前言:我们精心挑选了数篇优质人工智能与教育融合文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
中图分类号:G642.0文献标志码:A文章编号:1674-9324(2019)41-0144-02
一、人工智能课程伦理考虑的基本内涵
人工智能课程中进行伦理考虑,是在人工智能课程中有针对性地加入道德教育的元素。在方式上,可以借用西方的“隐形教育”方式。在内容上,必须符合中国的人工智能发展态势,更要受中国社会主义核心价值体系的引导。目前中国的人工智能课程,过度偏向于技术性。尤其是许多社会机构提供的课程,更是偏向于功利性,目的在于让学习课程的学习者快速获得工作。因此,必须从源头入手,对这些社会机构进行一定的约束和规范,对人工智能课程内容进行整体的架构。
二、高校人工智能课程中伦理考虑的必要性
(一)我国对于科技工作者职业道德建设的要求
首先,科技工作者的职业道德建设是促进社会治理体系现代化的必然要求。加强社会治理制度建设,一靠法治,二靠德治。中国正聚焦力量加强自主创新,科技是第一生产力。基于当代中国语境下,科技工作者的职业道德建设就至关重要。科技工作者对自己的社会责任与伦理责任应该有着充分的理解,在科研活动中既要着眼于为社会提供科学技术上的新成果,同时也要强调在伦理道德建设中起到应有的作用。
其次,从长期看,科技工作者的职业道德建设利于国家科技的发展,利于促进科技难题的解决。发展是连续和间断的同一,科技发展不能一蹴而就。在面临科技瓶颈问题时,就更要求科技工作者具有坚韧不拔的品质和无私奉献的精神。这些精神都是进行职业道德教育中的重要内容,也是科技工作者承担的社会角色中必不可少的特质。
最后,高尚的职业道德是科技工作者奋进的不竭动力。一个科技工作者只有站在最广大人民的立场上,奉献自我才能成就事业。随着全球化的发展,受西方“享乐主义”的负面影响,科技工作者只有更加坚守自我、承担社会责任,才能具有不断前进的精神支柱。
(二)对解决人工智能伦理困境的源头性作用
随着人工智能应用领域的广泛化,以及应用群体的普及化,难以避免的带来一些伦理问题上的困境。例如伦理学中经典的“电车难题”,在当代科技发展中也出现了在人工智能领域的“无人车难题”。无人车产生事故的责任归属与分配就是目前很多学者在关注的伦理问题。人工智能的发展对当前的法律规制,还有现存的人伦规范都产生了挑战。人工智能的未来发展方向,在操作性上要避免技术鸿沟,在设计过程中要坚持算法公开化、透明化,并且在出现数据漏洞时应尽快地进行自我修复。这对于科技工作者自身的素质提出了很高的要求,不但要求科技工作者自身的知识素质与知识能力过硬,而且要求科技工作者要严于律己,具有较高的思想道德素质。要求科技工作者对于人工智能的发展保持理性的态度,坚持为国为民。许多科幻电影和小说中都体现了未来人工智能发展到一定阶段时,人与机器产生的情感迷思。作为科技工作者,在设计与调整过程中都应保持情感中立,勇于承担社会责任。目前我国正处于人工智能发展的初级阶段,人工智能尚不能拥有自主意识,人工智能的行为责任必须要找到其背后的拥有自主意识的人。无论是现阶段还是未来,作为人工智能产品开发者与设计者的科技工作者树立正确的价值观和承担相应的社会责任是十分必要的。科技工作者的知识层次与道德品质在某种程度上说,是研发人工智能产品的起点。因此,对科技工作者的成长过程中进行持续的道德教育,使其树立高尚的道德观念,对于解决许多人工智能带来的伦理困境都具有源头性、基础性的作用。
三、高校人工智能课程与伦理道德教育的结合方式探索
(一)高校人工智能课程资源的充分运用与更新
从资源形态上看,实物化资源与虚拟化资源,线上资源与线下资源都应充分运用。随着智能校园的普及,有基础条件的地区与校园可以充分运用好身边的人工智能。人工智能课程是一门理论与实践相结合的课程,因此课程的内容也不能仅停留在理论层面。除了对于学术资源的运用,也应当结合实体的人工智能产品进行学习。但因为人工智能的发展程度还没有普及化,人工智能机器人也远没有达到触手可及的程度。因此运用新媒体技术,通过虚拟现实的手段进行在教学过程中的知行结合是可以尝试的路径。VR技术在网络设备硬件教学中可以节约成本,便于人工智能课堂的普及化。在理论教学中,可以通过与虚拟机器人的交互增强趣味性。VR技术有3个最突出的特点:交互性、沉浸性和构想性。课程设置者可以充分借助VR的沉浸性设置相应的场景,让课程学习者通过对特定道德场景的判断引出思考。这种新媒体手段既可以更新原有课堂知识的教学教法,更适合作为伦理教育走入人工智能课堂的重要媒介。
从资源时态上看,人工智能课程资源必须随着人工智能的发展而不断更新。从现实角度来看,最初开设人工智能课程时,其教学目标还是相对简单的——即培养学生的创造性与知识能力。但随着人工智能的普及应用,产生了许多人工智能语境下的道德困境。从指导思想来看,我国逐步走向世界舞台,随着实力增强指导思想也是不断变化的,新时代会提出新目标,为了实现中华民族的伟大复兴,课程内容的丰富也是十分必要的。因此,人工智能课程若要符合时代需要,就需要不断地更新课程资源。人工智能这一学科是具有学科交叉性的,与之相关各个领域的最新前沿问题都需要结合相应的道德教育,只有这样才能适应时代的发展。
(二)高校人工智能课程内容的合理架构
对于不同年龄层次的人工智能课程,必须考虑到不同群体的教育规律。提出合理的教育目标,用不同群体可以接受的方式方法才能达到最优的教学效果。我国人工智能课程目前的课程架构中,已经有学者进行了分年龄层次的研究。人工智能课程可以规划为专业性逐渐增强的、从边缘到中心的课程层级系统。对于高校本科生和研究生来说,人工智能课程设置内容必须具有专业性。在上文的课程体系建构中添加了艺术、文学、哲学等内容,其中包含对于人工智能伦理学的思考与认识。但在某种意义上这些青年的社会价值观就代表了未来科技工作者的社会价值观。因此在这一阶段,人工智能课程的架构与实施,国家应加以引导和监督。一方面需要建立统一标准的高校人工智能课程体系,另一方面在應对课程具体内容的落实方面给予一定程度的监督。
(三)在高校人工智能课程教学过程中充分运用案例
首先应充分运用学术案例,例如度量学习,在其基础上的迁移学习,以及发表在《机器学习》、《数据挖掘》等顶级期刊上的论文。使课堂具有含金量,可以说这也是国家发展与关注的重点。通过学术性经典案例的学习可以拥有不一样的视角,通过历史发展的角度去看人工智能技术的演变与发展。其次应充分运用具体案例。在人工智能课程中对于许多道德问题,不应抽象地去讨论,而应该具体地去讨论。也可以让学生与AI系统进行直接的问答,如:我们能保证它们稳定可靠吗?我们应该如何去测试人工智能?人工智能课堂中既要包容学生多元化的答案,不压抑创造性又要对于错误的思想进行思想转化,这就需要教育者具体问题进行具体分析了。
科教兴国战略已实施了20多年,人们对科学和教育的重要性已经有了比较深刻的认识。但是,对技术技能的作用却忽视严重,重学轻术、重轻技术开发一直为学界诟病,把学习单纯地理解为读书而忽视实践成长方式更是普遍存在,结果使得基础教育阶段的应试倾向很难得到纠正、职业技术教育长期只是家长们的备选、工程教育理科化倾向严重。
其实,当今是一个技术技能立国取胜和回归的时代。发达国家,非常重视科学,因为它要保持领头地位;后发国家,更加重视技术,因为它要先缩小与发达国家的距离;而所有的国家,都重视技术技能,因为它们是现实的生产力。日本在“二战”后就是先经由技术立国战略,走向复兴,而后才开始实施科学技术立国战略的;美国在国际金融危机后开始实施再工业化战略,提出要重返制造业巅峰和打造世界一流的劳动力;德国因为其强大的实体工业支撑和严谨的技术技能人才成长环境,得以成为欧洲经济的领头羊。这些,都是对技术技能重视及其成效的例证。
科学是找出自然界的固有规律,用数学或其它方式总结出的原理、定律、公式,是发现;技术是科学的应用,是人们用已知的原理创造出新的物件来为人服务,是创新;而技能是作为个体的人,完成某项任务的操作或心智活动方式,是直观反应,是能力表现的手段。因此科学是精练的,是少的,有唯一性;技术是广泛的,是多的,有多样性;技能更是普遍存在的,是每个人工作和生存的必须,当然每个人拥有的工作技能可以完全不同。
很多时候技术的重要性高于科学,因为科学原理是公开的而技术手段的保密的,即所谓科学无国界、技术有壁垒。技术技能是生产力的实现方式,技术技能强才能产品好、才能国家强。当然,科学的作用是基础性的,科学是技术的支撑,技术技能反过来又能促进科学的发展。我国作为一个发展中的大国已提出要走新型工业化的道路,其中制造业是重要的基础,因此需要重视技术技能积累和技术技能人才的成长。
2014年,《国务院关于加快发展现代职业教育的决定》提出“制定多方参与的支持政策,促进技术技能的积累与创新”。技术技能的创新主要来自企业,而其积累则需要学校的参与,大规模、高品质的技术技能人才培养需要通过校企的协同,产教融合是根本出路。
总理强调打造高素质产业工人队伍对于实现中国制造2025目标至关重要,《制造业人才发展规划指南》提出支持基础制造技术领域人才培养、大力培养技术技能紧缺人才,而这需要加快实现产业和教育深度融合来完成。我们需要向各界呼吁:学习,绝不仅止于读书,还须面向实践。面向中国先进制造业未来,我们必须建立和强化校企协同育人的制度和机制。
首先,我们需要积极推动产业界⒂胙校人才培养,相关院校更是要主动开展与企业的协同育人工作。为此,需要打破将协同育人简单等同于“协同创新”、实施“联合培养”项目等思维局限,着力构建以新型制造业发展为导向的协同育人模式。把学校与科研院所、行业企业协同育人纳入制造业从研发到生产、从销售到服务的全过程,以创新链、产业链、价值链统领协同育人工作;制订完善相关法律法规,明确行业企业参与人才培养的责任、权利、义务;应用型院校的教学大纲、教学计划和培养方案制订必须征求相关企业和用人单位的意见,回归工程类院校“工程师摇篮”的办学使命;围绕产业链调整专业设置,对接制造业产业集群建设校企深度合作的专业集群,强化行业特色学科建设;注重从企业吸纳有经验的优秀专业人才进入教师队伍或兼任学校的教学工作,促进专业教学标准有效对接职业标准。
其次,发挥企业在职业教育中的重要办学主体作用,重点瞄向增强劳动者的职业技能。高技能人才是现代制造业的中坚,在生产制造流程中起到技术实现和再造的作用,而企业的实践性优势和院校的理论性优势使得它们共同成为职业教育的双主体。今后,制度性地推动企业发挥作用是工作的重点,主要内容包括:进一步加强现代学徒制建设,推动校企联合招生、联合培养工作,制定措施鼓励联合建立学生实训基地和员工培训基地;推进职业教育集团化办学,鼓励制造业相关行业组织、龙头企业和职业学校通过整合利用现有职业教育资源建设特色鲜明的先进制造业职业教育集团;坚持校企合作、工学结合,强化教学、学习、实训相融合的教育教学活动,推行项目教学、案例教学、工作过程导向教学等教学模式,建设一批示范性高技能人才培养基地。
关键词:人工智能;教育变革;智慧教育
近年来大数据、云计算等信息技术飞速发展,人工智能在一些特殊领域(如图像识别、语音识别、自然语言等)不断取得突破性进展。人工智能作为新的技术驱动力正引发第四次工业革命,为医疗、教育、能源、环境等关键领域带来新的发展机遇。人工智能专家预测,人工智能在通用技术领域可能尚不能替代人类,但在一些特殊领域,人工智能将会淘汰现有的劳动力。在国外,许多国家纷纷把人工智能作为国家发展的重要竞争战略,我国学者也密切关注着人工智能的最新理论进展和实践应用,国务院于2017年7月颁布《新一代人工智能发展规划》,明确人工智能发展的重点策略。“人工智能变革教育”的潮流,引发了教育研究领域的“人工智能热”。当前全球范围内,人工智能在教育领域的大量研究和应用催发形成了教育人工智能概念。目前梳理学术上关于研究人工智能与教育的文献主要集中于:
