此,本文主要探讨启发式教学在《工程流体力学》课程教学中的运用。

二、《工程流体力学》传统教学理念的转变

《工程流体力学》是工科专业的一门基础学科,是力学的一个重要分支,主要目的是为了将流体力学知识充分运用到生产生活当中。工程流体力学的研究方法主要包括实验研究、理论分析以及数值计算等。其中实验研究主要是利用各种实验仪器对流体现象进行观测分析,总结出流体运动的规律,并在此基础上进行预测,通常采用模型进行实验分析;理论分析主要是根据质量守恒、动量守恒以及能量守恒等定律,加以数学分析的手段,对流体运动进行分析研究;数值计算则是利用数学语言将流体运动的普遍规律表达出来,从而获得质量守恒、动量守恒以及能量守恒的计算方程,这些方程组合在一起成为流体力学基本方程组。《工程流体力学》课程设置的根本目的是为了让学生熟练地掌握流体的机械运动规律,将其运用到实际生活当中,以此来解决各种与流体力学相关的问题,但是长久以来我们在课堂教学中所强调的是知识点的灌输,学生进行机械化的记忆,缺乏创新,因此需要对传统的教学理念进行彻底改变。

(一)帮助学生建立流体力学的思维方式

《工程流体力学》的教学大纲要求学生能够了解及应用流体力学的基本运动规律,掌握流体力学的理论研究方法。在传统教学理念中,课堂教学过分注重基本概念、基本理论和计算方法的学习,学生在应试教育的环境中对书本上的知识进行机械化的记忆,很大一部分学生对于知识点的记忆仅仅是为了完成考核任务,因此无法形成系统的知识体系,也无助于培养学生的科学的思维方式,使其在日后工作和学习当中遇到关于流体力学相关的问题时,无从下手。鉴于此,在现代教育理念下需要教师引导学生建立系统的流体力学知识体系,并学会运用科学的思维方式对流体力学相关的问题进行分析研究。①

(二)提高学生综合分析应用能力

《工程流体力学》课堂教学不仅要求学生建立科学的思维方式,还需要具备对流体力学知识的综合分析和应用能力。在传统教学理念的影响下,学生被动地接受知识,严重缺乏学习的积极性和热情,对知识和计算公式的机械化记忆,无助于培养学生的发散思维。②因此需要在《工程流体力学》课堂教学过程中引导学生对知识进行自主总结,通过对知识点的归纳总结,形成鲜明形象的记忆;与此同时在课后练习中需要增加综合性,促进学生对流体力学知识的综合应用。

(三)培养学生的实践操作能力

实验是《工程流体力学》教学活动的重要组成部分,通过实验设计来检验一个理论或证实一种假设而进行的一系列操作或活动,从而更加清晰地理解和认识流体力学规律。通常实验要预设“实验目的”、“实验环境”,进行“实验操作”,最终以“实验报告”的新闻形式发表“实验结果”。③在传统教学模式下,学生只能在有限的范围内进行实验操作,根本无法锻炼学生的实践操作能力,因此需要学生自主独立的进行试验操作,让学生自行设计实验内容,确定实验方案,在实践中不断提高自己的操作和知识的运用能力。

(四)充分体现学生的主体地位

传统教学与现代教学理念严重背离之处在于课堂教学活动中,教师往往处于主导地位,而作为教学活动关键核心的学生群体则成为了知识的被动接受者,单方面机械地完成课堂教学任务,无法真正达到教学的目的。这就要求,在课堂教学过程中,教师必须时刻关注教学同步,充分调动学生的参与热情,通过讨论、提问等方式,让学生真正参与到学习活动当中,学会发现问题,解决问题的方法。④

三、启发式教学的具体应用

(一)启发式教学的实质

启发式教学源远流长,历久弥新,“启发”一词最早源于古代教育家孔丘的“不愤不启,不悱不发”。朱熹解释说:“愤者,心求通而未得之意;悱者,口欲言而未能之貌。启,谓开其意;发,谓达其辞。”愤与悱是内在心理状态在外部容色言辞上的表现。就是说在教学前务必先让学生认真思考,已经思考相当长时间但还想不通,然后可以去启发他;虽经思考并已有所领会,但未能以适当的言辞表达出来,此时可以去开导他。在现代教育理念当中,启发式教学主要是指教学活动中教师依据课程学习的客观规律,引导学生积极主动自觉地掌握知识的教学方法。启发式教学可以很好地诠释教育学之间的关系,通过设置问题情境,充分调动学生参与的积极性和主动性,启发学生独立思考,发展学生的逻辑思维能力,并且通过教师的适当引导培养学生的动手操作能力和独立解决问题的能力。⑤

(二)设置问题情境

启发式教学的关键在于设置问题情境,同时也是激发学生创新思维的一种有效方式。这就要求教师在《工程流体力学》课程教学中有目的、有意识地创设各种情境,鼓励学生主动发现问题,让学生独立地进行探索分析。在《工程流体力学》课程教学过程中,学生遇到任何疑问都应该及时提出,向同学和老师进行探讨。大量的教学实践表明,提问可以充分调动学生的注意力和学习的积极性,通过提问锻炼学生的探索欲和逻辑思维能力。⑥学生在启发式教学模式下还应该增加主动性,寻找自己的兴趣点,去钻研。这样学生才会有问题意识,可以提出问题,而不是在别人背后去解答问题。另外,设置问题情境要与实际生活相融合。可以通过创设生活或工作式的教学情境,让学生真正感受到《工程流体力学》课程教学的多样性以及前瞻性,通过不断探索激发出学生潜在的学习兴趣以及好奇心。

(三)充分调动学生的主动性

在启发式教学过程中,需要充分调动学生的主动性和积极性,让学生真正意义上成为学习活动的主导者。《工程流体力学》课程需要打破传统应试教育的束缚,让学生的积极性和主动性得到充分释放。教师组织学生进行讨论时,要注意学生的反映,激发起学生发的求知欲望,引导学生通过收集资料了解流体运动的基本规律以及这些规律在工程实际中的应用,帮助他们对问题的独立思考。例如教师可以列举一些流体力学在生活和生产中广泛应用的实例,使学生了解流体处于平衡及运动状态下的力学规律,加强理论概念与现实生活的相互联系。总之,只有主动参与其中,学生才能对问题有一个深入的了解,并且能够切身地投入自身全部的精力想方设法去解决当前所面临的问题,而教师则完全不用花费大量的精力进行讲解,只需要进行适当的指引工作,使学生的自学能力能够充分发挥。⑦

实验是检验学生动手操作以及对知识运用的最佳方式,借助实验也可以充分调动学生学习的积极性和主动性。在问题情境环节中,学生大胆假设和创新提问以后,就需要通过实验对问题进行模拟分析,并得到结论。在安全的保障下,进入实验室,在教师的引导下,自己动手去做,积极探索。这样会对学习更有帮助,而这一过程会提高学生的研究热情,也可以提高学生团队的协作能力。此外,在《工程流体力学》课程教学过程中,学生还可以自由组合进行某一问题的研究,当假设足够成立的情况下,通过查询相关的文献资料,并进入实验室去寻找答案。这样一来,学生在今后的学习或者工作中,如果遇到问题,就可以真正独立地进行思考和研究。⑧

(四)建立轻松愉悦的学习氛围

建立轻松愉悦的学习氛围是启发式教学实现的前提。而长久以的来灌输式教学,让教师成为课堂教学的主体,其高高在上的形象,让不少学生产生畏惧感,这也使得学习氛围过于凝重、刻板甚至拘束。因此在教学方式上需要打破传统教学模式的束缚,改掉以往死气乏味的课堂教学,教师应该是教学活动的组织者和设计者,通过营造出民主、和谐、愉悦的课堂气氛等方式更好地帮助学生调动他们的主观能动性和积极性,鼓励学生亲自动手,并且给学生提供更多的进行流体力学讨论研究的空间和机会,让学生在独立思考、互相讨论以及动手操作中完成问题的发现与解决过程。此外,教师还需要引导学生相互尊重、相互理解,课堂气氛做到张弛有度。让学生在合作交流中真正理解和掌握《工程流体力学》的理论知识和基本技能,使他们真正成为学习的主人。⑨

综上所述,启发式课堂教学强调学生在学习过程中的主体地位。只有充分调动起学生的积极性,才能够提高《工程流体力学》课堂教学的质量。为此,本文总结了传统教学模式下《工程流体力学》课堂教学的种种弊端,然后在此基础上对启发式教学的有效途径进行了深入研究。通过营造和谐的学习氛围以及建立良好的师生关系,使《工程流体力学》课堂教学变得更加生动、形象。

注释:

①张晓宏.高校研究型教学范式之探究——启发式教学[J].教育探索,2007(3).

②朱昌流.论启发式教学的有效实施[J].教育与职业,2007(18).

③李小川.工程流体力学教学改革模式的探索与实践[J].中国现代教育装备,2012(10).

④吴翊.启发式教学再认识[J].中国大学教学,2011(1).

⑤刘全忠.关于工程专业流体力学课程教学改革的探讨[J].教育教学,2014(1).

⑥Wuhan University、scientific Research Publishing.The Heuristic Teaching Practice Based on Innovative Thinking [A].Proceedings of Conference on Creative Education(CCE2012).2012(5).

⑦朱辉,陈洪杰,刘飞.CDIO教育模式下工程流体力学课程教学改革与实践[J].桂林航天工业学院学报,2013(12).

⑧刘莹.解立平.基于“卓越工程师”培养计划的工程流体力学课程教学改革初探[J].时代教育,2014(2).

第9篇

关键词:卓越工程师培养计划 工程流体力学 教学改革

中图分类号:G642.4 文献标识码:A DOI:10.3969/j.issn.1672-8181.2014.03.019

教育部“卓越工程师教育培养计划”(以下简称“卓越计划”)是贯彻落实国家教育改革和人才发展规划纲要的重大改革项目,主要目标是面向工业界、面向世界、面向未来,培养造就一大批创新能力强,适应经济社会发展需要的高质量型工程技术人才。天津工业大学是天津市“卓越工程师教育培养计划”的首批实施高校,环境工程专业是我校的重点学科方向之一,而工程流体力学是本专业本科教学的一门重要专业基础课,为强化学生的工程能力和创新能力,培养行业通用的工程型人才,针对“卓越计划”开展的教学改革势在必行。

流体力学是力学的一个分支,它主要研究流体静止和运动的力学规律及在工程实践中的应用。环境专业中讨论的各类问题,例如流体在管路中的运输、气体和液体中颗粒物的分离等均离不开流体力学的基本知识,因此学好工程流体力学有助于后续专业课的理解和掌握,为培养工程型人才打下坚实的基础。

1 教学中存在的问题

目前,工程流体力学的教学过程中存在很多问题。首先,课堂授课时间长,内容抽象、枯燥,导致学生学习积极性不高。工程流体力学课的主要研究对象是流体,流体本身没有固定的形状,进行研究讨论的时候缺少固定的客观形象,难于理解和掌握,并且公式推导较多,推导过程复杂,对学生的数学功底、逻辑思维能力和理解能力要求较高,因此导致教学过程中存在老师难教,学生难学的问题[1]。其次,授课方法单一,主要是教师在上面讲,学生在下面听,忽视教学中的互动性,理论知识与实际应用联系不够紧密,教学效果不理想。第三,课程成绩由最终期末考试的卷面成绩决定。学生考试都是依靠老师划重点和考前突击复习的方式通过,死记硬背的定义、公式在考试结束后马上被遗忘,对课程知识没有消化理解,就不可能有综合运用的能力[2]。