(一)教育理念的革新。“人机一体”将成为未来新的教育方式[1],由新技术和新手段的出现所应运而生的智慧教育[2],将对原有教育进行改进和完善。智能技术在改变教育的手段和环境的同时,还有利于构建出系统解决教育问题的教育新体系,从而真正触及教育的根本[3]。
(二)关注技术的革新。机器深度学习、智能学习的算法、视觉识别以及智能语言识别这些基础技术的突破,为人工智能的教育应用奠定了坚实的基础[4]。
(三)探究教育的应用。人工智能在学校教育中的学业测评、交叉学科、角色变化等应用领域具有巨大潜力,教师角色内涵也将在与人工智能的协同共存中发生改变。AI监课系统能够数据化、可视化评估教师的授课情况,将人工智能技术的运用渗透到整个教学过程中,教师可以根据评分实时调整授课内容,以促进个性化学习,从而提升教学效果。教育深受技术发展的影响,新技术融入教育并促进教育方式的转变已成为必然趋势。一方面技术为教育提供了新的、更加广阔的可能性;另一方面技术具有变革人类的教育方式与学习方式的能力。然而,技术是一把“双刃剑”,如何获取或实现以人工智能为代表的新兴信息技术所拥有的特征、优势与功能,使其在教育中最大限度地发挥其应有的价值呢?人工智能技术如何继续被安全使用到教育领域?如何通过教育变革来促进新兴信息技术在教育教学中的广泛与深入应用,实现教育深层次革命等问题,是目前需要关注和探讨的主要问题。
1人工智能时代下教育变革的背景
1.1人工智能的内涵及具备的强大能力
人工智能最早由美国达特茅斯学院于1956年提出,其研究主要包括机器人、图像识别、自然语言处理、语音识别等,实质是一种自动感知、学习思考并做出判断的程序。人工智能具有自主学习、推断与革新的能力,推动了图像识别、自然语言处理等方面的技术突破。人工智能同时具有理性判断力、超强的工作力,只要电力供应不断,几乎可以无限制地工作下去,而且适应不需要情感投入的工作。它的超强能力,源于三个重要的技术:深度学习、大数据和强算力。
1.2人工智能时代的机遇和挑战
人工智能在精力、记忆力、计算力、感知力以及进化力等方面与人类相比,具有突出优势。在医药领域,人工智能的出现使普通民众可以享受更为高效、稀缺的医疗资源,解决医疗诊断领域诊断质量不均衡、医生资源不足等问题。在教育领域,人工智能促进教学质量进一步提升、教师角色多样化、学生学习能力的提升;为教育研究提供新技术和数据支撑;极大拓展了教育研究新视域;使教育在立德树人方面、教育方法创新方面、教育手段和环境方面以及教育服务供给方式方面均发生改变。然而,看到人工智能以其强大的处理能力带来机遇的同时,也需要正视人工智能带来的新挑战。在人工智能浪潮冲击下,如何借助人工智能发展的机遇推进教育的变革与创新?人工智能技术如何继续被安全使用?首先,人工智能专家大都认为,人工智能将会淘汰大量现有的依靠非脑力劳动为生的劳动力,需要培养人工智能时代的新型劳动力。而且,人工智能技术本身的不太成熟使很多人工智能技术只是应用在儿童教育领域,再者,人工智能潜在的道德伦理问题缺乏法律制度规范。除此之外,人工智能时代将对社会结构以及人的地位构成挑战。综上所述,人工智能时代所带来的机遇是大于挑战的。教育需适应人工智能技术所带来的突破和飞跃,不断调整和更新教育的方向和目标,实现育人成人的发展目标。
2人工智能与教育变革
2.1人工智能与教育目的的变革
人工智能带来的巨变不仅影响人类未来如何发展,而且极大释放了人类的生产力,这些在一定程度上使得人类需要重新思考教育是何目的。人工智能影响教育目的的变革主要表现在:第一,人工智能可能会使人类陷入精神危机。这源于两方面的结果:一方面,人工智能将取代大部分人的工作岗位,工作的丧失将会导致人的价值和尊严丧失。另一方面,人工智能技术的发展将可能导致所有基于自由主义的想法破产,转而人类所拥有的价值和尊严可能转化为一种“算法”,人工智能带来的职业替代风险在教育领域同样存在,主要是对教师角色的挑战。第二,人工智能有利于培养人的学习能力。从某种角度上讲,人工智能剥夺人的就业机会,但同时,人工智能助教机器人将协助教师实现个性化指导,从而有利于将学习的过程视为寻求自我价值和意义的过程。除此之外,人工智能有利于使教育注重培养人的精神能力,这种精神能力大致包括实践动手能力、价值追求能力以及创造能力,从而有利于学生知识以便于更好地完善自我、丰富自我,使教育跳脱“知识为本”的陷阱,发挥“立德树人”的正向作用。
2.2人工智能与学习方式的变革
第一,深度学习。深度学习也称为深度结构学习或者深度机器学习,是一类算法的集合。深度学习概念的提出,一方面尊重了教学规律,另一方面也是应对人工智能时代下的挑战。深度学习在机器学习、专家系统、信息处理等领域取得了显著成就,提倡学教并重、认知重构、反思教学过程,进而达到解决问题的目的。第二,个性化学习。个性化学习区别以往传统班级课堂授课,尊重学生的个性发展,因材施教。人工智能技术与大数据的应用有利于学生享受个性化的学习服务,可提供个性化的学习内容,可视化分析学生的学习数据,快速提高学生的学习效率。第三,自适应学习。自适应学习是指人工智能基于对个体学习进行快速反馈的基础上,根据学习者特征,为其推荐个性化的学习资源和学习路径,从而最大程度上适应学生的学习状态,是实现个性化学习的重要手段。人工智能技术有利于快捷、科学地判断学生的学习状态,进行学习反馈;持续收集学生的学习数据,其中包括学习目标、学习内容;高效地为学生提供海量的学习资源。
2.3人工智能与学习环境的变革
首先,有利于搭建灵活创新的学校环境。不仅可以使空间规划更具弹性,而且可以调节性增强物理环境。其次,人工智能时代的教育区别于以往传统教育强调的统一秩序,更注重个体的用户体验。创客空间、创新实验室等学习环境的不断增加以及人工智能技术的不断发展,个性化的空间环境与学习支持将改变目前学习的学习空间环境。除此之外,随着对话交互技术的逐渐成熟与不断普及,有利于实现虚实结合的立体化实时交互。VR、AR等技术的同步协作也有利于搭建新的学习环境,满足学习者的一系列要求。脑机互动技术的突破有利于实现将人工智能植入人脑,从而改变人类自然语言的交流方式。最后,人工智能通过即时、准确、高效的大数据分析有利于进行精准且个性的学习评价与反馈。人工智能将综合收集所有同学的学习记录,互相比对、优化,从而进行综合提升。更为重要的是,人工智能的人脸识别以及语音识别技术可以运用到教师的教学过程中,进行学生的学习情绪感知,学习状况的了解,从而促进学生学习的科学化;智慧校园、智慧图书馆等的出现,为教学环境的建设提供重要参考。
3人工智能在教育领域的应用
人工智能被认为是最有潜力和影响力的教育信息化技术,将通过人工智能数据挖掘分析、3D打印、模拟仿真等技术的应用,实现人工智能与教育的深度融合,对计算机辅助教学、个性化教育服务、教育人工智能生态环境等产生根本影响。2018年《地平线报告》(高等教育版本)指出了教育领域的信息化发展,未来一段时间内将通过人工智能与信息技术的结合,进而影响教育阶段的不同过程。具体见表1所示。
1 引言
能够透彻地了解人类智能行为产生的机理并制造出可以模拟智能行为的智能机,是人类长久以来一个美好而强烈的愿望。从世界各国的古老传说到近代科学的不断尝试,都表明了人类希望征服自然进而征服自己的决心。人工智能学科的出现及迅速发展,为这一愿望的实现带来了希望的曙光。它的研究延长了人脑的功能,深化与拓展了人类的智能劳动,使科学技术革命的发展速度空前。目前,人工智能(Artifical Intelligence,简称AI)已被应用到社会生活的各个方面并已取得了令人瞩目的成就。
虽然体育实用计算机科学在短短十几年中已经取得了迅猛的发展并有力地促进了体育事业的进步,但是,我们也不得不冷静地看到,体育实用计算机技术还远远滞后于计算机科学的发展,在以“知识工程”为主的人工智能诸学科取得巨大成功的时候,体育实用计算机技术还在坚持“数据结构+算法=程序”的传统程序设计方式,显然已是大大落后于时代了。怎样在系统分析的基础上有步骤、有顺序地将计算机科学的最新发展成果应用到体育领域中来,从更大程度上挖掘计算机科学的潜能从而促进体育科学再上新台阶,就成了体育科研工作者一个重要的课题。本文分析了体育实用人工智能的现状,展望了体育实用人工智能的未来。目的是引发广大体育工作者对体育实用人工智能的兴趣,吸引更多的人参与到这项工作中来。
2 人工智能及其解题思路
人工智能是一门前沿学科,是在计算机科学、控制论、信息论、系统科学、哲学等多种学科基础上发展起来的。它的出现及所取得的成就引起了人们的高度重视,从而被称为是继第三次产业革命之后的又一次革命。尽管如此,目前还没有一个关于人工智能的确切定义。我们可以这样理解:人工智能是一门研究如何构造智能机器(智能计算机)或智能系统,使它能够模拟、延伸、扩展人类智能的学科。通俗地讲,人工智能就是要研究如何使机器具有能听、会说、会看、会写、可思维、会学习等人类思维能力的一门科学。
人工智能的研制者通过知识获取过程将专家知识变成计算机可以识别的代码(知识库),然后通过计算机程序设计使计算机模拟人类所特有的推理思维过程(挑选知识的过程),从而完成只有人类才能解决的智能问题。由于人工智能可以融合多个专家的知识并吸取了人类的直觉和经验,所以,人工智能更适合于解决现实中需要人的思维判断而难以量化的问题。对于体育领域而言,不论是运动员的选材、训练计划的安排、运动处方的制订还是运动技术的诊断,体育专家的知识和经验都有着举足轻重的作用,如果智能系统可以完成这些工作,对体育科学的发展将产生深远的影响。
3 体育实用人工智能的现状
象所有处于发展之初的学科与研究方向一样,人工智能与体育科学的完全交汇融合还有相当长的路要走,还需要我们保持清醒的头脑,采取实事求是的系统分析方法来对待它。惟有如此,我们才会既能发现不利因素而不至于盲目乐观,又能看到有利条件而不至于悲观失望,才能有的放矢地把握体育实用人工智能的发展进程。
3.1 体育实用人工智能发展过程中的问题
1.对大多数体育工作者而言,人工智能技术还相当高深,它需要开发者不仅具备专项知识,还必须具备系统工程、软件开发等多个领域的综合素养。这些条件不仅对缺乏计算机操作能力的许多工作者来说十分苛刻,即便是具有一定计算机应用水平的科研人员,对知识工程理论与方法的缺乏也会使其成为人工智能的门外汉。智能系统的核心和基础是人类的知识和经验,要想开发智能系统,就必须从传统的以数值计算为中心的程序设计转变到以知识符号处理为中心的程序设计上来。这种思维与观念的转变显然不是轻而易举的。此外,智能系统的开发是一个复杂的、旷日持久的系统工程,不仅需要相当的技术和足够的软、硬件支持,而且需要开发人员长期、艰苦的努力。与那些更易在短期内取得成果的研究方向相比,体育实用人工智能技术的研究可能更容易被人们所忽略。
2.人工智能与体育科学两学科发展的相对独立性阻碍着两者的交汇融合。掌握人工智能技术的科研人员还没有看到其在体育领域应用的广阔天地,人工智能的应用成果还集中在工业控制领域、社会经济系统或军事决策过程——相对来说,这些领域更易取得明显的经济效益和社会效益。体育实用人工智能研究的巨大潜力还没有被挖掘出来。与此同时,相当一部分体育工作者还在沿袭着传统的以“经验技能”为主的教学、训练模式,保守的思想也使他们看不到或是轻视或是不愿接受科技发展的新成果,这就加大了体育实用人工智能普及的难度。总的来说,相互渗透、相互吸引是两者的必然趋势,但目前人工智能与体育科学仍处于若即若离的境地,两者的交叉还需要一个强有力的桥梁和纽带。
3.人工智能技术本身的不完备性。尽管自80年代以来,对机器学习、分布式人工智能、知识表示、常识推理等基础性研究取得了可喜的成果,特别是人工智能的重要分支——专家系统的应用研究成果已取得了重大突破,但是从总体上来看,人工智能距其完善还有相当长的路要走。我们不得不看到,人工智能的大部分分支,如自然语言理解、模式匹配、可视化研究等等都还不完善、不成熟,许多研究成果还仅仅停留在实验室和书面报告里,并没有转化到应用上来,即使是在专家系统中,专家知识获取这一“瓶颈”技术也阻碍了它的进一步发展。