2 教学改革的内容

2.1 课程内容的优化改革

减少理论教学学时,强调学以致用。将环境工程专业的特点与“卓越计划”的目标相结合,为增加学生参与工程、实践的时间,对本科教学课程的教学时间进行调整,课堂讲授课时由76学时减少至60学时。教学内容上相应减少繁琐的理论公式推导部分,特别复杂的公式或结论不需要死记硬背,只要求学生重点掌握基本概念、公式的物理意义、应用范围和各项参数的含义等。同时,增加了泵与风机(即流体机械)部分内容,将前面的基础理论与实际应用相结合,要求学生了解流体机械的基本构造及工作原理,掌握计算运行参数及设备选型的方法。例如增加了叶片式泵与风机的理论基础内容,主要掌握离心式泵与风机的工作原理、工况分析及选择和安装的方法,其他类型的往复泵、真空泵等也会做介绍,拓宽学生的知识面。

2.2 教学方式的改革

完善教学手段,增设实践讨论课,培养学生的综合应用能力。多媒体教学手段会增加授课内容,提高讲课速度,但会使教师忽略学生对课件内容的理解消化需要时间,导致学生的思维跟不上教师的讲课速度。因此,在教学过程中,需要将多媒体技术和传统板书有机结合起来[3]。利用ppt课件中的视频、声音、动画等直观的表现方式展示流体流动的状态、流体机械的内部结构、工作原理等难于用语言和文字描述的内容,帮助学生理解书本中抽象的文字和图片。而公式推导过程、各参数意义及计算方法等则采用板书书写的形式,这样能更好地引导学生的思维,使学生对课程内容有足够的时间消化吸收。为充分调动学生的学习积极性,授课方式由单纯的教师讲,学生听,改为教师、学生一起讲。增加实践讨论课,让学生将所学内容与实际相结合,举出各种流体力学中的原理在实际生活中应用的例子,并制作ppt课件对实例加以解释,培养学生的综合应用能力。课后作业做到少而精,并增加与生活中密切相关的问题,提高学生完成作业的积极性。作业的内容既包括上节课重点又能引出下节课的难点,起到“承上启下”的作用。遇到不懂的地方,鼓励学生们自己查资料解决,培养学生独立思考和解决问题的能力。

2.3 考核方式的改革

提高平时成绩的比例,丰富试题内容,综合考查学生能力。课程的结课成绩由平时成绩和期末卷面考试成绩综合决定,平时成绩所占份额由原来的10%增大到30%以上,期末试卷成绩比例由原来的90%降到70%以下。平时成绩的考核内容除包含出勤率外,还包括课堂听讲情况、回答问题情况、作业完成情况、实践讨论课参与情况等。这种综合考核方式可以减少考前突击现象和考试抄袭现象,对于学生的学习起到督促和帮助的作用。同时,调整期末考试试题内容,对于选择、填空等客观题量减少,主观发挥题量增加,并且主观题不局限于教材后习题,而是选择更贴近日常生活的各种常见问题。

以“卓越计划”的目标为前提,我校进行了上述方面的改革,达到了较满意的教学效果。选择合适的教学方法,激发学生学习的主动性和积极性,培养学生独自分析问题和解决问题的能力,培养学生的创新意识,提高学生的综合素质是教学工作者的最终目的。“教学有法,教无定法,贵在得法。”不同的教学方法适用于不同的范围和条件,寻找一种适合“卓业计划”的教学方式仍是工程流体力学教学改革的一项艰巨的任务。

参考文献:

[1]黄芬霞.《工程流体力学》教学改革的探索[J].吉林教育,2009,(5):46.

[2]谢海英.《工程流体力学》在环境工程专业中的教学探讨[J].教育教学论坛,2013,(43):95-97.

[3]张春桃,王海蓉.基于“卓越工程师”培养目标的化工原理精品课程改革探索与实践[J].化工高等教育,2012,(128):15-17.

作者简介:刘莹,天津工业大学环境与化学工程学院,天津 300387

第10篇

Abstract: Engineering fluid mechanics course is an important professional basic course for petro related majors with a strong in theory, logic and applicability which provides a broad space for developing students' innovation thinking and creativity. In the course teaching, the innovation thinking teaching is promoted and many teaching methods such as inquiry learning, self discussion learning, problem environment learning, topic study type and comprehensive practice type are adopted to cultivate students' innovation thinking and plays an important role for training students' innovation thinking ability.

关键词:工程流体力学;创新教育;创新思维;教学法

Key words: engineering fluid mechanics; innovation education; innovation thinking; didactics

中图分类号:G64 文献标识码:A 文章编号:1006-4311(2011)12-0208-02

0 引言

钻井、采油工艺、炼油设备、油品储存和运输,都离不开管、罐、泵的设计与使用,这就涉及到流体力学的许多方面,诸如分析流体在管道内的流体规律,压力、阻力、流速和输量的关系,据以设计管径,校核管材强度,布置管线以及选择泵的大小和类型,设计泵的安装位置等;我们也需要用流体力学原理分析校核油罐或其他储液容器的结构强度;估计容器、油罐车、油罐的装卸时间;解释有关气蚀、水击等现象;以及了解计量用的水力仪表的原理等。有时还会遇到输送“三高”原油、增粘或降粘剂以及某些化工产品,这就涉及到非牛顿流体的力学原理。所有这些,都要求从事石油工艺技术的科学工作者必须具备工程流体力学的知识,以便在工程的建设和管理中,更好地发挥作用。因此,如何能使“工程流体力学”的基础理论知识及实际工程应用被学生更好地掌握,是授课教师面临的问题。

1 在“工程流体力学”课程中推行创新思维教学法的必要性

“创新是一个民族进步的灵魂,是国家兴旺发达的不歇动力。”时代呼唤创新性人才,而创新型人才的关键在于创新教育。创新教育是指以创新人才的培养为核心,以创新思维的激发为实施手段,以培养学生的创新意识、创新精神和创新能力,促进学生全面发展为主要特点的素质教育。

思维是人类区别于其他动物的本质特征,但若是仅有普通的感性认识和感性思维,人类就不可能取得如此绚烂多彩的发明创造。可以说,人类社会方方面面的发展进步,无不是人类创新思维的结果,无不是人类智慧的结晶。所谓创新思维就是超越固有的常态思维模式,多角度、多侧面地思考事物的特性,并通过各种实践活动积极发现问题,在发现中科学思考问题,使感性认识上升到理性认识,然后又在理性认识指导下开展活动、发现和思考。这种形式循环往复,使认识不断深化,创新意识、创新思维在活动、发现、思考中不断形成,创新成果不断涌现。

“工程流体力学”课程属于力学的一个分支。它研究流体的平衡和运动的基本规律,以及流体与固体的互相作用的力学特点,用以分析解决工程设计和使用的实际问题,是一门既有丰富理论知识,又包含大量实践经验的课程,所以在“工程流体力学”教学中推行“创新思维教学法”是本课程自身特点决定的,是本课程教学要求的需要,是新时期我国培养高素质石油工程人才的需要。

2 在“工程流体力学”课程中推行创新思维教学法的主要做法

在课程教学中,我们灵活采用了探究发现式、自学研讨式、问题情景式、综合实践式等各种教学法,以培养学生的创新思维意识,训练学生创新思维能力。

2.1 探究发现式教学 现代教育理论认为,教师的职责主要不是在于“教”,而在于指导学生“学”;不能满足于学生“学会”,更要引导学生“会学”;对学生不只是传授知识,而更重要的是激活思维,变“教”为“导”,要启发学生善于学习,勤于思考,勇于创新。由于学生的思维尚处于不成熟向成熟发展的阶段,所以教师有促进学生发展的责任,特别是促进学生积极进取、勇于探索、有所创新的发展。创新教育强调的是“发现”知识的过程,而不是简单地获取结果,强调的是创造性解决问题的方法和形成探究的精神。如对于应用型的内容,包括孔口出流及管嘴出流、有压管道流动、明渠流动问题。为了帮助学生既加深对基本概念、基本理论的理解,又能掌握解决实际问题的能力,教师应选取具有工程实际背景的典型例题作为研究内容,充分调动学生的学习积极性,引导学生通过查阅资料、课堂集体讨论等形式解决问题,并找出最合理的解答。又比如圆管层流的研究不外乎采用两种方法,一种是分布参数法,以N-S方程为基础,求其偏微分方程组的特解;另一种是集中参数法,以受力平衡法来讨论。对这两种方法来说若研究的圆管放置的位置不同,又可分为任意倾斜放置及水平放置。这样一来,实际采用的研究方法就有四种。一种为N-S方程,管道倾斜放置;二种为N-S方程,管道水平放置;三种为力平衡方程,管道倾斜放置;四种为力平衡方程,管道水平放置。让学生自己分析比较各种不同方法特征,让学生自己去探究发现不同方法的特点、规律,进而才能有全面正确深刻的理解。

2.2 自学研讨式教学法 为发挥学生的主体作用和培养学生的自主创新学习精神,我们根据课程不同教学内容的特点和要求,在适当时机安排学生自主学习,开展研讨,并在自学研讨中,注重引导学生把抽象思维训练与形象思维训练、发散思维训练与收敛思维训练、逆向思维训练与正确思维训练与正向思维等有机结合起来,从而达到创新思维训练的目的。同时,我们在课程教授的各个环节,还注重构建多维互动的创新性课程教学模式,把接受性、主动性、活动性、问题探究性等自主创新性教学模式有机结合,改变过去教师独占课堂、学生被动接受的单一教学信息传递方式,促使师生间、学生间的多向和谐互动,达到互相学习、教学相长、共同进步的目的。

在安排自学过程中,教师要注意避免学员出现“自学不学,学而不思,思而不动”等现象,有效的措施之一就是采用“任务驱动法”,即在安排自学内容时,同时给学生布置任务,用完成这个任务作为动力,让学生在完成任务的过程中达到自主学习和掌握知识的目的。比如,在讲授堰流时,宽顶堰溢流、薄壁堰溢流和实用堰溢流它们的流量计算公式都是相同的,只是公式中不同情况下的流量系数不同而已。在讲授粘性流体运动微分方程、紊流速度分布公式等内容时,只需要从物理概念上作简要说明即可,这样处理让学生有了更多的独立思考和自学的机会。

2.3 问题情景式教学法 创新教学方法,就是要改变过去的传统教法,努力创造设问题的情景与和谐宽松的学习氛围,培养学生的创新意识和能力,训练学生的创造思维,使学生通过生疑、质疑、解疑等活动提高发现、分析和解决问题的能力,充分挖掘学生的创造潜能。“学起于思,思起于疑”,疑则诱发探索,从而发现真理。为此,我们特别注重教学活动策略的选择和运用,充分借助各种教学手段,巧设问题情景,把情景创设策略、多向互动策略与问题策略结合运用,综合发挥教学策略的整体效应,促使学生主动思考探究、质疑问难、自我归纳辨析习惯的养成,达到学生能力培养、发展思维的目的。比如,在讲流体表面张力特性时,向学生提问“旧常生活中我们可以看到什么现象能表明流体的表面张力特性?”此时学生都会非常积极的思考,随后向大家举例,比如说我们常常看到的水滴悬挂在水龙头出口处,水银在平滑表面上成球形滚动等现象。通过这样的提问与回答,可以把学生的注意力完全集中在你所讲述的内容上,充分调动起学生学习的积极性。在说明课程所要掌握和了解的内容时,先提出许多与实际密切相关的问题,诸如:在讲解水坝的闸门会承受多大的力,高尔夫球表面为什么要做成凹凸不平的,暖气管道应如何设计,等等。通过这些问题的提出,学生可以知道学习这门课以后,能够运用所学的相关知识解决哪些实际问题,学生带着问题学习,就不会盲目地学,并且在学过相关章节后,教师再次提出问题并给予答案或让学生自己解答,从而不仅增强了学生解决问题的能力,同时也大力激发了学生学习这门课程的兴趣。在这门课程的一开始,学生学习的主动性与积极性就被充分调动起来了。