此外,我们也不得不考虑一下计算机软、硬件和资金方面的限制。一般一个大型的智能系统的开发需要强有力的计算机软、硬件支持和足够的资金投入,基本上以个人微机为主的体育科研及捉襟见肘的体育科研经费可能会从很大程度上限制着体育实用人工智能的发展。
3.2 体育实用人工智能发展的有利条件
尽管一系列理论与实际问题阻碍了体育实用人工智能的发展,但是我们也没有理由对体育实用人工智能产生悲观情绪,更多、更有利的条件则为人工智能技术在体育领域的应用开辟了道路。
1.计算机技术在体育领域的广泛应用以及它对运动成绩的巨大推动力,已经使越来越多的人们认识到程序设计的美妙前景。显然,体育实用计算机程序的设计就是对体育工作者脑力劳动的解脱。这不仅仅是已尝到程序设计甜头的教练员和运动员的迫切要求,也是广大体育科研人员的努力方向。
2.近年来,我国的体育教育,特别是高层次的体育教育取得了很大的进展,培养出一大批年富力强、有很强科研能力的硕士和博士研究生。他们大都具有较强的计算机应用能力和学习能力,对他们来说,掌握人工智能技术也并不是遥不可及。青年体育科技工作者的不断发展与壮大,为体育实用人工智能的发展提供了必要的人才支持。
3.“全民健身计划”的推广与实施,不仅使我国的群众体育走上了正规化的道路,而且吸引着越来越多的人参与到体育活动中来。这其中当然包括人工智能领域的研究人员,他们会在锻炼中逐渐认识体育、了解体育、发现体育中的问题并不断尝试用本领域的技术方法来解决它(事实上,许多行之有效的体育实用方法和技术都是非体育专业科研人员引进到体育领域中来的)。人工智能会象现在已经在体育领域得到广泛应用的灰色理论、模糊数学、系统工程一样,逐渐地被广大体育工作者所承认、理解和接受,进而逐渐渗透到训练、选材、规划、教学等日常的体育工作中。因此,“全民健身计划”的出台与推广,又为体育实用人工智能的发展创造了有利的外部环境。
此外,体育科研触角的不断伸展、体育科技投入的逐渐增加、体育科研人员素质的不断提高和人工智能技术的不断完善,都会在一定程度上加快体育实用人工智能的步伐。
4 体育实用人工智能的发展方向
就目前人工智能领域而言,人工神经网络技术与集成分布式智能系统是研究的热点。前者是以研究大脑的结构和认知模型为主,用以对智力活动进行模拟或处理海量信息。后者是一种大规模的集成环境,即把各种不同的专家系统、神经网络、数据库、数值计算软件包和图形处理程序进行有机集成,以解决复杂问题,是“大成智慧工程”。虽然这两者也可作为体育实用人工智能的研究方向,但对当前体育领域而言,应用性研究,即将各种已经成熟的智能技术应用到体育实践中来,有着更加重大的现实意义。
4.1 各种体育实用专家系统的开发与研制
专家系统是利用具有相当数量的权威性知识来解决特定领域实际问题的计算机程序系统。它根据用户提供的信息、数据或事实进行自动推理判断,最后给出结论及结论的可信度以供用户决策之用。之所以选择专家系统做为体育实用人工智能研究的突破口,是因为不论从理论上、技术上,还是从应用上,专家系统都可以算得上是人工智能最成熟的一个分支。一些成功的专家系统开发实例(包括已开发的体育实用专家系统)可以提供技术支持,各种理论研究又使开发过程有章可循。体育实用专家系统的开发,能够促使体育实用人工智能不断地从抽象走向具体,引导体育工作者循序渐进地了解和掌握智能技术,逐渐开发出智能化程度更高的智能系统来。惟有如此,才能符合事物发展的客观规律,才能保证体育实用人工智能健康、有序地发展。
4.2 体育领域自身智能技术研究人员的培养
由于受知识和技术的限制,在很长的一段时间内,体育实用人工智能的发展还必须依靠人工智能领域人员的引导。然而,只有培养出体育领域自身的智能技术研究人员,体育实用人工智能才会有光明的前途。新一代的开发人员,我们可以称其为智能工程师,应该首先是一个体育工作者,并已具有相当程度的体育专业知识和体育运动实践,再通过人工智能技术的学习和训练,就可以单独开发出自身领域高质量的智能系统。智能工程师及其工作,为人工智能技术向体育领域的渗透提供了必要的前提条件。
4.3 体育实用人工智能的基础理论研究
虽然体育实用人工智能技术和方法研究十分重要,而且往往能够在较短的时间内取得明显的效益,但是它们却根植于基础理论的研究,脱离了基础理论,技术和方法就会变成无源之水、无本之木。体育实用人工智能也只是昙花一现。知识只有形成体系,才能成为科学,一系列的技术只有被理论所串接和揉合,才会具有持久的生命力。因此,加强体育实用人工智能的基础理论研究(包括运动智能和竞技心理的形成、发展规律、技能知识的表达方式、体育专家的思维推理过程研究、技能知识的传递方式研究等),是这一新生学科存在和发展的根基所在。
5 结束语
体育实用人工智能离成熟还有很长的距离,还存在着一系列的问题,但同时又充满着希望,为迎接这一机遇与希望共存的挑战,广大体育工作者需要沿着正确的方向做出艰苦的努力。
主要参考文献
1 刘泉宝,等.关于人工智能的哲学思考.计算机科学,1995(2)
2 石纯一,等.人工智能原理.北京:清华大学出版社,1993
3 陆汝钤.专家系统开发环境.北京:科学出版社,1994
4 王永庆.人工智能—原理*方法*应用.西安:西安交通大学出版社,1995
5 刘有才,等.模糊专家系统原理与设计.北京:北京航空航天大学出版社,1995
6 Ming Rao,等.智能工程与控制技术:历史、发展与未来.控制与决策,1994(1)
7 高扬.体育院校课表计算机辅助编排系统的开发与应用.体育数学与体育.系统工程,1995(1~2)
8 程勇民,等.射击运动员肤纹特征及计算机选材模型的研究.体育科学,1995(5)
9 邵桂华,等.体育领域专家系统外壳的开发与研制.体育科学,1997(3)
10 邵桂华,等.赛艇项目技术诊断专家系统的开发与研制.系统工程,1997(4)
1幼儿园国学教育开展中存在的问题
时代转型下的“国学热”催生了幼儿国学教育潮流,但在具体实践中教育效果却不尽如人意。纵观现阶段的幼儿国学教育,我们不难发现其存在一定的误区:
1.1教学活动方式单一
“幼儿园在进行国学启蒙教育时采用的教学形式较为单一,幼儿园采用的最主要方式是诵读法[1]”。首先,一位老师面对多位幼儿,教师朗读示范,幼儿跟读后进行熟背是现在多数幼儿园的教学形式,以强迫幼儿“读经”的形式灌输传统文化知识。其次,教师多采用传统的“奖励”模式来激励幼儿背诵。导致幼儿背诵课文仅仅是为了表现自己并获得奖励,而并非为了获取知识。这种单一的教学模式,忽视了幼儿的兴趣,也体现不了幼儿学习国学经典的真实意义。
1.2缺乏国学启蒙环境的熏陶
当前幼儿园的国学环境启蒙大多形式较为复古。根据调查,目前幼儿园进行的环境创设,大多是形式上的创设。大多数幼儿园误以为将国学经典(如《千字文》《百家姓》《三字经》)通篇印在墙面上、将国学经典人物画像挂在墙上,或者在某一区域内摆放古代学习的书桌和古代书本,便是营造了国学环境。这些复古形式的长期使用会使幼儿对国学失去兴趣,产生“抵触”和“视而不见”的现象。
1.3缺乏科学系统的国学教育内容
国学文化包罗万象。首先,当前大部分私立幼儿园对幼儿国学教育的理解都停留在国学经典典籍这个层面上,将国学典籍的教学作为国学教育的重点,且80%以上的幼儿园都单纯地以《弟子规》和《千字文》背诵作为国学教育的主要内容。其次,幼儿园国学教育内容的选择忽视了幼儿年龄阶段特点和身心发展水平,教材也不具备层次性。
2幼儿园国学教育融入人工智能的必要性
时代转型背景下,人工智能与教育领域的深度融合是解决当前幼儿国学教育问题、健康发展的必经之路。当前幼儿园亟须建设国学特色课程、提高国学教师素质、实现高效的因材施教。
人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。[9]首先,人工智能的新型教育模式能综合多领域学科知识,打破单一的教学方式,创新当前幼儿国学教育。其次,人工智能可以发挥其智能化、自动化、个性化和协同的特点,为幼儿园区域活动提供智能化、自动化的环境创设材料。此外,人工智能可以根据每一位幼儿的特点采用大数据分析的方式,分析幼儿认知发展程度,在夯实国学教育理论的基础上,根据幼儿身心发展规律循序渐进地实施幼儿国学教育,在真正意义上建设并发展幼儿园特色课程。[2]国学教育师资短缺是阻碍国学教育发展的首要因素。教师短缺是一个严重的问题,对教育影响重大。而人工智能能够独立扮演教师的角色,且储备了大量国学专业知识。人工智能在以教师的角色进入幼儿园师资队伍的同时,对幼儿教师本身提出了新的要求。人工智能背景下的幼儿教师需要具备更广泛的知识范围、更强的综合素质、创新型的思维以及较强的信息技术应用能力。因此,人工智能以其本身的智能化和幼儿教师的专业化能够提高幼儿园师资队伍的整体素质。
幼儿园国学教育融入人工智能,旨在促进幼儿国学个性化教育。在幼儿园国学教育中引入人工智能,为幼儿活动提供了创新性的玩教具和活动形式。在国学教育中,兼顾幼儿的特殊性,通过分析不同年龄段的幼儿身体发育程度、认知水平、思维能力、学习接受程度,为幼儿制定个性化课程。因此,人工智能技术与国学教育融合能兼顾个体的特殊性,能够高效地做到因材施教。
3幼儿园国学教育融入人工智能的路径
幼儿园国学教育融入人工智能是在遵循幼儿身心发展规律的同时,借助人工智能科技优势,实现传统幼儿国学教育与人工智能的有机结合,能够增强国学教育的效果。
3.1环境创设
人工智能以其不可匹敌的技术优势,创设全新的学校环境特征[3]。国学环境创设融入人工智能是促进国学教育开展的重要路径。在传统环境静态创设的基础上,安置多媒体一体机来创设动态多变的主题墙,播放国学经典动画、歌曲、故事,展示栩栩如生的动态人物造型,呈现丰富多样的色彩,使幼儿园的墙面设计能够有效地将动态和静态相结合。除了提供动态国学经典文化元素之外,还可以利用人工智能筛选不同年龄段的国学知识展现给幼儿,创设符合幼儿年龄特点的主题墙。天花板是传统环境创设易忽略的一步。吊饰是悬挂于天花板的装饰,它能够为幼儿园内公共环境增添动感和立体感。可以利用人工智能将国学经典文化中的人物形象(孔融、孟子、孔子)、书法作品、传世经典国画、经典国学典籍(《三字经》《千字文》)等投影展示到天花板上。同时,在图书角安置人工智能设备,将传统纸质书籍与有声读物有机结合,打造人工智能读书角。书架旁边则可以布置以国学经典文化为主元素的周边,力图将智能元素与传统文化元素相结合进行环境创设。
3.2人工智能教学系统
人工智能教育系统的融入促进了“有形”教师与“隐形”教师的有效结合,发挥了国学教育的巨大效力。首先,智能多媒体一体机是较为普遍的一种人工智能系统。在组织国学经典教育过程中利用其人工智能计算的个性特点,选择出适合各个年龄阶段儿童的国学经典知识。以小班为例,人工智能设备筛选出适合小班幼儿观看的图片、国学律动、顺口溜、儿童化故事等,并以动态方式展现给幼儿。同时,教师要对多媒体设备进行有效操作、关注幼儿的身心状态。其次,人工智能机器人基本可以代替传统教师进行“教学自动化设计”,减轻教师负担。机器人能为幼儿营造出一种“混合现实”的环境,让幼儿更好地参与到故事表达中,机器人作为活动组织者,替代了教师在活动组织中的主导角色,自行设计活动流程,引导幼儿自主探索学习。此外,远程教学是基于人工智能的教育交流平台。[4]幼儿园建立远程教学,以线上互动的方式,将幼儿国学教育专家与幼儿园的孩子联系起来,实现专家与孩子的线上国学交流和互动,以便对幼儿进行更专业、更科学的国学教育指导。
3.3智能化、自动化的国学区域活动
区域活动,是指教师根据教育目标,为幼儿提供一定的活动空间和活动材料,幼儿在丰富的环境中进行自主、自由的探索性活动和个性化学习。幼儿国学区域活动的智能化能促进幼儿园学知识的有效获得。
3.3.1智能化材料
人工智能的发展带来智能化的益智玩教具,智能机器人尤为突出。首先,在国学区域活动中投放智能化的玩教具,能够实现区域活动智能化。以国学艺术活动“智能机器人与幼儿园皮影戏剪纸活动的融合”为例。在幼儿美工区进行活动前,人工智能机器人独自操作皮影戏,并展示给幼儿,启发幼儿如何做皮影戏剪纸。随后,机器人可以扮演活动组织者,引导幼儿逐步完成皮影剪纸。其次,国学的益智玩教具还包括国学经典有声读物、国学趣味创意触感玩具书、智能优秀传统人物模型、智能传统习俗文物模型等。这些智能化材料的投入将大大提升区域活动的智能化和自主性。
3.3.2自主化学习
人工智能教学系统或者人工智能机器人以教师身份介入国学区域活动,代替传统教师引领幼儿在区域内自主进行国学知识探索、学习。以国学语文活动《三字经》为例,机器人讲故事、与幼儿进行国学知识交流对话,带领幼儿唱读《三字经》,使幼儿自主理解三字经的含义,并模仿、学习三字经中的优良习惯。当然,幼儿教师并不能完全退出区域活动,教师要选择恰当的介入方式。教师在幼儿开展区域活动中要时常观察幼儿,在他们遇到困难、秩序混乱以及幼儿身心安全受到威胁时,教师要及时介入,保证幼儿的自主化学习顺利开展。
随着信息技术的不断发展,计算机科学渗透生活的各个领域,改变了人们的生活方式和学习方式。其中,人工智能作为计算机科学中迅猛发展的一部分,正在以其独特的魅力走进人们的视野。“人工智能”(Artificial Intelligence),顾名思义,即通过应用计算机来模拟人脑的信息接收、思考、判断以及决策等思维行为过程,进而扩展人脑的思维和行动,帮助人们高效智能化地解决特定问题。近年,人工智能在教育领域中发挥的作用越来越显著[1],其与众不同的特点决定了其在教育培训中的地位,将人工智能应用在农业知识培训中的可行性也成为教育界热议的新话题。
1我国农业发展背景和农业培训必要性分析
11我国农业发展背景
我国是传统的农业大国,农业对我国的经济发展具有极其重要的影响,一方面是由于我国人口基数大;另一方面是由于我国进出口贸易主要依靠农产品,农业发展成为影响我国经济发展最重要的因素之一。但由于各方面原因,我国农业发展还比较落后,尤其与发达国家的现代化农业相比,依旧有较大差距。
12开展农业知识培训的必要性
反思其他发达国家在?r业发展上实施过的举措,包括重视农业教育、科研和技术推广,注意提高劳动者素质;推广现代农业机械和高技术,重视农场管理;经营集约化、产业化;生产专业化;服务社会化;市场机制与政府扶持相结合;加强农业基础设施建设等,可以看出,我国在农业知识培训、素质教育、技术推广方面与发达国家差距明显。为发展我国农业,培养一批高素质、懂技术、会经营的农民以及一批愿意为农业发展做出自己贡献的高学历人才成为关键。农业的发展离不开农民的发展和进步,也离不开受过高等教育的精英人才的共同努力,而开展农业知识培训,则是为他们的发展奠定了一条夯实的道路。
2人工智能在教育中的应用与发展
近年来,伴随着人工智能在各行业的应用和发展,人工智能在教育领域中发挥的作用也越来越显著。例如,智能化的作业批改可以大大减轻教育工作者的沉重负担,在线学习等网络教学模式可以让人们更灵活地接受教育。从人工智能诞生伊始,其就与教育产生了密不可分的联系,延续发展至今,人工智能在教育领域中的应用主要包含以下几个方面。
21基于人工智能的计算机网络课程
计算机网络教育是对传统教育方式的一次革新,而人工智能对网络教育的渗透,又将其推向了新的发展高度。[2]学生可以自主地登录网络平台进行在线学习,根据智能导学系统制订学习计划,进行在线测试。例如近年来大为流行的MOOC课程,学生可以便捷地通过网络获取全球最高质量的教学资源,并可以量身打造自己的学习计划。
22基于人工智能的教师辅助系统
近十年来,智能传感器、语音识别、图像识别、深度学习、大数据等方面的蓬勃发展令信息的采集及处理越来越准确高效,这无疑使得人工智能与辅助教学系统的融合变得越来越深入。借助于语音识别、图像识别等技术,学生可以将学习过程中遇到的问题上传至系统,借助于数据库系统对信息准确的搜素和整合能力,实时地为学生提供答案或相关信息,答疑解惑。目前此类应用软件的应用广泛,例如小猿搜题、百度作业帮等。
23基于人工智能的教育数据库系统
随着信息化时代的到来,如何高效地搜集、分类和检索碎片化的教育信息和教学资源,无疑是一项巨大的挑战。为了更有效地分配和管理信息,在教育中引入智能化的数据库系统势在必行。现如今数据挖掘和深度学习的研究成果不断深入,依托知识库系统对教育信息的整合与构建,学生可以将已习得的零星的知识点进行扩充,由点至面的不断学习新知识;依托教育资源管理系统中来,教育管理工作者可以合理分配教学资源,让人们从爆炸式的高密度信息中解放出来,真正做到物为己用,因材施教。
3人工智能与农业知识培训的结合
新时代社会经济的发展为国家农业产业的发展翻开了新的篇章,如何加快社会主义农业现代化,促进农业转型,这为新时代的农业知识教育提出了新的要求。另外,近年来劳动力转型的趋势日益显著。随着农业劳动人口数量的减少,为了提高农业生产效率,需要有素质、懂知识的农民投入农业生产中来。因而,对于农业知识培训的革新作为农业现代化建设的重中之重,已被提上日程。
人工智能技术和教育领域融合的不断完善成熟,基于人工智能的农业知识培训正如雨后春笋般涌现,在农业教育培训领域崭露头角。
31人工智能应用于农业知识培训的优势
从我国农业发展的现状看,较之于发达国家,我国农业从业者的基数巨大但是整体受教育程度偏低,农业专业领域的知识匮乏,农业知识教育的推广不仅薄弱,而且效率低下。因此,伴随着信息化时代“互联网+”的新型教育模式对传统教模式的强有力革新,基于人工智能的农业知识培训展示了其强大的威力和优势,具体可以总结为如下两个方面。
311个性化教育针对性强
相比于课堂教学的传统模式,基于人工智能的网上在线教育模式能够为学生个性化地制订学习计划,灵活安排学习时间。这有力地解决了学生参加农业知识培训的时间成本问题,农业从业者可利用闲暇时间自主安排学习。另外,针对于培训者的当前知识水平和培训需求,培训平台可以个性化地安排教学相关领域的专业知识和操作技能。
312教育资源利用率高
我国当前的农业知识培训,教育教师需求数量和实际在岗教师资源极不匹配,具备丰富农业专业知识和农业生产经验的教师数量缺乏,这是导致农业知识培训推广速度缓慢的重要原因。而人工智能为这一问题的解决带来了福音,智能化的教学进程得以让教师从繁重的教学负担中解放。同时,基于网络的课程资源共享可以让先进的农业技术走进千家万户,让学生与优秀农业知识的距离不再遥远。
4平台开发的系统架构
基于人工智能技术,一个合理的农业知识培训平台能够像一个优秀的教师那样具备完备的农业专业知识和优良的教学技能知识,并且能够模拟及扩充教师的教学过程。除此之外,该培训平台还能够准确实时地与学生进行信息交互,有针对性地开展个性化教学,并可以自适应地完成教学效力评估和反馈,不断更新和完善教学内容和教学策略。基于以上分析,该开发平台的系统架构分为学生模型、教师模型、综合数据库模型和人机交互接口四个组成部分,结合下图对每一部分分别进行详细阐述。
41学生模型
学生模型应针对不同的学生,准确地评估学生当前的学习水平,对学生的学习背景、知识水平、知识架构进行诊断和评定,以便有针对性地制订教学方案,进而实施个性化教育。
另外,学生模型需要对学习过程中的学生的学习情况进行记录入库,对教育效果进行评定,从而诊断出当前教学计划是否合适,以便下述教师模型中对教学内容和教学策略的灵活调整。
42教师模型
教师是教学工作开展过程中的主体,一个合理的教师模型应该包括如下三个部分。
教师模型首先完成教学内容的选择,这要根据学生模型中对学生当前的学习水平的评定,并且针对学生既定的学习目标,并从下述知识库中调取对应的内容,为教学的开展做好准备。
在确定了教什么的问题之后,教室模型要确定如何教的问题,即选取合理的教学策略开展教学。教学方式的选择依附于学生模型,而又能根据学生学习情况记录进行反馈动态,不断完善和调整教学策略。
另外,在传统教学模式中,教师传授知识,并能为学生答疑解惑。当学生在学习过程中遇到问题和疑惑时,教师模型应该实时地提供信息支持,为学生提供针对性的帮助。因而教师模型要实现与人机交互接口的实时连接,在问题到来时控制模块驱动应答部分为学生答疑解惑。
43综合数据库模型
综合数据库模块为农业知识培训系统提供数据库支持,主要包括以下三个模块。
知识库模块中分类别地存放着农业领域的专业知识,包括文本、图像、自然语言、多媒体等多个类型的学习知识。一旦教师模型中完成了教学内容的选择,便由此模块中调取相对应的文件开展教学。
专家评估模块用于处理教学过程中的教学效果评价和经验总结,为教师模型中的各个环节的反馈和更新迭代提供数据支持。在一个完善的教学过程,教师需要根据学生的学习效果进行总结和反馈,以此指导下一步的教学内容和策略的更新。
为了对学生阶段性学习的效果进行评估,还需要引入测试考核模块对学生的成绩进行量化考核。测试考核模块中包含学生答题库和成绩测评库,准确检测出开展农业知识培?的作用与效果。
44人机交互接口
基于人工智能的农业知识培训的过程是学生和系统进行交流的过程,所以一个友好的人机接口是系统必不可少的组成部分。在这一模块中,友好的图形用户界面的设计能够帮助学生流畅地接收信息,提高学习效率。同时,借助于人工智能中对语音和图像信号的先进识别技术,人机交互接口可以智能化地接收分析和理解学生的自然语言信息和动作信息,进而为系统提供宝贵的输入信息。
关键词:人工智能;音乐教育;智能乐器;大数据
1引言
随着人工智能技术的不断进步,重新塑造音乐使得音乐教育的学科素养培育、审美感知、艺术表现和文化理解变得更有支持和创意。探索应用人工智能技术推进音乐教学的改革与发展有具有十分重要的意义。本文通过研究与实践,引导学生学会用科学的方法培育计算思维创作音乐,用科学的意境欣赏音乐陶冶学生的音乐审美感,用科学的评价提升音乐课堂教学效率。通过这些措施,可以使学校音乐教育精准地开展因材施教差异化教学,彰显音乐教育的特色。
2人工智能与音乐
人工智能技术与音乐教育有机融合,丰富了课堂教学资源,拓展了智能乐器的功能,提升了音乐教育技术手段。它支持个性化学习,可以观察音乐课堂学习,分析音乐的旋律与节拍,有效评价教学效果,激发音乐教师运用人工智能技术创新音乐教学的热情,发挥教师在课堂教学中的主导作用。
2.1乐器的智能化
乐器是学习音乐的重要工具。乐器植入人工智能技术,形成了智能化乐器。它能够大量储存多种乐器的音乐数据。尤其是在音乐键盘中运用,功能的提升特别突出,应用于音乐教学中引发了多种形式的教学模式。例如,图1显示了融合多媒体计算机、主控系统、音乐课堂教学智能评价系统将多部电子钢琴连接起来的智能乐器实验室。通过语音室方式授课,可以实现多种乐器的分组教学。这在传统的音乐课堂上是无法完成的。
2.2智能化乐曲创作