2.4 课题研究式教学法 现代认知心理学把知识分为陈述性知识和程序性知识。陈述性知识如食物的名称、概念、事实等,通过教师讲解可以掌握或记忆;程序性知识主要涉及原理、规则、定律等的理解与应用以及解决问题的技能、方法与策略的形成、情感体验等,这类知识不能单凭传授,还要求学生通过自主研究探索、亲身体验等具体活动才能内化和占有。“工程流体力学”中既有经典成熟的理论知识、技术方法,又有许多需要进一步完善发展、深入探寻研究的地方,尤其适宜于在教学中针对性开展专题研究,以培养学生的创新思维和创造能力。比如,在讲授“水力摩阻”时,针对钢质管线水力摩阻较大的特点,开展“水力减阻技术”研究;在讲授“压力管路水力计算及工艺设计”有关内容时,针对其涉及大量公式、过程复杂、手工计算效率低、误差大等情况,让学生编制“工艺计算软件”,等等。此外,我们在课程综合设计中,改变了过去一年同一题目,人人同一题目的传统做法,而根据不同学生的特点、特长,并结合专业发展前沿,设置多个题目,让学生自由选择,自由组合,采取“分层互促、小组合作”的形式,促使学生自己动手、自主创新、团结合作精神的培养和训练。

2.5 综合实践式教学法 如何让学生牢固并灵活、创造性地运用所学知识,我们认为仅凭课堂教学、课程设计、实验室演示等传统教学模式和方法远远不够。例如:在讲授描述流体运动的两种方法――拉格朗日法和欧拉法时,可以带学生到公园划船,在船上讲清拉格朗日法; 到水文站,在水文站上讲清欧拉法。在讲动量方程的应用时可以到有关的水文站或水泵站现场,实测镇墩的受力,与理论计算作比较。在计算曲面的静水压力的竖向分力时,需要建立压力体概念,而在有些复杂情况下,如何画出压力体,以及如何判断压力体的虚实比较困难,这就需要借助于光盘,利用电教中心的多媒体教室作动态的演示。

3 结语

《工程流体力学》课程是面向工程应用人才的课程,所以教学核心始终是学生知识应用能力的养成。为此,在课程教学中,我们始终坚持推行创新思维教学法,注重开发学生的创造力,引导学生对理论、公式等进行质疑研究、探索研究,把学生创新能力的培养融于课程教学的各个环节;应用创新教育先进的理念和思想,转变教育观、学习观、人才观,始终把培养学生创新情感、创新心理、创新个性,训练学生的问题意识、创新思维、创新技法放在首位。

参考文献:

[1]李著信.创造力开发与培养[M].第二版.北京:科学技术文献出版社,2003.

第11篇

超空泡流场创新实验的教学目的有如下几方面。(1)加深学生对超空泡理论及应用技术的认识。(2)掌握超空泡模型水洞实验模型安装、测试系统、通气系统使用等实验技术。获得超空泡流场实验数据,了解不同实验参数情况下,超空泡流场的变化规律及特殊物理现象。(3)使学生完整参与包括前期设计在内的整个超空泡问题科研实验过程,培养学生创新开拓的能力。该创新实验工作量很大,涉及多相流体力学、实验相似理论等学科知识,以及多个大型实验设备及模型系统。如果由学生完成整个实验过程,则应将其作为大学生科技创新选题,或本科生毕业设计题目,选题方向为超空泡航行体的理论研究、应用技术或水洞实验技术,可以是教师在科研中遇到的具体问题,也可以是学生在文献学习中想到的问题。视题目设计难度的不同,整个周期2~4个月。该创新实验的准备工作也可以由教师完成,学生只完成一次现场实验。这种情况下,可将该实验设计为流体力学理论课程中的创新实验学时,一次现场实验约需4学时。无论采用哪种教学模式,其基本的实验准备工作和现场实验设计是类似的。下面以4学时创新实验为例,介绍具体的实验设计。2.1实验前准备工作如不进行LDV测速和天平测力,前期准备工作包括以下几个部分:(1)水洞实验模型设计和加工;(2)通气控制系统调试;(3)高速摄像系统调试;(4)水洞循环水过滤,水洞电气系统、控制系统调试。其中水洞实验模型设计和加工工作周期很长,无法在教学实验中实施。在实际教学实验中,预先设计和加工了多套模型,每套模型中又加工了尺寸和几何形状不同的多套可更换部件。在课上实验工况确定过程中,学生根据其掌握的文献资料和计划实现的空泡效果,对模型和部件进行选择和组合。水洞本身的工作,如循环水过滤、电器系统调试等,因其周期较长以及安全等因素,由教师在实验前完成,学生不参与。通气控制系统和高速摄像系统的硬件设备由教师在实验前准备,操作规程需要学生提前预习。2.2创新实验教学设计前期准备完成后,即可安排现场创新实验。整个实验过程中,需教师2名(一名操作水洞设备,另一名现场指导与安全保障),直接参与实验过程的学生8名,其中2名学生负责组装模型,并将模型安装到水洞工作段;2名学生负责操作通气控制系统,并记录通气参数;2名学生负责操作高速摄像系统,并调整摄像照明;2名学生负责协调各系统工作,并发出控制口令。其他学生现场观摩,也可以根据情况临时调换。完成整个实验约需4学时,前两个学时为现场学习和准备实验阶段,首先由指导教师现场提问,考察学生预习情况确定直接参与实验操作的8位同学,然后由同学们讨论完善实验大纲,主要包括模型及可更换部件的选择、实验工况确定等。接下来需要同时开展的工作有:通气控制系统和高速摄像系统现场调试、模型安装、熟悉实验流程、实验过程预演等;模型安装完毕后,需20分钟使水位上升至汽水分离罐中部(实验水位高度)。第3学时为正式实验阶段。工作段流速分别调整至实验大纲设计的流速,每个流速状态稳定后,调整通气量,分别得到无通气自然空化、局部空泡初生、局部空泡发展、超空泡等各状态,待各自状态稳定后,手工记录通气参数、水洞参数、模型参数;同时启动高速摄像机记录流场状态,观察并分析空泡稳定性、尾部回注射流等流场特性。该阶段需特别提醒学生注意观察生动的超空泡流场现象。第4学时为整理阶段。填写实验数据记录表格,整理实验数据,拆卸模型,保养实验设备。课后每位学生独立完成数据处理(主要内容有:实验现象解释分析,典型空泡形态测量,形成实验曲线,分析获得实验规律等),撰写实验报告。某次实验过程中,观测到的空泡形态随通气参数变化规律如图6所示,超空泡的溃灭过程如图7所示。从图6中可以看出,当无通气情况下,航行体表面无空泡,只在其头部有雾状自然空化产生;当通气率达到1.563时,头部局部空泡尺度增加,但是仍处于不透明状态,其后部有雾状气团脱落;当通气率达到2.813时,生成了透明的,覆盖航行体大部分表面的超空泡,只有尾部部分区域仍处于沾湿状态;当通气率继续增加,超空泡尺度进一步增大,覆盖包括尾翼在内的全部表面。从图7可以看出,当停止通气后,超空泡没有马上溃灭,而是伴随着强烈的回注射流,空泡长度逐渐减小;当仅余一半长度后,突然破灭,退化到雾状空化状态。

实验效果、经验与改进思路

实验教学是高校教学中非常重要的组成部分。实验教学有利于提高学生的实验实践能力,培养学生的学习兴趣和创新意识[9]。流体力学是一门抽象、复杂且基于实验的科学,其知识点繁多,难于理解和掌握,流体实验是观察流体现象、促进理解和掌握理论知识的重要方法和手段[10]。本创新实验采用大型流体实验设备———超空泡循环水洞,将国际上流体研究热点方向———超空泡问题引入教学环节,取得了很好的教学效果。该创新实验处于探索阶段,发展成熟后拟作为研究生课程“流体动力学基础理论”的试验部分。该课程授课学时36学时,选课同学为一般力学与力学基础及流体力学专业研究生。本创新试验计划4学时,目前只在课题组内部研究生中进行尝试,参与实验的学生体现出极高的学习热情,快速掌握了大量实验技术,并直接接触前沿科技成果。在实验过程中,学生们还锻炼了动手能力,增强了团队合作意识。该创新实验作为大学生科技创新或本科生毕业设计选题,无论是工作量、创新性,还是动手能力的培养等方面都比较合适。而做为流体力学理论课程中的创新实验部分时,则遇到一些实际困难,最直接的问题有两个。一是教师实验准备工作量大、周期长、成本高。每4学时现场实验需要2位教师,2天左右的准备时间,而每次只有8名同学可以参与实验,教学推广成本高。二是对于学生而言,实验前需要学习的理论和实验知识量大,后期数据处理工作量也较大,除了本专业的研究生之外,其他学生选做该实验,负担偏重。对于第一个问题,需注意科研工作与教学工作的配合,将超空泡水洞科研试验安排在创新课程之前,这样二者的准备工作重合,有效减小了工作量。也可以考虑由选择该创新试验作为本科毕业设计及科技创新选题目的学生完成部分试验准备和组织工作。对于学生需补充学习的知识过多的问题,可以结合流体力学理论课程和力学试验方法课程,先期让学生接触部分专业知识。该创新实验课程开课时间以研究生期间为宜,如果是本科期间开课,则应选在四年级,先修课程完成之后再开课。

第12篇

关键词: 油气储运工程专业工程流体力学考试改革

课程考试是检验课程教学效果的必要手段,同时又具有教育功能、导向功能和反馈与激励的作用。因此,考试是课程教学过程中的一个重要环节。合理确定考试的内容与方法,正确发挥考试的功能,既关系到课程教学的质量,又关系到专业人才培养目标的实现。培养“应用型”本科人才是我院油气储运工程专业的数学目标,既区别于一般本科院校的“研究型”人才培养,又不同于高职高专的职业教育,它要求在兼顾学生理论基础之上,注重培养学生分析和解决实际问题的工程实践能力。针对油气储运工程专业非常重要的专业基础课《工程流体力学》,我们紧扣人才培养目标,进行了课程考核方式方面的改革探索。

通过《工程流体力学》的学习,学生应熟悉流体运动的基本概念、基本原理、水力计算方法,掌握一定的分析、解决工程实际中流体力学问题的能力,为后续专业课程的学习和工程技术、科学研究工作及开拓新技术领域打下坚实的基础。但由于该课程对学生的高等数学、大学物理、工程力学等方面的知识,以及综合分析和处理问题能力的要求较高,学生普遍反映难学。这不但对学生专业知识的学习乃至日后工作都造成较大影响,而且使期末考试对学生造成极大的心理负担,形成恶性循环。所以,为了提高课程的教学质量,激励学生学习的积极性,不仅需要对教学内容和教学方法改革,而且需要对课程考试进行改革,以减轻学生的考试压力。

一、传统考试存在的问题

1.考试方法单一

该课程以期末笔试考卷作为主要的考核手段和评价尺度,不注重对学生学习过程投入状态和平时学习成绩的考评,最多是将平时上课的考勤记录纳入考核成绩当中。单一的笔试试卷的弊端是机械死板,强调对基本概念与原理记忆的考核,忽视了对应用能力的考核。学生习惯了教师考前划重点,突击复习的备考模式,基本靠死记硬背获得高分,对课程的知识体系根本没有理解,更不可能有综合应用的能力。

2.考试内容单薄

教材是教师命题的主要范围,教材以外的知识往往被排斥在命题范围之外。教师在教学过程中以教材为主,在考试内容上仍依赖教材,不出学生没见过的题目,必然会使学考分离,也扼杀学生分析解决实际问题的能力。

3.考试形式固定

期末的考试形式无非闭卷与开卷两种,但《工程流体力学》是一门理论性和实践性都很强的课程;如果只以一种形式进行考试,必然会缺失对课程某种能力的掌握程度的考核,考查得不全面。