智能乐器不仅能够储存乐器音色,而且还能用指令对各种音色播放进行控制,各种音色按照指令进行演奏。这种创作功能是以往其他乐器都无法比拟的[1]。例如,能唱出《月亮代表我的心》十七声部的合唱团,很好听,但很难。运用智能乐器按指令合成该十七声部音乐则轻而易举。2.2.1机器学习生成乐曲人工智能技术赋能智能乐器,使得机器学习的功能日趋进步。机器学习在音乐领域所做的事情,就是提取音乐作品的“数据”,输入给定模型学习音乐的“特征”,再对音乐数据进行分析和编排。例如,如果输入的是《梨园金曲》民族音乐,则机器就能学会民族音乐的曲调特征,生成掌握特征模型的民族音乐作品。2.2.2用软件生成乐谱使用MuseScore3forMac软件可以制作乐谱,在工具栏选择对应时值的音符输入音符。例如,在MuseScore3窗口输入如图2所示的“我和我的祖国”乐谱,再导出MP3文件进行播放。2.2.3代码生成乐曲用Python代码生成曲子,要借助音乐标准格式MIDI—乐器数字接口,运用Python-midi库编写程序,编译MIDI文件生成音乐。例如,生成一个简单乐谱的MIDI文件需要使用Python-midi,其中:Pattern对象表示乐谱;Track对象表示音轨,通常乐谱都有多条轨道组成,每种乐器是一个轨道;midi.NoteOnEvent表示每个音符的开端,在参数表中可以定义每个音符的音长和音高;midi.NoteOffEvent表示每个音符的结束。参考代码如下:importmidi#定义patternpattern=midi.Pattern()#定义轨道track=midi.Track()#添加轨道到patternpattern.append(track)#音符开始,并定义位置、音量、音高on=midi.NoteOnEvent(tick=0,velocity=50,pitch=midiG_3)track.append(on)#音符结束off=midi.NoteOffEvent(tick-100,pitch=midi.G_3)track.append(off)#轨道结束eot=midi.EndOfTrackEvent(tick=1)track.append(eot)#存储midi.write_midifile("example.mid",pattern)程序运行结果生成了如图3所示的简单音符:这样如图2的“我和我的祖国”乐谱,也可以通过Python代码生成MIDI文件。
3AI赋能音乐课堂
在AI赋能的音乐教育环境,促使音乐教学实践变革以及学生学习音乐方式。例如,图4所示的集音乐创作教学及教学评价于一体的“智能化音乐课堂教学评价系统”,在教学设计的优化、教学方法的高效、教学手段的更新、教学评价的智能、教学策略的调整方面都具有借鉴意义[2]。
3.1大数据学习
大数据云计算可以将所有音乐家们音乐数据存储在云中,运用人工智能技术为学生提供更多有价值的音乐数据。学生通过音乐云学习音乐知识,欣赏音乐魅力、体验音乐节奏、理解音乐韵律。它使得优质音乐教学资源跨越校园,开放延伸音乐教学,远程辐射共享资源。这样就扩展了学生的视野,音乐知识的来源无限扩大,整个音乐云皆有学生的学习教材。特别是大数据音乐云不仅可以推送给学生更多的即兴音乐和更多的音乐信息,还能指导音乐爱好者创作出雅正、健康的音乐作品。
3.2个性化学习
人工智能技术从音乐学习行为数据搜集、数据分析与运用、个性化学习评价多方位帮助学生定制个性化的学习成长路径。推送在线音乐教育资源,指导表演建议乐器学习技巧。搭建音乐教育虚拟课堂,匹配音乐教学资源,实现因材施教的个性化学习,支持一对一的教学辅导和群组式讨论。通过这些措施提高教学质量和效率。
3.3教学评价智能化
运用人工智能技术将多个音乐辅助教学设备连接的音乐创作教学系统,基于音乐课堂教学的学生学习特质分析与教学效果分析的音乐课堂教学管理系统,来实现音乐教学的全程智慧管理,使音乐学习更有效率。例如,在虚拟音乐课堂乐器教学可以变成一对多的自选教学模式,使课堂变得轻松、愉快。教师可以开启课堂教学观察模块,捕捉每位学生同步练习的音准、节奏、力度数据,分析判断将评价信息同步反馈,给出学习指导建议。3.3.1创作教学模块“智能化音乐课堂教学评价系统”中的音乐创作教学模块,集视、听、练和反馈评价为一体,适时演示教师教学作品和评价学生练习作品。例如,在进行《我和我的祖国》授课时导入电影片段,欣赏“我和我的祖国”音乐的表现形式、演唱形式以及歌曲风格,可以使学生更好地体验作品的创作意境,激发创作意识。使用MuseScore创作“我和我的祖国”三声部习作音乐,并能储存、刻录,编辑等二度创作。3.3.2课堂教学评价模块音乐课堂教学评价有着传统音乐教学评价无法比拟的灵活性、客观性和实用性。从大数据分析角度获取音乐课堂教与学相关数据,对学生的音乐基本素养与学习态度进行科学分析判断。例如,以创作《红河谷》中的和声与音乐作品风格内容的“编配伴奏音乐”教学过程为例。课前在“课堂教学评价模块”上安排学生根据作品风格完成伴奏的音乐;播放制作好的《红河谷》MIDI音乐(在第二和第六个小节缺失编配和弦);使学生感受、探讨大小三和弦的表现力,形成对大小三和弦的感知。然后要求学生试着用MuseScore为《红河谷》缺失的两小节选配和弦,以适合歌曲的伴奏风格。学生需要边哼唱歌曲边试着套用不同的伴奏风格,找到他们认为最恰当的和弦伴奏风格,说出理由并提交[3]。评价系统将学生提交的作业比照音乐要素进行评价。及时反馈学习评价的信息,并对学生的学习进程制定一个个性化的学习方案[4]。同时通过教学反馈深度优化决策模型,促进教师实时改进教学策略,提高教学效率和效果,提升教学质量。
4结语
人工智能技术在音乐教育领域中的广泛应用,为传统的音乐教育模式注入了活力,为音乐教师创新音乐教学理念开辟了新思路[5],为因材施教提供了新的适合学生学习的音乐教学模式。人工智能在音乐教育模式方面的探索,不仅给音乐教育教学的发展带来了物质技术层面的进步,还从音乐教学层面促进计算思维培育开辟新途径。这对音乐教育理念、教学手段、教学方式和方法以及拓展学生音乐视野、学习音乐、享受音乐、创造音乐等都带来深刻的变化和积极的影响。
参考文献
[1]邹孟雨.人工智能及其在音乐教育中的应用.北方音乐,2018(15):254-255
[2]郭文进.“互联网+教育”运行模式探究.决策与信息(下旬刊),2015(9):63
[3]段晓军.电脑音乐系统与中小学音乐教学实践.中国音乐教育,2006(6):26-28
[4]王迪.浅析娱乐教育中元学习能力的培养.河北广播电视大学学报,2007(1):79-80
【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统
人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。
1传统的诊断学教学方法存在的问题
诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。
2人工智能应用于诊断学教学的重要意义
2.1教师方面
将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。
2.2学生方面
将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。
2.3教学过程
针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。
3人工智能在诊断学教学中的应用
3.1智能教学系统
智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。
3.2智能网络组卷阅卷系统
诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。
3.3智能仿真教学系统
诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。
4总结及展望
【关键字】人工智能;教育;进展
【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03
人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。
人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。
一 专家系统
专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。
目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]
教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]
目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。
二 机器人学
机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。
机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。
机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。
三 机器学习
机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]
随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。
四 自然语言理解
自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]
自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]
五 人工神经网络
人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。
人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。
六 分布式人工智能(Distributed Artificial Intelligence,DAI)
分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。
分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。
综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。
技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。
参考文献
[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.
[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.
[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.
[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.
[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.
[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.
[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.
[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.
[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.
[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].
[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.
[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.
[16] 自然语言理解[DB/OL].
[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.
[22] Erin Shaw, W. Lewis Johnson, and Rajaram Ganeshan, Pedagogical Agents on the Web[DB/OL].
[关键词]人工智能;人才培养;AI技术人才
一国家对于高校人工智能教育的发展的重视
面对AI技术如火如荼地发展,我们国家对AI人才和人才培养都非常重视。2017年3月“人工智能”在政府工作报告中曾提及四次,指出要推动人工智能和实体经济深度融合。2017年7月20日国务院《新一代人工智能发展规划》[4]。《规划》指出完善人工智能领域学科布局,设立人工智能专业,推动人工智能领域一级学科建设,尽快在试点院校建立人工智能学院,增加人工智能相关学科方向的博士、硕士招生名额。鼓励高校在原有基础上拓宽人工智能专业教育内容,形成“人工智能+X”复合专业培养新模式,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。加强产学研合作,鼓励高校、科研院所与企业等机构合作开展人工智能学科建设。
二企业对于人工智能人才的需求
市场上AI技术人才非常稀缺,据腾讯研究院联合boss直聘的《2017全球人工智能人才白皮书》[5]显示:目前,全球大约有30万人从事AI工作。截止到2017年10月,中国人工智能人才缺口至少在100万以上。2017年头10个月,AI人才需求量是2016年的近两倍,2015年的5.3倍之多,年复合增长率超200%。百度、腾讯、阿里巴巴、京东等互联网巨头都在挖掘AI人才,纷纷开出了高额的薪资。2017年薪资最高的十个职位中AI类岗位占到1/2,其中语音识别、NLP、机器学习等职位平均月薪资超过2.5万元。
三高校AI人才培养的思考
高校具有多学科、高层次人才集中的特点,具备计算机与多学科交叉融合的优越条件;且大部分学校都开设有数学、物理等基础学科,具备夯实数学理论基础的条件;且人员相对固定,便于沟通交流,具备共同开展AI课题,促进发展AI技术的人力条件。但是遗憾的是我国开设人工智能课程的高校较少,2018年只有33所高校设立了智能科学与技术专业[6]。面对AI发展的火爆,国家对于AI人才发展的重视以及企业对于AI人才的严重需求,高校作为人才培养的主要来源,是不是应该思考AI人才的培养呢?AI人才可以分为三类:拔尖人才,研究性人才和应用型人才,呈金字塔性。当下已经有一批名牌大学开展了AI方向拔尖人才的培养,如北京大学图灵班、中国科技大学人工智能技术学院、西安交通大学人工智能拔尖人才培养实验班,南京大学计划成立人工智能学院等。但是金字塔的底层、中层更需要庞大的AI技术人才,如应用开发人员、数据工程师、AI和机器学习工程师、AI系统架构师、AI产品经理等岗位的人才,同样值得重视。很多专家都表示AI人才需要数学基础好、专业理论全面、具备一些工程基础,且有自主学习的能力。本文从夯实数学基础、人工智能方向课程的建设、实践能力的培养、自主学习能力的培养四个方面阐述高校关于AI人才培养的一些思考。
1奠定扎实的数学基础
在学习AI技术时,几乎所有专家学者都提出需要扎实的数学功底,数学功底的厚重程度决定了在AI技术上走多远。高等院校计算机专业都开设有“高等数学”“线性代数”“概率论”等数学课程,但是课时、难易程度不足,学生对于数学不够重视,或者觉得晦涩难懂,学习效果并不十分理想,因此加强数学基础的工作刻不容缓。可以通过必修和选修等方式开设“数据分析”“统计机器学习”“凸优化”等课程;通过微课或者MOOC等方式巩固数学基础的学习;通过优秀科普读物,如《数学之美》《编程之美》等书籍的推荐阅读激发学生兴趣;通过开展校内学术讨论、数学竞赛等方式促进学生学习数据的动力,逐步达到夯实数据功底的目的。
2人工智能方向课程的建设
很多高校计算机专业课程中只开设有《人工智能》导论,有的甚至没有。智能科学与技术专业开设有“人工智能”“计算机视觉”“机器人学导论”“计算智能”这几门课程,但是在编程、算法等方面不足。那么AI技术人才应具备哪些专业能力呢?如何从专业角度培养AI技术人才呢?2018年1月CSDN了“AI技术人才成长路线图”[7],通过专业路径和实战路径两方面介绍了AI技术人才需要具备的知识。需要具备Python、C++、Linux、CUDA编程知识,需要学习机器学习课程、掌握TensorFlow框架。该路线图中列出了机器学习算法工程师、数据科学家等10个岗位AI人才应具备专业知识和能力。微软公司也推出AI人才培养的10门免费课程,如“AI导论”“数据科学会用到的Python语言-导论”“AI领域运用的数学概要”“数据和分析所需要的道德与法律”“数据科学概要”“机器学习法则”“深度学习”“强化学习”“微软专案项目之人工智能”。同时在“文字和自然语言识别”“语音识别”“计算机视觉和图像识别”中选择其一。Google在人工智能学习网站开设有《MachineLearningCrashCourse(简称MLCC)》的免费课程[8],由机器学习概念、机器学习工程、机器学习现实世界应用示例三个部分组成。Intel近期也了三门免费的AI课程,分别是“机器学习基础”“深度学习基础”和“TensorFlow基础”[9]。AndrewNg在Coursera上也推出了机器学习的课程,且用比较通俗的语言讲解机器学习中各个算法。最近在Deeplearn-ing.ai和Coursera平台又开设了5门深度学习课程[10]。综上所述,不同的研究机构都着眼于AI编程基础、AI算法、AI框架、AI实践这几个方面。那么高校也可以借鉴这些经验,通过三个阶段分层次的开展相应的课程。
3实践能力的培养
AI技术不能纸上谈兵,必须动手实践才能真正掌握,可以从以下几个方面着手培养学生的实践动手能力。(1)设计教学环节时多从工程应用的角度来介绍,激发学生的兴趣,培养学生解决问题的能力。要求学生新手编程编程实现模型,充分理解算法的含义和原理到实现的过程。(2)在掌握一定的机器学习知识后,鼓励学生尽早走进实验室,接触科研工作。可以从一些AI应用方向作为入手,使学生了解自己的兴趣点、培养科学研究能力。(3)鼓励学生参加算法比赛。目前有很多AI方向的竞赛,如Kaggle上的挑战赛,国内阿里天池大数据竞赛等。通过参加竞赛刺激学生学习AI的动力和热情,使得解决问题的能力和实践动手能力都会大幅度提高。(4)鼓励学生到工业界实习。很多专家都指出AI人才应该具备一定工程基础。确实,学术界往往追求算法的性能,而工业界更重视经济效益和解决问题的有效性。到企业学习可以快速了解行业发展的框架,掌握算法转化到产品的过程。
4自主学习能力的培养
AI技术发展速度很快,要求不断地学习才能跟上节奏。可以从以下几个方面来培养学生的自主学习能力。(1)平时教学中,可以给出一些小型的项目,让学生自己寻求解决的方案,并把它作为考试成绩的依据之一。(2)提供给学生免费的AI慕课资源,让学生更好的学习和巩固相关知识。(3)课外可以开展学术讨论或者通过社团等方式开展AI方向的研讨,交流,给学生一个学习的平台,让学生尝试选择自己感兴趣的方向。也可以介绍一些近期的AI会议内容,开阔学生的眼界,使其了解AI发展的动态。(4)鼓励高年级学生订阅Arxiv,关注机器学习的顶级会议,如ICML/NIPS等。通过研读论文,动手完成论文中的实验发现新问题;或者扩展感兴趣的论文的实验部分;或者尝试寻求论文中有价值的地方,找到自己的研究方向。
关键词:智能科学与技术;知识结构;应用型人才;人才培养;知识型能力本位教育
中图分类号:G64文献标识码:A
文章编号:1009-3044(2020)25-0153-03
1引言
智能科学与技术主要包含智能科学和智能技术两部分内容[1]:智能科学是以人如何认知和学习为研究对象,探索智能机器的实现机理和方法;智能技术则是将这种方法应用于人造系统,使之具有一定的智能或学习能力,让机器系统为人类工作。目前,在本科专业目录中,智能科学与技术专业是计算机类之下的特设专业,在现有的人工智能专业群中,除了新设的人工智能专业外(2019年全国共有35所高校获首批人工智能新专业建设资格),智能科学与技术专业与全球范围大力推进与快速发展的人工智能关系最密切,契合度最高。一方面,智能科学与技术的专业发展和人才培养将为人工智能技术提供理论支撑、技术推进和人才支持,另一方面,人工智能产业现状和未来发展趋势直接影响着智能科学与技术的专业发展和人才需求。
2人工智能时代对人才的需求
站在国家战略的高度来看,人工智能将成为新一轮产业变革的核心驱动力,可以实现社会生产力的整体跃升,因此人工智能将成为引领未来的战略性技术,世界主要发达国家都把发展人工智能作为提升国家竞争力、维护国家安全的重大战略。
随着人工智能时代的到来,许多企业对具有智能科学与技术专业背景的人才有着巨大的需求。首先,IT企业纷纷涉足智能科学领域,提高产品智能水平;其次,许多传统制造业也在转型,从劳动密集型到知识密集型,进一步提升到智能制造型,并逐渐具备高精尖装备制造能力;此外,医疗、通讯、交通等行业也对智能科技人才有着迫切的需要。人工智能对各行各业的影响,充分体现了智能科技的高速发展,对人才数量和素质要求也越来越高。
从人才的金字塔型分布来看,智能科学与技术领域不仅需要高端学术型人才,更需要接地气、重实践的应用型人才。随着“中国智造”的不断推进,智能科学与技术领域已由顶层设计和关键技术突破向生产、应用、装配、服务等环节延伸,迫切需求大批专业技术精、实践能力强、操作流程熟的应用型人才。2019年,人力资源和社会保障部、国家市场监管总局、国家统计局向社会了13个新职业信息,包括人工智能工程技术人员、物联网工程技术人员、大数据工程技术人员等,这也从另外一个侧面说明人工智能等技术推动了产业结构的升级,催生了相关专业技术类新职业,可形成相对稳定的从业人群。
3应用型人才培养模式分析
《中国制造2025》以推进智能制造为主攻方向,强调健全多层次人才培养体系,提到强化职业教育和技能培训,引导一批普通本科高等学校向应用技术类高等学校转型,建立一批实训基地,开展现代学徒制试点示范,形成一支门类齐全、技艺精湛的技术技能人才队伍。
通常而言,人才类型分为三类[2]:学术型人才、应用型人才、技能型人才。实际上从现代职业教育的发展和社会需求来看,应用型人才和技能型人才的界限相对模糊,可统称为应用型人才,即把成熟的技术和理论应用到实际的生产、生活中的技术技能型人才。从国家的层面来看,为了适应人工智能时展,人才需求数量基数最多、缺口最大的就是应用型人才,这也对众多高校培养人才的导向产生重大影响。这里我们重点讨论智能科学与技术应用型本科人才的培养,可从职能、知识结构、能力结构、行业(产业)导向四个方面来分析。
3.1职能
智能科学与技术应用型人才是培养面向各类智能科学与技术的工程设计、开发及应用,掌握各类现代智能系统设计、研发、集成应用、检测与维修、运行与管理等技术,具有扎实理论基础、较强工程实践和创新能力的高素质应用型工程技术人才。
3.2知识结构
智能科学与技术专业充分体现了跨学科的特点,其知识结构包含了三个并行的基础领域:电子信息、控制工程、计算机,也蕴含了电子信息工程、控制科学与工程、计算机科学与技术等学科的交叉和融合,体现了智能感知与模式识别、智能系统设计与制造、智能信息处理三个方面的专业内涵。
(1)智能感知与模式识别
属于电子信息与计算机交叉领域,主要定位在机器视觉与模式识别。包括三维建模与仿真、图像处理与分析、图像理解与识别、机器视觉、模式识别、神经网络、深度学习等。主要课程包括:电子技术基础、信号系统与数字信号处理、数字图像处理、模式识别等。
(2)智能系统设计与制造
属于控制工程领域,包括自动控制、无人系统与工程、精密传感器设计与应用等。主要课程包括:机械基础、工程力学、自动控制原理、传感器与测试技术、计算机控制技术、机电系统分析与设计等。
(3)智能信息处理
属于计算机领域,包括交通大数据、汽车与道路安全大数据等的分析与处理、信息处理与知识挖掘、信息可视化等。主要课程包括:智能科学技术导论、计算机程序设计、微机原理与接口技术、数据结构与算法、嵌入式系统设计等。
3.3能力结构
智能科学与技术应用型人才培养着眼于人工智能工程应用,要求学生具有运用计算机及相关软硬件工具进行大数据的采集、存储、处理、分析、应用的能力;具备智能系统的设计、开发、集成、运行与管理的能力;注重培养学生综合运用所学的智能科学与技术专业的基础理论和知识,分析并解决工程实际问题的能力,其能力结构可以借鉴能力本位教育(CompetencyBasedEducation,简称CBE)模式[3]。
CBE是国际上较流行的一种应用型人才培养模式,主要代表国家为加拿大和美国。该模式以能力为人才培养的目标和评价标准,一切教学活动均围绕综合职业能力的培养展开,CBE人才培养模式主要有以下三方面的特色:能力导向的教学目标;模块化的课程结构;能力为基准的目标评价体系。该模式所培养的本科应用型人才具有较强的专业综合能力和职业能力[4],在一定时期得到社会的广泛认可,但是单纯的CBE模式并不能完全适应人工智能时代对人才培养的需求,这是由于目前许多职业岗位在人工智能的冲击下,其形式和内容均会产生动态变化,要求现阶段的人才培养具有延伸性和前瞻性,既要兼顾眼前,也要考虑应对智能化浪潮,打好基础,提高自学习能力。因此,智能科学与技术应用型人才培养有一定岗位针对性,但并不是完全固化岗位内容及层次、固化知识属性,必须强化自我学习能力,才能实现能力可持续增长,岗位的向上流动性以及知识和经验的进化,才能真正适应人工智能时展的需求。