二、改革考试方式的研究

1.增加实践环节考核

考试不应只局限于教师对学生传授的基本知识理论,可根据课程与专业特点,增设课程实践动手环节,加大实践环节的考核比重,充分调动学生主动学习,培养学生对知识的综合分析能力和工程综合应用能力。将部分章节留给学生自学,查阅资料,撰写报告,比如孔口与管嘴的出流问题,教师适当引入研究方法,提出某工程应用要求,由同学自学完成各种管嘴的分析、计算,提出应用策略。

2.丰富期末考试内容

对于期末试题的内容,不再拘泥于教材,更贴近于日常生活。例如问答题中有这样的题目:杜甫在《茅屋为秋风所破歌》中说:“八月秋高风怒号,卷我屋上三重茅。”试用伯努利定律解释其中的道理。再如选择题:当陨星在天空中下坠时,其划过的白线是什么?备选答案有流线、迹线、等势线、等流函数线。以上两道题新颖生动,比单纯地考查伯努利定律和流线与迹线的概念更具有创造性,更能考查学生分析问题的能力。在考试内容上也应适当体现油气储运的专业性,比如可以在拱顶罐模型上考查静力学基本公式的应用,在输油管线上考查水头损失的计算,等等。

3.完善期末成绩评定

考核总成绩中适当比例计入期末试卷成绩、小测试成绩、调查报告(或小论文)、课后作业、课前提问、平时出勤成绩,综合评定学生对学科知识的学习能力及实践能力。其中,期末考试成绩只占50%,其他五部分各占10%。对于在总成绩中所占比例最大的期末考试,可采用闭卷和开卷相结合的考核方式。通过闭卷形式考核学生对基本概念和基本理论的接受和理解能力,题型可以是填空、判断、选择、问答和简单计算。通过开卷形式考核学生灵活运用基本理论分析问题、解决问题的能力,题型可为一些综合性的计算题和分析题,如:简单管网的计算、简单管网系统运行工况的分析等。对学生容易不认真对待的作业和出勤两项,做出详细的规定。在课后作业方面,要求学生独立完成每次作业。如果发现作业雷同,此次成绩记为0分。每缺交1次作业,直接扣3分;缺交3次作业,不允许参加期末考试。在出勤方面,缺席1次,直接扣3分;缺席3次以上,不允许参加期末考试。多元化全方位地评定学习成绩,不但可以在学习过程中增加师生互动,提高学习的积极性和主动性,而且可以保证公平公正性,降低考试的功利性。

三、考试改革的实施与探索

新的考试方式在油气储运09级与10级实行,取得了较好的效果。(1)上课无人缺席,同时杜绝了不交作业及抄袭作业的现象。(2)学习热情高,效果好。在学习过程中,学生更善于思考,与教师的知识探讨增加。学生普遍反映对于流体力学知识的掌握扎实全面,在日后专业课的学习中受益匪浅。(3)整体成绩与08级对比有所提高,及格率升高,优秀率升高。

新的考试方式虽然有一定的成效,但是对教师提出了更高的要求。全面的考核方式必然会增大教师的工作量,这就要求教师有更多的责任心和奉献精神。在考试改革实施过程中,可能还会出现一些难以预料的问题,所以在已尝试的考核方法的基础上,还要进一步充实完善,使《工程流体力学》的考试更能促进学生平时努力学习,激发学生的学习兴趣,公正客观地评价学生学习的优与劣,并且有利于学生能力的培养,实现专业的人才培养目标。

参考文献:

[1]程远鹏,白羽.油气储运工程专业课程考试改革探索[J].重庆科技学院学报(社会科学版).2009,(8):208,210.

第13篇

关键词:非流线型;降低油耗;有限元分析;优化气动特性

中图分类号:U416 文献标识码:A 文章编号:1009-2374(2013)20-0095-02

空气动力学指标是货车最重要的参数之一,它对货车的动力性、经济性、操纵稳定性等有着极其重要的影响。随着燃油价格的上涨和节能减排的要求,现今车身的设计将气动性能指标作为出发点,可见,提高气动特性对降低货车的燃油率和提高节能指标有着非常重大的作用。货车正常行驶时,尾部会形成漩涡,消耗大量的能量,可以通过改变货车尾部形状,阻碍漩涡的形成,从而降低油耗。

1 气动阻力及其对货车性能的影响

1.1 气动阻力

气动阻力是货车在行驶的过程中,由于车身上部和下部结构差异所导致的上下气流的不同而形成的直接阻碍了汽车运行的压强差。气动阻力由三部分组成,它们分别是摩擦阻力、形状阻力和诱导阻力。形状阻力主要与边界层流态和脱体尾涡的出现等因素有关,是既不由粘性力,也不由升力直接引起的那部分阻力。压差阻力主要取决于车身前方阻止气流前进的压力与车身尾部的压力差。气动阻力构成中,85%为压差阻力,其余15%为摩擦阻力。压差阻力的91%来自车身后部,9%来自车身前端。

1.2 气动阻力对货车性能的影响

货车在行驶过程中和周围空气发生相对运动,空气就会对货车产生一个力,将这个力进行分解,可以得到升力、侧向力和阻力。当车速在100km/h时,发动机80%的动力用来克服气动阻力,此时,若将空气动力学性能提高10%,油耗就会降低4%~5%。重量轻的汽车,特别是重心靠后的货车,对前轮的升力特别敏感,为避免重心偏移产生翻车现象,在设计阶段应充分考虑升力的影响。气动阻力的主要影响因素为迎风投影面积和气动阻力系数,研究表明,减小气动阻力系数,能有效减小气动阻力,从而明显降低油耗。

2 货车流场有限元分析

2.1 条件设定

由流体力学可知,当马赫数Ma

2.2 网格划分

利用Ansys中的flotran模块将模型划分为fluid 141单元,由于网格在很大程度上决定着模拟结果的精度,建模过程中,在敏感区域网格划分较密,远离车身的其他部位网格划分较疏,采用自动划分的方法。

2.3 现象观察

图1

从图1中可观察到,尾部气流比较紊乱,有两个逆向的漩涡,在离尾部一段距离后,漩涡逐渐消失。

3 漩涡现象解释

由伯努利方程可知,流速大的地方压强较小,流速小的地方,压强较大。货车底部压强较大,流速较小,由于货车的侧面比较光滑,流速较高,压强低。这样,底部的气流向上运动,与侧面的气流相叠加,就会形成一对旋向相反的螺旋流。货车在高速行驶时,前围直接冲击前方气流,使得货车的一部分动能转化为压力能,形成正压区,尾部涡系的存在,使其成为负压区。

4 漩涡对货车运行性能的影响

货车前后两部分压强分布不对称就会形成压差阻力,压差阻力很大程度上取决于尾部漩涡区域大小及其内部的压强大小,尾涡区域越大,压差阻力就越大,反之就越小。而尾涡区的大小又取决于分离点的位置,流线体的分离点接近物体尾部,从而有较小的尾涡区,但厢式货车的压差阻力很大,一般占总的气动阻力的80%以上。压差阻力越大,货车的气动系数也越大,货车的能耗增加。货车尾部由于气体的粘性消耗,漩涡逐渐消失,大尺度漩涡的形成和消散使得气流的能耗增加,也会增加气动阻力,从而增加货车的能耗。同时,车尾后顶缘附近出现的由于气流分离产生的负压还会影响货车的升力,从而影响货车行驶的稳定性。

5 车尾改装优化

将货车截尾式尾部改装成光滑的流线走势,能有效减小涡流。

图2

要改善货车的气动性能,就必须控制尾部漩涡的强度,减弱它的湍流程度,降低气流的湍流能量消耗,可以减小气动阻力,降低油耗。通过多次试验可知,三角形、双弧形等结构都可以有效减少漩涡的产生。

6 结语

本文通过对货车钝头式尾部产生的漩涡进行了详细的分析和解释,通过对不同形状的货车尾部流场进行有限元模拟分析,得出通过优化货车尾部的结构及形状,不仅能改善汽车的动力性、提高汽车的燃料经济性,而且也能提高汽车的操纵稳定性,保证行车安全。

参考文献

[1] 刘远臻,左亚会,姜康,高兴良.基于空气动力学的车身设计改进[J].

[2] 昃强,刘鹏.汽车空气动力学仿真[A].中国用户论文集[C].2009.

[3] 齐鄂荣,曾玉红.流体力学[M].武汉:武汉大学出版社,2005.

[4] 谢龙汉.ANSYS FLOTRAN流体及热分析[M].北京:电子工业出版社,2012.

[5] 孔斌.基于空气动力学的车身造型设计[D].2008.

[6] 李莉.特定运动状态下车辆瞬态空气动力学特性的研究[D].2010.

第14篇

[关键词] 力学 学科 发展报告

福建省力学学科在广大的省内力学工作者长期不懈努力下,通过与国内外同行广泛交流、相互学习,以及不断从国内外引进优秀力学人才,近十年来取得不少成果。目前,虽然总体上在国内还无法处于先进行列,但在某些领域的一些研究成果达到了国内甚至国际先进水准,国内影响也日益增加。但是,福建毕竟是力学小省,从事力学研究的队伍很小,真正从事力学理论、基础研究的人才更少。迄今,我省高校还没有设置力学专业,更没有力学或航空航天学院。正因为我们没有强大的力学研究队伍,我们的研究成果不够系统,也无法形成国内外影响力大的研究团队。力学是目前世界上发展非常快的一个学科,是众多工程技术的基础,其研究成果被广泛应用于先进的航天航空技术、舰船技术、兵器技术、尖端的建筑领域、车辆技术、机器人技术、高速精密机床、电子技术、防震救灾等等。力学学科强的省份,其工程技术各个领域普遍也强。由于经济实力有限,福建省同其他一些省市一样,对力学等基础学科重视不够,导致工程技术人才队伍总体素质不是很高,研究后劲不足。除了高层建筑、大型桥梁、水库等事关国计民生的大项目外,很少见到生产企业借助力学寻找疑难问题的答案,或开发设计新产品。为此,总结力学学科发展,不仅仅是有助于本学科更快更好的发展,更重要的是促进力学对工业进步的推动作用。此外,还可以帮助年轻的力学工作者、力学爱好者,以及政府有关部门,更快更好了解我省乃至全世界力学发展动态、应用与存在的问题,促进力学人才队伍的发展壮大。虽然我省力学人才数量与培养机制在国内处于劣势,然而,力学学科也同其他学科一样, 有能力、也期待在海西建设中发挥更大的作用、得到更快的发展。

目前,我省力学学科研究领域主要集中固体力学、流体力学、计算力学、机械动力学与控制、细观力学、实验力学、结构力学等方面。研究内容既有理论方面的,也有许多工程实际应用的,还有关于力学教育的。本学科报告将根据上述7个领域展开。

1固体力学

固体力学研究变形固体在外界因素(如载荷、温度、湿度等)作用下受力、变形、流动、断裂等。包括杆件及理想弹性体变形和破坏;变形固体塑性变形与外力的关系;细长杆稳定性理论;杆系结构、薄板壳以及它们的组合体;裂纹尖端应力场、应变场以及裂纹扩展规律。复合材料构件的力学性能、变形规律和设计准则。固体力学不但促进了近代土木建筑、机械制造和航空航天等工业的进步和繁荣,而且为广泛的自然科学提供了范例或理论基础[1-2]。大到桥梁、航天航空器、核动力结构,小到计算机芯片、生物组织以及近年来高速发展的微/纳米机械等都需要借助固体力学理论和方法。

1.1 我省固体力学研究现状

1.1.1 断裂与疲劳方向

通过三点弯曲疲劳试验,分别跟踪监测了40Cr钢及它的两种表面处理试样疲劳损伤过程,得出了40Cr钢经过两种表面处理对其疲劳裂纹萌生寿命有显著影响的结果,提出了对疲劳裂纹萌生寿命测量的一种新方法[3]。根据材料对称循环持久极限和静载强度极限,导出任意循环特征下材料持久极限的估算公式。通过非线性有限元方法对橡胶―钢球支座的橡胶层与钢球粘结界面上及橡胶中间层在扭转载荷作用下存在中心裂纹和环形边缘裂纹的情况进行了数值模拟,给出撕裂能与裂纹尺寸、载荷和橡胶层厚度的关系曲线[4]。针对抽油机井常用油管在循环载荷作用下的疲劳断裂问题进行了理论与实验研究。在实测油管载荷谱与应变谱的基础上应用弹塑性有限元法计算油管螺纹内的应力应变场,并进行了有关的疲劳实验,以得到油管的疲劳强度。