自我学习能力的形成与提高往往源于知识结构的构建[5]。为了塑造更合适的能力结构,需要CBE模式与知识结构的相辅相成,有鉴于此,将这种新型人才培养模式称之为知识型能力本位教育(Knowledge&CompetencyBasedEducation,简称KCBE)模式,这也意味着在人才培养过程中,将知识结构与能力结构放在并重的地位,既着眼于预期能力的培养,也必须让学生筑牢学科专业基础,在走向社会以后,在知识引擎的作用下,通过自我学习,具备并提升适应未来的、新的智能化岗位需求的能力。
3.4行业(产业)导向
从智能科学与技术专业的角度,培养的应用型人才以“智能化应用”为就业大方向,具体而言,包括:
(1)智能感知与模式识别领域
主要从事电子信息的获取、传输、处理、分析、应用等领域的研究、设计及应用,包括图像处理、机器视觉、工业视频检测与识别、视频监控、传感器设计及应用等。
(2)智能系统设计与制造领域
主要从事智能装备、智能制造、智能管理、智能服务等领域的设计、制造及应用,包括智能工厂、智能车间、智能生产线、智能物流、以及智能运营与服务等。
(3)智能信息处理领域
主要从事计算机数据处理、分析、理解、管理、以及服务等领域的研究、设计及应用,包括数据存储与管理、数据分析与预测、交通大数据分析应用、道路与汽车安全大数据分析、智能交通、智能电力、智能家居、智慧城市等。
涉及的产业领域主要包括智能制造,如工业互联网系统集成应用,研发智能产品及智能互联产品等。其他的领域还包括智能农业、智能物流、智能金融、智能商务等。
产业需求带动人才培养,人才培养在满足产业需求的同时推动技术进步,而技术进步又引燃了新的产业需求。产业需求与人才培养的相互作用,呈现出螺旋式上升的发展态势,这在人工智能相关产业与智能科学与技术应用型本科人才培养之间表现的得尤为突出。
4KCBE模式人才培养的主要措施和途径
智能科学与技术专业应用型本科人才的培养模式一定是和人才需求、学校定位相適应的。培养应用型人才,应注重学生实践能力,从教学体系建设体现“应用”二字,其核心环节是实践教学。结合上述的KCBE培养模式,知识结构在能力培养过程中也占有非常重要的地位,因此在能力培养方面,知识和实践作为两大要素,不能偏废任何一方,必须齐头并进,既要固基础,也要重实践。
(1)筑牢智能科学与技术专业知识基础,构建与智能化应用相关的知识体系
在本科的低年级阶段,应注重公共基础课,特别是数学和力学课程,还应充分了解智能科学与技术专业的内涵,让学生对所学专业有一个比较全面的认识。在本科中高年级阶段,重点强化专业基础,包括电子技术基础、自动控制原理、传感器与测试技术、微机原理与接口技术、数据结构与算法等。归纳地说,应该筑牢数理基础、计算机基础、机电基础和控制基础,因此对原理课程需要强化,这样对很多工作机理、来龙去脉的理解才能深刻。
(2)增强智能科学与技术专业的实践环节,构建以能力培养为重心的教学体系
按照KCBE模式,校企合作是强化实践的一种重要形式[6]。学校根据人工智能企业实际情况灵活设置实践课程内容,根据企业发展趋势及时调整课程体系以避免教学内容与企业需求相脱离。人工智能企业还可以参与学校教学目标和教学计划的制定,并为学校实践教学提供各方面支持,从而提高人才培养的针对性。
关键词:人工智能技术;教学方法;编程能力
中图分类号:TP3 文献标识码:A 文章编号:1009-3044(2014)16-3865-02
1 概述
2008年11月16日,中国科协成立50周年新闻会在北京召开。在新闻会上,“五个10”系列评选活动,即10位传播科技的优秀人物、10部公众喜爱的科普作品、10个公众关注的科技问题、10个影响中国的科技事件、10项引领未来的科学技术评选结果揭晓。10项引领未来的科学技术是:基因修饰技术;未来家庭机器人;新型电池;人工智能技术;超高速交通工具;干细胞技术;光电信息技术;可服用诊疗芯片;感冒疫苗;无线能量传输技术。
人工智能技术学科是计算机科学中涉及研究、设计和应用智能机器的一个分支。指人类的各种脑力劳动或智能行为,诸如判断、推理、证明、判别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动,可以用某种智能化的机器来予以人工实现[1]。
通过《人工智能技术》课程的学习,使学生对人工智能技术的发展概况、基本原理和应用领域有深入了解、对主要技术及应用有一定掌握,并对现代人工智能技术发展的方向有所研究。通过人工智能技术课程的学习与研究,启发学生对人工智能技术的兴趣,培养知识创新和技术创新能力,并能将人工智能技术融入到今后所开发的计算机软件之中。
《人工智能技术》是一门众多学科交叉的新兴课程,其涵盖范围广,涉及知识点多,知识更新快,内容抽象,不容易理解,理论性强,而且需要较好的数学基础和较强的逻辑思维能力,这给该课程的讲授带来了一定困难。《人工智能技术》也是一门应用型学科,怎样将理论运用到实践中,使学生将学到的人工智能技术知识和思想运用到自己的实际课题,这也是该课程需要解决的问题之一。
因此,对《人工智能技术》课程教学来说,我们要了解课程的最新信息,把握课程的特点,帮助学生找到好的学习方法,使他们能充分发挥自己的创新思维能力,提高学习兴趣,该文给出了《人工智能技术》课程的教学与实践的探索。
2 教学与实践的探索
2.1 教材和实验教学内容的选取
1) 人工智能技术是整个计算机科学领域发展最快,知识更新最快,最前沿的学科之一。在教材选用方面,我们采用了蔡自兴教授等主编,由高等教育出版社出版的《人工智能基础》这本教材。蔡自兴教授的主要研究领域为人工智能、机器人学和智能控制等。这本教材是作者在美国国家工程院院士、普度大学教授傅京孙先生的指导和鼓励下编写,借鉴了国内外人工智能技术研究领域专家的最新研究成果和学术书籍的长处,该书比较全面地介绍了人工智能技术的基础知识与技术,材料新,易于理解,兼顾基础及应用[2]。
此外,我们还给学生自主学习提供多种类型的学习资料,其中包括参考书目,如:Russel S, Norvig P.等编著的《Artificial Intelligence: A Modern Approach》一书,人工智能技术国内外期刊,如电子学报,计算机学报,人工智能与模式识别,Artificial Intelligence,Journal of Artificial Intelligence Research,Engineering Applications of Artificial Intelligence和International Joint Conference on Artificial Intelligence,AAAI: American Association for AI National Conference等人工智能技术会议,使学生能够掌握人工智能技术的更多前沿动态,提高学习兴趣。
2) 配套的实验教学内容。《人工智能技术》是一门理论性和实践性都很强的课程,实践性教学环节对该课程尤为重要。除了完成课本上的作业之外,还注重实验教学,培养学生的创新能力、算法设计能力和编程能力。首先,每个章节设置相应的实验,而实验内容经过严格的考虑,如:五子棋游戏,产生式系统,旅行商问题,传教士和野人问题,BP神经网络实现简单的分类,遗传算法、人工生命程序等,要求学生运用所学章节的知识,独立地设计和实现实验内容。实验报告包括简述实验原理及方法,给出程序设计流程图,源程序清单,实验结果及分析等内容,通过这种方式,进一步加强学生的信息获取能力和研究能力。
2.2 教学方法和手段的改革
人工智能技术课程交叉性强,涉及面广,传统的教学方法手段单一,缺少交流,课堂气氛沉闷,激发不起学生的学习兴趣,教学效果不理想。人工智能技术这门课程内容抽象,如何激发学生的学习兴趣是本课程需要解决的主要问题,也是关系教学改革成败的关键。本课程需采用多种方法进行教学,以此来激发学生的学习兴趣。
1) 问题启发式教学。《人工智能技术》这门课程中有很多似是而非、引人入胜的问题,主要是用计算机模拟人类的智能来解决这种问题。在教学中,有目的的提出这些问题,鼓励学生思考,提出自己的想法和解决方案,并进行分析和比较,这样强化学生的主动学习意识,提高学习积极性[3]。
2) 个性化学习和因材施教。学生中存在计算机专业和非计算机专业本科毕业的差别,由于他们每个人的基础不同,有的计算机知识比较匮乏,因此有必要针对每个学生的学习进度,课堂作业和实验报告情况进行及时评估,对学生提出个性化的教学。例如:在实验教学中,要求有能力和兴趣的学生可以做探究性和创新性的附加实验,从而引导学生发挥个性的空间,而对稍微吃力的学生则要求完成基本的实验,更注重基础知识的学习和夯实,这样就能达到因材施教的目的。同时对不同层次的学生进行分析,进一步提出学习建议,并进行有针对性的指导。
3) 多媒体使用和多学科知识的融合。本课程PPT课件图文并茂,提纲挈领,便于学生理解。课堂讲授、板书与PPT手段相结合,注重课程中的关键词用英文表示,并适当指定英文参考书,使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。PPT课件运用了大量多媒体技术,如动画、声音、图像,通过动画和视频演示抽象的概念、算法和过程,使人工智能技术中抽象的知识形象化,在课件中融入了文学,历史等其他学科的相关知识,便于学生较好地理解知识难点和重点[4]。
4) 师生互动和课内外答疑。在教学中,改变了传统的老师讲,学生听的教学模式。针对人工智能技术的实用性,适当提问,收集学生学习情况,尽量使用实例进行讲解。设置了实验讲解互动课程,对于实验的讲解,学生可以提出疑问,然后在课堂上展开讨论,学生可以看到问题从提出、分析到解决的整个过程,让学生自己在讨论中总结结论。为了解决教学中存在的疑难问题,还设有课后答疑,使学生能将所有的问题都理解透彻。
5) 理论研究与实践结合。在教学内容的安排上,注重学生的理论研究和动手能力,适当布置一些课程相关的论文和实验编程。通过课程论文,可以培养学生钻研问题的兴趣; 通过查阅科技文献使学生掌握如何查找相关文献的技能,可以培养学生撰写科技论文的能力。通过实验实践,使学生可以更加清楚地了解人工智能技术基本概念和难点,也能了解算法的设计具体运行过程,并对其进行验证,提高了学生的编程能力和和学习兴趣。
6) 考试考核方式改革。本课程的考核考试也是一个值得探讨的问题,本课程应采用多种综合考试方法,注重学生对基础概念、知识和基本的技能的掌握以及理论联系实际的能力。平时作业考核成绩,实验实践教学成绩、提交课程论文成绩,以及最后的期末考试成绩形成一种有效的考试考核方法,促进学生主动学习,提高教学质量。实验的评价指标在于算法设计、编程的准确性和实验结果及分析。课程论文评价指是选题是否严谨科学和具可研究性,论文结构、思路是否严谨,论文内容科学性、正确性,能否提出自己的见解。考查查阅科技文献的能力主要通过是否查找到权威的、最新文献以及撰写是否规范。
2.3 学生学好《人工智能技术》课程的建议
《人工智能技术》是一门理论与实践相结合的应用课程,学生如何学习这么课程,也是我们应该探讨的问题。
学生应该正确看待《人工智能技术》这门科学的发展。人工智能技术孕育于20世纪30、40年代,形成于60、70年代,发展至今,人工智能技术只有短短60多年的历史,它是一门不断发展和完善的崭新学科,还有许多课题处于探索中,理论和技术还远未成熟,我们应该对它有科学的认识。
针对非计算机专业本科毕业的学生,除了课堂听讲之外,还应该课下自学该课程的先修课程,如:数据结构、离散数学等课程。人工智能技术中涉及到大量的数学知识,如:模式识别需要具有较好的概率论,数理统计知识,另外还会用到少量随机过程、模糊数学的一些知识。人工智能技术是一门应用课程,编程语言的掌握必不可少,涉及到SVM算法,粒子群算法,免疫算法神经网络,遗传算法等算法,实现这些算法要求学生具有较强的编程能力。
学生应该多读,多查阅资料,特别是国外的期刊文献和重要国际会议论文,多了解人工智能技术最前沿的信息,理论联系实际,加深对基本算法的理解,并将人工智能技术的知识运用到自己所研究的领域,以做到学以致用。
3 结论
人工智能技术在一定程度上代表着信息技术的前沿,该文对《人工智能技术》的课程教学进行了一些探讨,教学与实践效果有了显著提高,但仍然有许多方面还需要我们继续探讨和改进。
参考文献:
[1] 蔡自兴,徐光佑.人工智能技术及其应用[M].北京: 清华大学出版社,2003.