* 第一执笔人:严世榕,福州大学车辆振动与电子控制研究所所长、教授。

1.1.2 板壳、薄壁杆件及复合材料方向

利用群论方法提出周期区域的分片正交多项式连续函数,在周期区域内利用正交分片多项式逼近位移函数可以大大地降低计算量[5]。推导了一般各向异性板弯曲的积分方程,运用加权残数配点法求解了正交各向异性板弯曲的积分方程。提出了两种新的近似基本解加权双三角级数广义各向同性板解析形式的基本解和加权双三角级数的叠加。根据Timoshenko几何变形假设和Boltzmann叠加原理,推导出控制损伤粘弹性Timoshenko中厚板的非线性动力方程以及简化的Galerkin截断方程组;然后利用非线性动力系统中的数值方法求解了简化方程组[6]。假设翘曲位移及切向位移的分布函数,考虑剪切变形的影响,利用最小势能原理建立了单位均布畸变荷载作用下的薄壁杆件畸变角微分方程[7]。采用一般解法对该畸变角微分方程进行求解,并推导求解的初参数法。采用加权余量法提出一个简支工字型梁在横向荷载作用下临界荷载的计算公式;利用这个式子算出的值与试验结果以及其它数值方法等得到的结果吻合得很好,说明文献[7]提出的公式能迅速、有效地计算薄壁杆件的横向临界荷载。以均布荷载下的抛物线钢管拱为研究对象,在考虑双重非线性的有限元分析基础上,提出纯压钢管拱稳定临界荷载计算的等效柱法[8]。提出了基于杆件连续分布的结构优化方法,优化结果不仅更接近理论解,而且克服了理论解的非均匀各向异性材料的制造困难,也完全避免了各种数值拓扑优化普遍具有的数值不稳定问题[9]。

1.1.3 弹性动力学方向

分析了一般粘弹结构特征值问题的特点,建立了一般粘弹结构的模态分析方法。与粘弹结构已有的模态分析方法相比,该方法通用于更一般的粘弹结构,在形式上不涉及粘弹本构关系项,并只涉及一种模态向量[10]。导出了时间步长内计算扰动的确定方法,并进一步采用同步计算消除计算扰动效应和后续步计算消除计算扰动效应,两种途径抵消其不利影响。基于Distorted-Born Iterative方法,提出了一种求解弹性波强非线性逆散射问题的迭代方法。在数值模拟运算时利用矩阵法进行离散处理,并采用正则化原理避免求解病态矩阵方程。应用多重尺度法推得从平方非线性振动系统势能井逃逸的时间。近似势能法用于克服非线性带来的困难。推导了系统的运动学、动力学方程。分析表明,结合系统动量及动量矩守恒关系得到的系统广义Jacobi关系为系统惯性参数的非线性函数。证明了借助于增广变量法可以将增广广义Jacobi矩阵表示为一组适当选择的惯性参数的线性函数。在此基础上,给出了系统参数未知时由空间机械臂末端惯性空间期望轨迹产生机械臂关节铰期望角速度、角加速度的增广自适应控制算法。在高速公路刚架拱实桥动测及单车荷载作用研究基础上,建立多车荷载激振模型,发展了研究刚架拱桥车激共振特性的可视化仿真方法,探讨刚架拱桥在高速多车荷载作用下的共振条件,分析车距、车速和车数对竖向瞬态振动峰值的影响,编制运行多车荷载下振动仿真分析可视化程序。提出了基于压力传感器的汽车重心实时监测机理的力学模型。利用该模型能实时监测汽车的整车重量、重心位置,提供安全装载和安全车速监测与报警,可为汽车安全系统提供可靠的重心计算力学模型,为研制汽车重心实时监测系统提供了必要参数与依据。论述数值计算中新的小波基无单元方法,即用小波基函数取代传统无单元方法中的幂级数基之后,使无单元法具有了小波变换的局域化和多分辨率等优良特性,并能有效地克服有限单元法的网格敏感性和单元之间应力不连续现象,从而不但拓展和丰富了无单元法的理论内容,也为其工程应用开辟了新的途径[11]。

1.1.4 工程应用

推导了T型截面梁的弯矩-轴力-曲率关系,提出了分析大偏心体外预应力筋的应力增量和梁弯曲性能的通用方法。比较荷载作用前后,转向座和锚具的变形差,计算出体外筋的应变和应力。因此这一方法考虑了体外筋的变形协调条件,同时自动地考虑了体外筋偏心距的损失。以B样条函数结合配点法直接求解框剪间有限个作用力与力矩,导出的递推公式对任意水平荷载可直接应用。采用动力特解边界元法在时域内求解坝-水-地基动力相互作用问题特性,研究了坝体、地基和系统阻尼对坝体的动力特性、动水压力、动力放大系数及稳定系数的影响。提出了一种求解柔性多体系统控制方程数值方法,在每一时间步,利用Newmark-β直接积分法计算迭代初值,基于控制方程及约束方程的泰勒展开,推导出Newton-Raphson迭代公式,对位移及拉格朗日乘子进行修正。引用Blajer提出的违约修正方法对数值积分过程中约束方程的违约进行修正。提出了地震作用下摩擦耗能支撑参数优化的一种新的数学模型,在给定的几条地震波作用下,在满足框架的规范层间位移角限值要求下,框架各层安装的耗能支撑刚度之和最小,从而实现安装较少的耗能装置而能达到相同的抗震要求[16]。

1.2 与国内外发展现状的对比与不足

整体上,我省还没有建立起几个系统、稳定的固体力学研究方向。与国内外比较尚处于相对落后的研究水平。许多研究领域尚处于空白。系统性、原创性研究成果就更少了。

1.3 国内外固体力学发展趋势预测

固体力学的研究对象向跨尺度和复杂性方向发展;研究手段以跨学科、交叉性和系统性为特色。 其基本理论以研究力与热、电、磁、声、光、化学及生命领域的相互作用,实现从原子、分子的微观结构到纳米结构、细观显微结构,直至宏观结构的多尺度关联理论框架的建立。固体力学可以将地震、边坡失稳、泥石流、矿井崩塌等自然灾害提炼成为具有群体缺陷、裂纹和裂隙的不连续、非均匀介质的力学演化过程,预测和防范突发灾害的发生。固体力学在陆地和海洋石油勘探采集和输运、核电技术、风能技术、高坝技术和高功率水力发电技术、大型工程结构的选址等重大工程中也将发挥愈来愈重要的作用。集传感功能和驱动功能为一体的智能材料和结构蕴含着许多与传统领域不同的力学问题。新型材料与结构的多场耦合力学,包括力-电-磁-热耦合场基础理论与体系、破坏理论、智能结构性能等是固体力学领域充满生机的研究方向。 利用生物学和生物技术来设计材料与器件将极大地冲击整个工程界、生物界和医学界。

1.4 我省固体力学发展对策

目前普遍强调工程应用的大社会背景对力学这门基础性学科的发展是极为不利的。鼓励自由探索,促进系统性、原创性、基础性的研究工作是促进力学学科发展的最重要基础工作。主要体现在如下几个方面:

(1)固体力学作为影响广泛的重要基础学科,需要长期、稳定地投入。自由探索和基础研究是科学新思想、新理论和新方法的重要源泉。需要以全面发展的观点长期稳定地处理好基础研究、应用基础研究和工程需求的关系,营造在各方面都鼓励创新的环境。

(2)人才培养,特别是充分发挥优秀人才作用是力学学科发展的重要源泉。建立有利于人才培养的长期、公正、公平、合理的科研成果和科技人才评价体系,力学学科的科学研究和人才培养尤其要避免急功近利。各高校在力学学科的建设上不能以其能否直接解决工程实际问题为取舍的依据,而要以现有人才和研究基础为依据。稳定、扎实的力学学科人才培养可以直接惠及众多相关学科的发展。

(3)从固体力学学科的性质、现状和发展趋势,以及国家需求来看,目前的重要科学问题和前沿领域主要有:微纳米力学、多尺度力学与跨尺度关联和计算、新材料与结构的多场耦合力学、生物材料与仿生材料力学、科学与工程计算与软件、仪器设备研制及实验力学新技术与新表征方法。国家建设需求的重要支撑点和应用发展方向主要有:固体强度与破坏力学、计算力学软件、固体力学在国家安全以及航空航天工程中的应用、大型工程结构与工业装备的力学问题、爆炸与冲击力学、环境与灾害关键力学问题等。

2流体力学

2.1 计算流体力学

流体力学是力学的一个分支,它主要研究流体的运动以及流体和其它介质间相互作用和流动的规律。流体涉及面广,它可以是气、水,也可以是油或其它流变物质。流体力学在气象、水文、石油勘探、船舶、飞行器和工业机械等领域均有广泛应用。流体力学数学上的描述是著名的Navier-Stokes方程及其各种变化。

空气动力学是流体力学针对空气运动问题的一个分支,也是流体力学研究的一个主要内容。20世纪初,飞机的出现极大地促进了空气动力学的发展。航空器的研究需要了解飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪中后期,流体力学开始和其他学科互相交叉和渗透,形成了新的交学科,如物理-化学流体动力学、磁流体力学等。

流体力学研究的手段主要有三:实验,理论分析,数值计算。理论分析是根据流体力学基本方程,通过数学方法进行分析,得出各种定量和定性结果。由于流体运动的复杂性,实验方法在流体力学中占有重要的地位。现代流体力学就是在纯理论的古典流体力学与偏重实验的古典水力学结合后才蓬勃发展起来的。实验对于验证流体运动的基本规律,测定经验参数,解释物理现象均有重要意义。

随着计算机技术和各种高效计算方法的发展,使许多原来无法用理论分析或实验研究的复杂流体问题有了求得数值解的可能性,形成了“计算流体力学”学科。从20世纪60年代起,在飞行器和其它相关工程的设计中,开始大量采用数值模拟,使得数值模拟成为与实验和理论分析相辅相成的一个重要研究手段,并正在成为流体力学的主要发展方向。数值模拟方法特点如下:

①给出流体运动区域内的离散解,而不是一般理论分析方法所关注的解析解;

②它的发展与计算机技术的发展直接相关,因为复杂的流动问题要求大计算量的运算;

③若物理问题的数学模型是正确的,则可在较广泛的流动参数(如马赫数、雷诺数、气体性质、模型尺度等)范围内研究流体力学问题,且能给出流场参数的定量结果。

厦门大学在计算流体力学学科开展了多方面的研究,其主要研究力量分布在数学、海洋、化学、材料、物理机电等院系,并建立了多套高水平的大型计算服务器。特别值得一提的工作是:数学科学学院在可压和不可压粘性流体数学模型的理论探索和高阶数值模拟的研究中取得了具有国际水平的成果,丰富和发展了下面几个重要方法:

2.1.1 谱方法(Spectral method)[17-19]。该方法是一类高阶方法,它利用整体高阶多项式逼近偏微分方程的解。它主要有两种形式:从弱形式出发的Galerkin谱方法和从强形式出发的配点法,它们都可以认为是加权残差法的特殊形式。其中配点方法更像差分法,它要求在配置点上满足原方程,与差分法不同的是:它用高阶多项式的准确求导代替了导数的差分逼近。Galerkin谱方法与有限元方法在原理上类似,都是先将偏微分方程定解问题转化成与之等价的变分形式,然后通过试探函数和检验函数的选取来逼近解,它们的主要不同在于试探函数和检验函数的选取以及高维情况下基函数的构造。谱方法的收敛速度取决于解的正则度,当解无限光滑时可以达到指数阶收敛,即比任何代数阶的收敛速度都快,这是谱方法相比差分法和有限元法的一个主要优点。

2.1.2 拟谱法和谱元法[20-21]。拟谱方法(Pseudo-spectral method)是一类准谱方法,可以通过从弱形式出发的广义Galerkin谱方法构造,也可以由强形式出发的配点法得到。两者在某些特殊情形下是等价的,但对绝大多数问题,配点法无法导出简洁的弱形式,导致理论分析十分困难。现在配点法正渐渐淡出研究人员的视线。基于广义Galerkin方法的拟谱方法的构造分两步:首先构造问题的Galerkin谱方法,然后利用高精度Gauss型数值积分近似弱形式中的积分。有别于标准谱方法中使用的正交多项式基,在拟谱方法中,基函数通常选择基于数值积分的Lagrange多项式基,这给计算,尤其是非线性问题的计算带来了很大的便利。由于Gauss型数值积分的高精度,在大多数情形下拟谱方法的收敛速度与谱方法相同。传统意义下的谱方法对于复杂区域的处理能力极其有限,这限制了它的应用范围。20世纪80年展起来的谱元法(spectral element method)很好地解决了这个问题。谱元法结合了谱方法和有限元法各自的优点,既能处理复杂的计算区域,又有谱方法的高精度,它在不可压流体的计算中取得了很大的成功,如今已是计算流体中最常用的方法之一。谱元法与hp-有限元方法很相似,但两者在发展的初期有许多不同点,hp-有限元使用的多项式阶数不高,所使用的基函数也与谱元法不一样。不过随着两类方法的发展,它们呈现出越来越多的共同点,有些学者已把两类方法归结为同一种方法。由于谱方法还具有低耗散,低色散的优点,如今它已成为湍流数值模拟的主要方法。

2.1.3 湍流大涡模拟(Large eddy simulation,LES) [20-22]。 自然界中的流体运动主要有两种形式,即层流(laminar) 和湍流(turbulence),层流是指流动时流线相互平行的流动,而湍流则是无规则脉动的,有强的涡旋和掺混性。目前一般的看法是:无论是层流还是湍流,它们都服从Navier-Stokes (NS)方程。由于湍流运动特征尺度的多样性,一般来说,直接数值模拟(DNS)仅局限于湍流机理的基础理论研究和一些较简单的问题。湍流大涡模拟(LES)是介于DNS和雷诺平均NS(RANS) 之间的一个折衷方法。LES需要的网格点数比DNS大大减少,这使得它能够应用于许多实际工程计算中。LES仅计算大尺度部分,而亚格子尺度运动(SGS)通过附加模型实现。目前广泛使用的SGS模型有1963年Smagorinsky 提出的“涡粘性” 模型及其变种,如“尺度相似性” 模型,“动力学模型”,“代数涡粘性”模型和“重正化群”模型等,这些模型均在某些特定的情形和适当的假设下适用, 且跟所选择的数值方法相关。较新的LES模型包括速度估计模型以及无(显式)模型的单调积分LES(MILES)和谱消去粘性(Spectral vanishing viscosity, 即SVV)LES。MILES的基本思想是借助非线性高频限制器来限制高频波段上的能量振荡,可以起到与显式SGS模型同样的效果。而SVV-LES是在谱元法框架内提出的,其基本思想是通过引入线性高频粘性项来抑制可解尺度量在截断频率附件的震荡。与其它LES方法相比,SVV-LES简单且无附加计算量。

3计算力学

20世纪50年代,随着计算机的发展,计算力学这个力学和科学计算的交叉学科得到了快速发展,特别是60年代后有限元法及其相应软件产业的迅猛发展,使得计算力学这个新兴学科迅速渗透到土木、水利、机械、航空、电子及生命科学等各个领域,成为计算机辅助设计(CAE)的重要核心内容,也使得力学这个传统的学科焕发了新的强盛的生命力。在当今科学研究和工程实践中, 科学计算已经成为与科学理论、科学实验并行的重要科学方法。2006年美国自然科学基金委员会了《基于数值模拟的工程科学》的研究报告,明确指出计算力学和数值模拟在工程科学发展中的重要地位。

近年来我省科技工作者在计算力学及其工程应用方面开展了积极的研究工作,取得了一定的科技成果。在计算力学方法方面,我省学者系统地发展了土木水利、机械、航空航天等领域常见的梁板壳结构的高效无网格分析方法,该方法采用整体坐标建立板壳无网格近似,不仅简便直接,适用于任意复杂形状的壳体,并且可以避免参数变换,大大提高了计算效率。同时该方法利用稳定节点积分构造离散方程,兼顾了稳定、效率和精度,为快速准确地分析和设计这种类型结构提供了一种有效的数值工具。同时,针对福建省暴雨天气常见的土质边坡失稳而产生的滑坡问题,建立了暴雨条件下土质边坡突发失稳的大变形高效无网格模拟法,该方法可有效模拟失稳剪切带所引发的边坡非线性大变形损伤破坏全过程,实现边坡失稳的高效无网格法全过程仿真分析,可为暴雨条件下边坡工程的设计施工、滑坡灾害的预报、预防和加固处理提供理论依据和指导,有重要的理论和实际工程意义。另外,在杂交元研究方面提出了基于基本变形模式的正交化单元构造方法,不仅概念明晰,而且由于不依赖于材料参数而大大提高了计算效率。并且,在拓扑优化方面提出了类桁架结构连续体的拓扑优化方法,有效地避免了棋盘格问题。这些计算力学方法所取得的研究成果得到了国内外同行的引用和认可。

在工程应用方面,我省学者对汽车减震及管道密封橡胶构件的受力断裂行为进行了非线性有限元和无网格分析和模拟,提出了合理的设计方案。对于大型土木结构例如大跨桥梁、大坝与深水进水塔以及深埋特长隧洞等结构,应用有限元法进行了动力抗震抗风分析,取得了满意的结果,提供了有效的工程服务。另外,应用从微观第一原理到宏观有限元无网格计算的多尺度高性能计算方法,成功地进行了材料微观设计。

虽然我省计算力学研究与应用已经得到快速发展,但在国内仍然处于相对落后的地位,表现在原创性研究偏少,参与解决工程实际问题不够。当前我省相关科研工作者应抓住海西发展的大好时机加大科研力度,争取在高性能计算方法、大规模工程问题数值仿真分析、灾害条件下工程机构性能的计算模拟及评估预防、先进的汽车仿真方法与应用以及高性能材料计算设计等方面取得新的突破,同时密切联系实际,切实提高解决海西建设中的工程技术问题的能力。

4机械动力学与控制

近年来,福州大学、厦门大学、福建农林大学、华侨大学等在机械动力学与控制方面做了不少工作。我省的机械动力学与控制在以下几个方面的研究在国内具有较鲜明的特色和一定的影响力。

4.1 机器人系统动力学与控制问题的研究

福州大学在单臂、多臂、柔性臂空间机器人系统的运动学规划、动力学分析及控制系统设计等方面进行了系统的研究工作。他们研究了载体姿态无扰、末端爪手障碍规避、机械臂关节受限等不同目标要求下的多种运动学规划方法。在控制系统设计方面,分别给出了单、双臂空间机器人关节空间轨迹及末端爪手惯性空间轨迹跟踪的非线性反馈控制、变结构滑模控制、Terminal滑模控制、模糊变结构控制、鲁棒控制、自适应控制、复合自适应控制、终端滑模自适应控制、鲁棒自适应混合控制、自适应Backstepping滑模控制、自适应模糊滑模控制、基于模糊神经网络的动力学控制、基于速度滤波器的鲁棒控制、模糊小波神经网络控制、模糊基函数自适应神经网络控制、基于RBF神经网络的自适应补偿控制、模糊神经网络自学习控制、神经网络前馈控制及闭链双臂空间机器人基于内力优化配置原则的滑模变结构控制、RBF神经网络滑模补偿控制等一系列相关的控制方案[23-35]。在柔性臂空间机器人控制系统设计方面,给出了各类期望运动的Terminal滑模控制、Backstepping反演控制、于奇异摄动法的Backstepping反演控制、关节运动自适应控制及柔性振动的快速实时抑制、运动模糊控制及柔性振动主动抑制、运动鲁棒跟踪控制及柔性振动主动抑制等多种控制方案。其成果以150余篇论文形式,在国内外学术期刊及会议上发表与交流。此外,福州大学还开展了爬墙机器人安全系统的控制研究,对其提出了变结构控制方法、模糊控制方法等[36-37]。

4.2 机械系统动力学研究

福州大学针对立井提升系统动力学与控制、摊铺机和振动压路机动力学分析、以及汽车底盘动力学控制[38-42]等方面进行了系列研究,分析了影响提升设备动力学特性的有关结构参数、运动参数,提出了减少其工作过程振动的变结构控制与模糊控制方法;针对高等级道路建设中重要设备――摊铺机的国产化改造与开发设计,系统研究了其工作原理、动力学特性等,建立了相关的动力学模型,确定了影响整机正常工作的动力学特性及其影响因素;为消化吸收并赶超国外先进的汽车电子控制技术,开展了系统的汽车底盘总成的动力学与电子控制技术的系列研究,其研究成果有助于相关新产品的问世或改进。福州大学还对轴向运动弦线横向振动控制进行了多种控制方法的研究[43-46],其成果可用于指导相应产品的开发设计。

4.3 研究不足与展望

迄今,还没有系统地将机械动力学及其控制的研究成果应用于产品开发与产品的更新换代中。目前,国内急需高精尖机床的开发技术与动态分析优化技术等。我省目前是工程机械大省,但还不是强省,进一步提高相关产品性能与可靠性,仍然需要开展大量的工作。我省的工程机械产品的更新换代(如集成优化、计算机智能控制等)、工程机械新产品开发设计与分析、汽车整车集成优化与设计分析、新型汽车电子控制系统开发设计、高速设备性能分析与改进、机械设备计算机智能故障诊断、微型机械产品开发设计等等,均以力学的分析研究为其成功的关键。

为改变这个落后局面,尤其是海西经济建设中更好发挥力学的作用,需要政府、企业、高校等投入更多人力物力,更积极主动地对重要机械产品、大批量生产的机械产品与汽车等开展机械动力学分析研究,对相关进口软件进行二次开发或早日开发出自己的专用机械动力学分析软件,以提高企业的产品开发能力与开发速度。同时增强完善实验能力与手段,实现对重要机械产品开展动力学特性实验,以确保产品性能稳定与可靠性。积极利用国内外的动力学研究成果,开展重要设备、大型设备、危险设施或设备的动态故障诊断研究,确保这些设备、设施安全可靠高效地运行。

5细观力学

细观力学是固体力学的一大分支,即采用连续介质力学方法分析具有细观结构的材料的力学问题,是固体力学与材料科学的交叉学科,其发展对固体力学研究层次的深入以及对材料科学规律的定量化表达都有重要意义。

前几年我省在细观力学方面的研究进展不多,近几年来才有所发展。研究主要集中在PZT和PLZT铁电陶瓷的电致疲劳机理,微观电畴原位观测,应力、高温、腐蚀性环境介质等耦合作用下固体材料的微结构和变形断裂行为的演变规律等几个方向:

①根据铁电材料自发应变与自发极化不唯一性,以及晶界的不同取向,提出自发极化过程中材料能量密度是变形梯度和电位移向量的非凸函数,从能量角度出发,导出铁电铁弹材料的自极化稳定构形所应满足的必要条件,利用两电畴的Gibbs 自由能之差作为畴变方向的判据,由要求板的Gibbs 函数最小来确定畴变量的大小。②进行了PZT 铁电陶瓷四点弯曲试样在交变力、交变电场及机电耦合疲劳作用前后的微裂纹和电畴的观察,获得裂纹扩展与极化方向,加载类型之间关系。③发展了一种原位XRD观测电畴系统,对电疲劳过程中PLZT铁电陶瓷试样表面X射线衍射峰随疲劳次数的变化进行了原位观测。同时,利用SEM观察了疲劳前后试样的断口形貌,并系统地进行了电场特征和温度对PLZT试样电疲劳性能影响的实验观测。④基于Raman散射原理,建立原位观测电畴翻转的Raman测试系统,对三种不同预极化处理的PLZT试样在静电场作用、电循环作用下的裂纹尖端的畴变行为进行了系统研究;通过原位Raman观测PLZT材料在准同型相界附近的相变过程。⑤系统进行牛皮质骨在拉伸、剪切、撕裂三种载荷类型下的裂纹起裂韧性研究。研究了皮质骨中矿物成分对皮质骨动态粘弹性性能的影响,发现皮质骨中的矿物质成分存在将降低胶原纤维的可动性,增强材料的粘弹性特性。⑥对牙齿等生物复合材料的性能进行了研究,发现牙齿具有很明显的压电效应,压电性能与湿度和细管的分布密切相关。⑦研究在不同保护气氛中,不同退火温度对碳化硅纤维的材料断裂强度的影响,揭示了微结构的演变和宏观性能之间的相互关系。2004年3月29~31日,张颖教授于厦门组织召开了全国细观力学会议,清华大学,中科院力学所,浙江大学,同济大学,复旦大学等国内知名高校和研究所的众多教授、专家参加了本次会议。

细观力学和微纳米力学在全球、全国范围内正在迅速扩展和深入,具有多学科交叉的强烈特征,国际竞争非常激烈。我省学者在细观力学方面和微纳米力学方面的投入较少,今后应该在非线性,动态,多物理场,跨尺度、尺度效应,微纳米力学和器件等方面加大研究投入。

6实验力学

1991年,福建省力学学会成立了实验力学专业委员会。福建省力学学会实验力学专业委员挂靠福州大学土木工程学院。

为更好开展实验力学工作,经过多年多方面努力,我省实验力学条件不断改善。2006年6月福州大学“工程结构福建省高校重点实验室”被批准成立,2008年与台湾大学联合成立了“福建省海峡两岸地震工程研究中心”,2008年“土木工程本科实验教学中心”获批“福建省本科实验教学示范中心”。2008年福州大学土木工程学院实验中心拥有土木综合实验馆、工程结构实验馆、岩土及地下工程实验馆、水利工程实验馆等场馆,总面积超过1.7万多平米,现有仪器设备总价值超过6000万元。其中装备的美国MTS大型结构加载系统价值超过1280万元,共有7个作动器,具备静载全过程、疲劳、多维拟静力和多维拟动力试验功能。此外,正在建设的“福州大学地震模拟振动台三台阵系统”(价值2500余万元)包括三个振动台,其中中间为固定的4m×4m水平三自由度振动台,两边为2.5m×2.5m可移动的水平三自由度振动台各一个,三个台在12m32m的基坑内呈一直线布置,其中边台最大可移动距离10m,可实现多台同步或异步地震输入,拓展了地震模拟实验的空间,该台阵系统将于2009年12月全面建成投入使用。该台阵系统的建成将使福州大学成为目前世界上少数几个拥有地震模拟振动台台阵的单位之一。

7结构力学

结构力学是土木工程专业的专业基础课,涉及建筑工程、结构工程、道路工程、桥隧工程、水利工程及地下工程等。一方面它以高等数学、理论力学、材料力学等课程为基础,另一方面,它又成为钢结构、钢筋混凝土结构、土力学与地基基础、结构抗震等专业课程的基础,在基础课和专业课的学习中起着承前启后的关键作用。

为增强基础教育并提高结构力学在工程中的应用,自上世纪90年代初,我省高校兴起结构力学教学法研究热潮,把结构力学教学改革推向新的高度,对教学内容进行了模块结构改革,将结构力学教学内容归纳为基础型、扩展型和研究型模块。使用高等教育出版社出版的由龙驭球、李廉锟等教授主编的统编教材的同时,在结构动力学部分,融入结构抗风、抗震、车激振动等学科前沿知识,增加了隔震结构动力反应的内容,补充和修正了传统教学内容中关于“伴生自由振动”的相关结论,实现了与学生原有知识的有机融合;有两项重要教研成果:阶梯形变截面梁“图乘贴补简化”计算方法和刚架拱“考虑二阶效应影响线”问题引入课堂讨论,更新了教学内容。

上世纪90年代末,我省结构力学平面教材和多媒体立体化教材建设取得突破,先后出版了《结构力学解题与思考》(陈,中国矿业大学出版社,1999。2007年该书由煤炭工业出版社修订再版)、《广义结构力学及其工程应用》(陈,中国铁道出版社,2003)、《结构力学》(祁皑参编,清华大学出版社,2006)等。

正如王光远院士所指出,结构力学学科呈现出“从狭义到广义,从被动到主动,从确定到不确定,并与结构工程渗透融合”的发展趋势。我国在力学领域的理论研究已位居世界先进行列,但在应用软件的研制方面落后了一大步,具有自主知识产权的应用软件寥若晨星。结构力学作为专业基础教育与国际先进水平接轨,体现现代结构力学教育思想;完善教学资源库建设,加强国际教学交流是当务之急。根据工科专业特点,面向能力培养、面向工程实践、面向信息时代、面向一流水准,应是我省结构力学研究与教学所追求的目标。

参考文献:

[1] 国家自然科学基金委员会数学物理科学部. 力学学科发展研究报告[M].北京: 科学出版社, 2007.

[2] 中国科学技术协会. 2006-2007力学学科发展报告[M]. 北京: 中国科学技术出版社, 2007.

[3] 吴维青. 40Cr钢疲劳裂纹萌生寿命的测量[J]. 应用力学学报, 2003, 20(3): 141-144.

[4] 杨晓翔, 刘晓明. 橡胶-钢球支座在扭转载荷作用下的断裂分析[J]. 应用力学学报, 2009, 26(1):176-180.

[5] 林福泳. 板弯曲问题的群论方法[J]. 计算力学学报, 2004, 21(4):459-463.

[6] 程昌钧, 盛冬发等. 损伤粘弹性Timoshenko梁的拟静态力学行为分析[J]. 应用数学和力学, 2006, 27(3):267-274.

[7] 王全凤, 李华煌. 薄壁杆件侧向稳定的近似闭合解[J]. 工程力学, 1996, 13 (2):24-33.

[8] 韦建刚, 陈宝春等. 纯压钢管拱稳定临界荷载计算的等效柱法[J]. 应用力学学报, 2009, 26(1):194-200.

[9] 周克民, 李俊峰. 结构拓扑优化研究方法综述[J]. 力学进展, 2005, 35(1): 69-76.

[10] 童昕, 顾崇衔. 一般粘弹结构的模态分析[J]. 应用力学学报, 2000, 17(1): 67-75.

[11] 周瑞忠, 周小平等. 小波基无单元法及其工程应用[J]. 工程力学,2003, 20(6):70-74.

[12] 黄庆丰, 王全凤等. Wilson-θ法直接积分的运动约束和计算扰动[J]. 计算力学学报,2005,22(4):477-481.

[13] 方德平, 王全凤. 框-剪结构剪力墙可中断高度的分析研究[J]. 工程力学,2007,24(4):124-128.

[14] 叶荣华. 框―剪体系无连续化假定的简化算法[J]. 工程力学, 1994,11(1): 52-59.

[15] 陶忠, 高献. FRP约束混凝土的应力-应变关系[J]. 工程力学, 2005, 22 (4):187-195.

[16] 施景勋, 林建华. 重力坝与水、地基动力祸合系统地震反应的时域分析[J]. 工程力学, 1994, 11(3):99-108.

[17] Mejdi Azaiez, Jie Shen, Chuanju Xu, and Qingqu Zhuang, A Laguerre- Legendre Spectral Method for the Stokes Problem in a Semi-Infinite Channel , SIAM J. Numer. Anal., 2008, 47(1): 271-292.

[18] Roger Peyret, Spectral Methods with Application to Incompressible Viscous Flow, Springer Verlag, 2002.

[19] Chuanju Xu, Yumin Lin, A numerical comparison of outflow boundary conditions for spectral element simulations of incompressible flows , Commun. Comput. Phys., 2007,(2): 477-500.

[20] R.Pasquetti, Chuanju Xu, High-Order Algorithms for Large-Eddy Simulation of incompressible Flows, J. Scient. Computing, 2002, 17(1-3): 273-284.

[21] Zhijian Rong, Chuanju Xu, Spectral Vanishing Viscosity for Large-Eddy Simulations by Spectral Element Methods , Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 1-7.

[22] Chuanju Xu, Stabilization Methods for Spectral Element Computations of Incompressible Flows, Journal of Scientific Computing, 2006, 27(1-3): 495-505.

[23] 郭益深,陈力. Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance[J]. Applied Mathematics and Mechanacs, 2008, 29(5):583-590.

[24] 陈志煌,陈力. 漂浮基双臂空间机器人姿态与末端抓手惯性空间轨迹协调运动的模糊滑模控制[J]. 力学季刊, 2008, 29(3): 399-404.

[25] 唐晓腾,陈力.自由漂浮双臂空间机器人基联坐标系内轨迹的一种增广变结构鲁棒控制方法[J]. 中国机械工程, 2008, 19(19): 2278-2282.

[26] 洪昭斌,陈力.双臂空间机器人关节运动的一种增广自适应控制方法[J]. 空间科学学报,2007, 27(4): 347-352.

[27] 陈力, 刘延柱. 带滑移铰空间机械臂协调运动的复合自适应控制[J]. 高技术通讯, 2001, 11(10): 78-82.

[28] 陈力. 参数不确定空间机械臂系统的鲁棒自适应混合控制[J].控制理论与应用. 2004, 21(4): 512-516.

[29] 梁捷,陈力. 具有未知载荷参数的漂浮基空间机械臂姿态、关节协调运动的模糊自适应补偿控制[J]. 空间科学学报,2009,29(3): 338-345.

[30] 洪昭斌,陈力. 基于速度滤波器的漂浮基空间机械臂鲁棒控制[C]. 中国航天可持续发展高峰论坛暨中国宇航学会第三届学术年会, 北京, 2008

[31] 郭益深, 陈力. 漂浮基空间机械臂姿态、末端爪手协调运动的自适应神经网络控制[J].工程力学, 2009, 26(7): 181-187.

[32] 郭益深,陈力. 基于RBF神经元网络的漂浮基空间机械臂关节运动自适应控制方法[J]. 中国机械工程, 2008, 19(20): 2463-2468.

[33] 洪昭彬,陈力. 漂浮基双臂空间机器人系统的模糊神经网络自学习控制[J]. 机器人, 2008, 30(5): 435-439.

[34] 黄登峰, 陈力.Neural Network Feed-forward Control of Free-floating Dual-arm Space robot System in Joint Space.The 59th International Astronautical Congress, Glasgow, Scotland, 29 September 3 October 2008.

[35] 郭益深,陈力.漂浮基柔性空间机械臂姿态与关节协调运动的Terminal滑模控制[J]. 动力学与控制学报, 2009, 7(2): 158-163.

[36] 严世榕,S.K. Tso,A new suspension-type maintenance system for tall buildings and its mechanical analysis, Proceedings of IEEE mechatronics and machine vision in practice, Perth, Australia,2003.12.

[37] 严世榕,S.K. Tso,爬墙式机器人安全系统的动力学变结构控制研究[J].机器人,2002,24(2): 122-125.

[38] 严世榕,刘梅,等. 双容器提升系统在加速过程中的动力学控制研究[J]. 振动工程学报,2001,14(3): 322-324.

[39] 严世榕,闻邦椿. 摊铺机压实机构的一种非线性动力学理论研究[J]. 中国公路学报,2000,13(3): 123-126.

[40] 严世榕,林志伟. Study on a new safety control method for a vehicle, Proceedings of IEEE ICAL 2009, Shenyang, 2009.

[41] 严世榕,苏振海. Dynamic control of an electric steering vehicle, Proceedings of IEEE ICAL 2008, Qingdao, 2008.

[42] 管迪,陈乐生. 振动压路机的一种非线性动力学建模与仿真[J]. 系统仿真学报,2007,19(24): 5809-5811,5817.

[43] 张伟,陈立群. Vibration control of an axially moving string system: wave cancellation method. Applied Mathematics and Computation,2006, 175(1).

[44] 张伟,陈立群. 轴向运动弦线横向振动的自适应方法[J]. 机械工程学报, 2006, 42(4): 96-100.

[45] 张伟,陈立群. 轴向运动弦线横向振动控制的Lyapunov方法[J]. 控制理论与应用, 2006, 23(4): 531-535.

[46] 张伟,陈立群. 轴向运动弦线横向振动的线性反馈控制[J].应用力学学报,2006,23(2): 242-245.

[47] 向宇, 程璇, 张颖. PZT 在机电疲劳作用下的微裂纹和畴变[J]. 厦门大学学报,2001,40(1): 74-80.

[48] 张颖. 关于铁电铁弹材料的自然构形[J]. 力学学报, 2000,32(2): 213- 222.

[49] 张颖. 外加电场作用下层状铁电多晶材料板的模拟[J]. 厦门大学学报(自然科学版),1999,38(3): 396-402.

[50] Zhang S, Cheng X., Zhang Y., Recent progress in observations of domain switching in ferroelectric ceramics, RARE METAL MATERIALS AND ENGINEERING,34:31-36 Suppl.2 SEP(2005).

[51] Zhang S, Cheng X., Zhang Y., In situ Raman spectroscopy observation for domain switching of ferroelectric ceramics, ACTA METALLURGICA SINICA, 2005,41 (6).

[52] Chen ZW, Lu ZY, Chen XM, Cheng X., Zhang Y., Effects of electrical characters on electrical fatigue behavior in PLZT ferroelectric ceramics, HIGH-PERFORMANCE CERAMICS, 2005, 1 (2).

[53] Zhang Y., Chen ZW, Cheng X., Zhang S, In situ XRD investigation of domain switching in ferroelectric ceramics PLZT during an electric fatigue process, ACTA METALLURGICA SINICA, 2004, 40 (12).

[54] Chen ZW, Cheng X., Zhang Y., Effect of temperature on electric fatigue behaviour of PLZT ferroelectric ceramics, RARE METAL MATERIALS AND ENGINEERING, 2004, 33 (8).

[55] Chen ZW, Cheng X., Zhang Y., Mechanism of electric fatigue in PLZE ceramics, ACTA METALLURGICA SINICA, 2004, 40 (3).

[56] Ying Zhang, Xuan Cheng, Rong Qian, Fatigue behavior of ferroelectric ceramics under mechanically_/electrically coupled cyclic loads, Materials Science and Engineering A351 (2003):81-85.

[57] Ting Wang, Zude Feng, Dynamic mechanical properties of cortical bone: The effect of mineral content, Materials Letters 59 (2005) 2277 2280.

[58] Zude Feng a,), Jae Rho b, Seung Han c, Israel Ziv, Orientation and loading condition dependence of fracture toughness in cortical bone, Materials Science and Engineering C 11 _2000. 4146.

[59] 冯祖德.皮质骨在拉伸型、剪切型和撕裂型加载条件下的断裂韧性――纵向断裂和横向断裂的比较[J]. 生物医学工程学杂志,1997, 14(3): 199-204.

[60] Liu Y. X., Cheng X., Zhang Y. Phase transitions near morphotropic phase boundary in PLZT ceramics observed by in situ Raman spectroscopy, ACTA METALLURGICA SINICA,2008, 44(1):29-33.

[61] ZHANG Sa, CHENC Xuan, ZHANG Ying, In-situ observation on domain switching of PLZT via Raman spectroscopy, Transactions of Nonferrous Metals Society of China, 2006, 16:638-642.

[62] Siwei Li, Zude Feng, Hui Mei, Litong Zhang, Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O2H2OAr atmospheres, Materials Science and Engineering A 487 (2008):424-430.

[63] Yao R. Q., Wang Y. Y. Feng Z. D., The effect of high-temperature annealing on tensile strength and its mechanism of Hi-Nicalon SiC fibres under inert atmosphere, FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2008, 31(9):777-787.

[64] 陈.工程力学教改实践中的几个关键问题[J].高等教育研究,1998, (1).

[65] 祁皑,陈,陈贞钜.在《结构力学》课程中融入前沿知识的尝试[J].力学与实践,2005, 27(4): 70-72.

[66] 陈.贴补法对图乘计算的简化[J]. 力学与实践,1996, 18(2): 58, 62.

[67] 陈, 等.考虑Ⅱ阶效应的刚架拱影响线[J]. 福州大学学报(自然科学版),2002, (1): 20.

[68] 陈.结构力学教学改革十年回顾[J]. 福州大学学报(哲社版),2005年教育专辑.

[69] 张建霖等.土木工程专业力学教学的改革与探索[J]. 厦门大学学报(哲社版),2000年增刊.

[70] 陈等.箱梁现浇预应力组合桁式膺架体系研究[J]. 土木工程学报,2004,(11): 9.

[71] 周克民, 胡云昌.利用有限元构造Michell桁架的一种方法[J]. 力学学报,2002, 34(6): 935-944.

[72] 陈, 唐意, 黄文机.多车荷载下刚架拱桥车振仿真可视化研究[J]. 工程力学,2005, 22(1): 218-222.

[73] 陈,陈五湖,祁皑.结构力学网络教学综合系统研究[J]. 高等建筑教育,2004, 13(4): 75-77.

课题组成员:

1、严世榕,福州大学车辆振动与电子控制研究所所长、教授。

2、周瑞忠,福州大学土木工程学院教授(本文顾问)。

3、周克民,华侨大学土木工程学院教授。

4、许传矩,厦门大学数学科学学院教授。

5、王东东,厦门大学建筑与土木学院教授。

6、陈力,福州大学机械工程学院教授。

7、周志东,厦门大学材料学院副教授。

第15篇

传热学教学方法改革《传热学》是研究热量传递过程规律的科学,作为一门专业基础课,广泛开设于热动、建环、化工、电子等各专业领域。这门课程与先修课程《工程热力学》和《流体力学》相比较,具有更为复杂的知识结构,因此,在对这门课的学习过程中,部分学生感到困难颇多,甚至有些无所适从。

一、上好绪论课

绪论是传热学的第一堂课,俗话说:“良好的开端是成功的一半”。上好绪论课在培养学生兴趣、引导学生学习等方面具有不可低估的作用。在绪论课上,教师可以多列举日常生活中遇到的传热学问题,以及专业中有哪些专业现象需要用传热学的知识来解释。比如,给建环专业的学生讲一些传热学在建筑节能中的应用,可以让学生对课程有个大致的了解,同时通过强调本课程在专业知识架构体系中的地位和作用,使学生产生强烈的求知欲望和浓厚的学习兴趣。另外,绪论课的内容还应包括简介三种传热方式,由于这是学生第一次接触传热学的基本概念,所以给学生讲授基本概念时要注意教学技巧,尽量将问题简单化,重点讲清三种基本传热方式之间的区别,以免学生在第一堂课就产生畏难情绪。

二、合理设置问题情境

设置问题情景,也叫“问题教学法”,就是教师在课堂讲授时,并不是把教学内容作为现成的知识向学生传授,而是将所要讲授的内容作为一个个问题向学生提出,采用课堂上一问一答的上课方式。这样不仅可以引起学生的注意,使学生集中精力听课,而且还能激发学生积极思维,调动学生学习的积极性和主动性。

教师在讲授教学内容之前,首先从应用实例中提出问题,例如,可以从家用冰箱中鲜肉冷冻时间提出非稳态导热问题;从室内暖气的安装位置讲到自然对流的概念等,引起学生注意。然后再切入主题,用所要讲授的理论对问题进行定性分析,分析问题的性质、包含的传热原理、传热的过程等。在分析问题的过程中可以采用启发的方法,逐步引导学生的思维。最后是解决问题,把工程上常用的解决这类问题的定量计算方法介绍给学生。在整个的教学过程中,师生间形成了互动,学生成为课堂教学的参与者,响应老师提出的问题,甚至对教学内容提出质疑,培养了学生探索创新的精神。

三、充分利用比拟法教学

比拟法是理论思维的一种重要的逻辑推理方法。它以比较为基础,在已有知识的基础上,通过对不同的事物及其运动规律进行比较,找出它们的相似点或相同点,然后将其中一事物的有关知识或结论推理比拟到另一事物中去。因此它是人们有效地认识自然界普遍规律的一种试探性工具。

我们在传热学的教学中,首先引入的就是电场与温度场的类比,特别是学生在先学习了电工学,了解了电势、电流、电阻的概念后,将温度场中的温度差、热流及热阻的特点与其相对比。随后,在对流换热中将已学的专业基础课流体力学中的动量传递与传热学中的热量传递,质量传递的特点相类比,找到它们之间的相互关系,而且流体力学中的一些原理及数学表达形式可以完全类比到传热学当中,使对流换热及传质问题得以大大简化。热传递的三种基本方式——导热、对流及辐射是整个学科的精髓,对电阻与热阻的类比也要始终贯穿在传热学的整个教学过程中。

四、多媒体教学手段的应用

一直以来,传热学的传统教学都是借助黑板和粉笔等来进行的。而传热学作为高等院校工程类专业的一门专业基础课,不仅要介绍基本概念、基本理论,还要介绍传热学中的分析问题、解决问题的研究方法以及传热学的实际应用,其最大的目的也就是要将知识和现实联系起来,将理论知识应用于工程实践中去。但是凭借传统教学工具黑板和粉笔,教师很难将现实生活和工程案例形象生动地展现在课堂之上。有了多媒体技术,传热学传统教学中的一些问题就可以迎刃而解了。我们可以利用多媒体中的图片、动画和视频轻松地将传热学中一些抽象的术语、概念、定理生动地以实体展示或者模拟,将这些知识点直观地传递给学生。教师不但可以不用再挖空心思地去组织语言或者描摹一些图形去解释这些抽象的内容,同时学生也可以非常轻松地感受到生活中的传热学知识,自然地将学习与生活联系,清晰地在脑海中构建传热的现实模型,牢固记忆。举个简单的事例,就拿换热器来说,如果不通过实验和亲身的参观,仅凭书本上的图片,很多同学即使学完了传热学,在生活中遇到了换热器也不认识,更谈不上对其分类、讲述其特点,也不会将具体的原理和换热器的器件对应起来。但是通过换热器的实例图和动画模拟换热器的换热过程,教师不需要太多的表述,学生就可以清楚地认识换热器,了解各自换热器的特点,深刻理解和掌握各种换热器的工作过程和工作原理。

在传热学教学中适当地辅助多媒体的手段,不仅可以使教师更加生动和清晰地讲解知识点,及时便捷地完善教学内容,而且也有助于学生对知识的理解、记忆和应用,极大地提升了学习效率。

五、结束语

传热学教学方法改革的措施,在正常的教学试验中取得了良好的效果,教学过程更加完善合理。学生既掌握了基本理论、基本计算的方法,又满足了后续课程对传热学理论的基本要求。同时,学生在所学知识的实践应用等方面也得到了综合的锻炼,满足当前教育发展和人才培养的需要。

参考文献:

[1]董丽娜.有限课时内“工程热力学与传热学”教学效果改进[J].中国电力教育,2010,(25).

[2]章学来,施敏敏,汪磊.多媒体在传热学教学中的应用[J].中国电力教育,2009,(3).

[3]吴雪梅,潘艳秋,贺高红.传热学课堂教学中的几点体会[J].化工高等教育,2005,(4).