[2] 蔡自兴,肖晓明,蒙祖强,等.树立精品意识搞好人工智能技术课程建设[J].中国大学教学,2004(1):28-29.
12月18日,由北京供销大数据集团举办的“加快大数据中心一体化进程・2017北京峰会”在京召开。
从“小背篓”到“大数据”
2016年,百货零售市场“闭店潮”汹涌。中国社会科学院财经战略研究院、社会科学文献出版社等的《流通蓝皮书:中国商业发展报告(2016―2017)》指出,未来5年内,中国的商品交易市场有1/3将被淘汰,另1/3将转型为批零兼有的体验式购物中心,还有1/3将成功实现线上与线下的对接。
北京市供销合作总社在这个变革的时代将如何实现转型升级呢?2015年12月18日,北京市供销合作总社宣布正式成立北京供销大数据集团。这是北京市供销合作总社一次重大的转型之举,完成了从“小背篓”到大数据的历史性跨越。时隔整整一年,北京供销大数据集团继续深化在大数据领域的布局,响应“建设全国一体化的国家大数据中心”的国家战略,作为中国大数据产业“国家队”的一员,努力推动国家大数据战略落地。
“我们打造的国际化大数据平台,将成为国家大数据中心的重要组成部分。”北京市供销合作总社副主任、北京供销大数据集团董事长姚从琪解释说,“北京市供销社一直以来保持诚实、守信的优良传统,可以保障平台的中立性;凭借跨区域、全球化的布局,可以保障平_的安全性;平台自身具有互联互通、运行高效和价格低廉的特征,可以保障平台的优越性。”未来,北京供销大数据集团还将基于供销大数据平台,发展包括“九金十盾”在内的政务云、涵盖各行各业的企业云、以“供销e家”为基础的商务云,以及科、教、文、卫、健康云。
以前,在云计算、大数据领域,无论是产品、技术,还是数据中心的建设和运维,国外厂商都占据领先地位。不论是出于安全可控的考虑,还是为了降低成本,在云计算和大数据领域都呼唤“国家队”能够“身先士卒”,通过自主创新,在云计算和大数据应用落地的过程中发挥积极而重要的作用。
北京供销大数据集团作为中国大数据产业“国家队”的一员挺身而出,在2016年围绕“3+10+X”的发展战略积极投入,在全球范围内打造拥有自主知识产权的分布式、全互联的数据中心集群网络,并凭借全球一体化的产业布局、创新的商业模式和跨全产业链的数据存储、分发、技术运维能力,成长为建设一体化国家大数据中心的主力军。
全国供销合作总社正在加快打造农村电商的专业性平台和地方性平台,同时加快打造全国供销电子商务“一张网”和农村电商“国家队”。在这一背景下,北京市供销合作总社敏锐地抓住了大数据时代的机遇,创建北京供销大数据集团,为发展大数据产业提供创新的企业平台,目前已与全国总社“供销e家”达成战略合作,将在电子商务、云计算、技术服务领域展开全面合作。从传统的零售领域跨界到大数据,现在又积极投身于国家一体化大数据中心建设的洪流之中,北京市供销合作总社的华丽转身值得点赞。
北京供销大数据集团未来将立足全国大数据产业园区布局与大数据平台资源的建设,同时借助合作伙伴在教育网络、科研创新、数据运营与分析、移动App资源等方面的支持,共建自主可控的大数据中心生态圈,通过不断完善供销云、企业云和金融云等一体化解决方案,为企业的数字化转型提供服务。
大数据落地的“道”与“术”
战略为“道”,产品为“术”,北京供销大数据集团CTO王帅宇在会上深度阐释了北京供销大数据集团践行大数据中心一体化国策的“道”与“术”。
“建设全国一体化的国家大数据中心”战略的提出,首次将数据中心建设提升到国家战略层面。王帅宇表示,北京供销大数据集团是为建设一体化的大数据中心而生,将肩负起捍卫国家数据的重任。
北京供销大数据集团致力于打造国内最大规模的第三方公立大数据中心集群。目前,集团位于承德、贵阳的数据中心已初具规模。未来,集团将按照既定的“3+10+X”战略,在更多地域布局和建设数据中心。2016年5月,集团正式成立美国子公司,成为数据中心全球一体化布局的桥头堡。
北京供销大数据集团认定,IDC/DC、CDN和云计算的一体化才是生存之道。“符合一体化者生,不然就会被淘汰。”王帅宇举例说,“由于我们三者都做,未来甚至可以将CDN免费,这对只拥有CDN业务的厂商来说是巨大的冲击。一体化将在未来5年内重塑整个行业。”
接下来,北京供销大数据集团将以创新的思路,采用前沿的技术、产品和流程打造数据中心,占领行业制高点。举例来说,在CDN方面,北京供销大数据集团将把产品做到极致。目前,集团已在全球范围内布局500个以上CDN节点,凭借专业的服务实现了网络和业务质量的可视化,并提供基于多级策略的智能调度响应功能。在云计算方面,集团将主攻“行业云”蓝海市场;同时打造“供销云”,为全国供销系统的农业电商平台提供支撑;集团还将深耕“企业云”,打破信息孤岛,让数据产生倍增效应。
“我们致力于将自身打造成一个一体化的大数据服务商。”北京供销大数据集团CDN事业部总经理曹杰表示,“我们的优势在于数据的存储、分发、处理和分析。通过落地‘3+10+X’的战略布局,我们将建设覆盖全国的数据中心集群,为数据存储提供安全、高效、互联的网络结构,部署覆盖全球的CDN网络,解决大数据的快速分发问题,为金融、保险、政务、农业、电商等垂直行业的用户提供数据处理和分析服务。从大数据基础设施到数据的存储、分发、处理和分析,我们的解决方案和服务是一体化的,这些优势是其他公司所不具备的。”
北京供销大数据集团愿做数据开放、数据流动的桥梁,从技术平台的搭建到价值的实现,完成大数据的融合。北京供销大数据集团已经在大数据基础设施、相关技术,以及商业模式创新方面做好了准备。
“供”生“供”赢
本次峰会的另一场重头戏是创新工场与北京供销大数据集团人工智能及大数据技术平台合作的启动仪式。创新工场创始人兼首席执行官李开复亲自参加仪式,并发表了演讲。
从2016年3月谷歌AlphaGo完胜著名棋手李世石开始,人工智能在2016年持续火了一年。语音识别、人脸识别等30年前人工智能的先锋们已经开始钻研的技术,如今终于从实验室走进了人们的生活和工作中。以前,因为计算设备的性能瓶颈、算法的限制,以及没有今天这样海量的数据和大数据中心的支持,人工智能的发展举步维艰。
人工智能技术的广泛应用为什么更需要一体化大数据中心的支持?“人工智能结合了多元化的信息。”李开复解释说,“人工智能需要整合大量的信息流,如果每个公司都将数据存在自己的服务器上,然后再逐一汇聚起来,显然不太现实,数据应该存在云上。美国许多先进的人工智能技术都是基于大数据中心和云平台推出的,比如亚马逊最近推出了人工智能服务,微软Azure上也有20种不同的人工智能服务。人工智能需要特别大的数据量,而且多元化的数据处理也特别适合在一个统一的数据中心环境中进行。”
深入了解了人工智能与大数据的关系,你也可以更真切地体会到,创新工场与北京供销大数据集团的合作是水到渠成。李开复表示:“人工智能企业需要的数据量十分庞大,包括人们出行、消费、征信等方面的信息。如此庞大的数据量不是一个公司能够收集和处理的,实现数据中心的一体化也就顺理成章了。此外,像人工智能人才的培养、相关计算资源的使用都需要一体化大数据中心的支持。这也是创新工场与北京供销大数据集团展开全方位战略合作的基础。”
在云计算、大数据时代,更需要产业链上下游的厂商,发挥自己的特长和优势,与合作伙伴打造共A共生的生态圈。北京供销大数据集团与创新工场的合作是一个良好的开端。在布局一体化大数据中心的过程中,北京供销大数据集团与众多合作伙伴的合作结出了累累硕果。
纵观今年的AI行业,说不上风起云涌,谈不上拼得头破血流,但光从“巨头云集”四个字来看,就可窥见风平浪静之下其实暗流涌动。国外有谷歌、苹果,国内则有百度、阿里、腾讯、华为等多家企业入局。从拼技术到拼产品,从拼入口到拼布局,各个企业在AI领域大放异彩,展现着自身的独特魅力。
AI基因上:BAT各有优势,大数据算法全面更胜一筹
论AI基因,这个支撑企业整个AI战略构想的核心基础优势,可以说是不可或缺,它着实能为企业在AI领域的布局带来极大帮助,也是一家企业进军AI最大的底气。总体看来,BAT三家互联网巨头在布局AI领域均有优势,但因自身业务的不同,其AI基因的优势又表现在不同方面。
百度:AI基因意味着拥有先天的优势,依靠搜索引擎业务起家的百度,在掌握与人密切相关的数据算法领域算得上是得心应手。同时,作为人工智能的雏形搜索引擎业务,拥有它就相当于掌握了人工智能的钥匙,只需依据数据内容付诸实践便能打破许多关卡,拥有比其他企业更多的机会。
一方面,数据是企业做AI的源头,也是引领AI走向的一大支撑点,拥有数据便于掌握AI大致的发展方向;另一方面,百度搜索的数据样本较为全面复杂,范围涉及场景较为广泛,涵盖从天文地理到日常的生活信息,累积了丰富多样的样本数据,这一切,都是基于百度算法技术的支撑,也为其在AI领域的全布局上提供了最基本的算法和数据支持。因而,AI基因这一方面,百度比其他企业有了更多的发展机遇。
阿里:依靠电商起家的阿里,虽然不具备像百度一般的海量大数据,但是阿里在掌握电商消费者数据层面也有着自身的优势。与百度一样,阿里在AI领域也早已开始布局,其有着百万级用户规模的云计算业务,同时也凭借在电商领域的丰富场景应用,阿里在大数据层面也有着自身的实力所在;此外,阿里在商业场景上所得来的数据,也是支撑其人工智能产品最终落地的基石。
腾讯:虽然在先天技术上略逊色于其他两家,但腾讯也有着丰富的应用场景。依靠在社交网络、媒体等业务的深耕,加上微信、QQ的庞大用户体量,使得腾讯在开发AI业务上更多基于提升用户体验上入手。从这方面看来,腾讯的AI基因更多倾向于丰富场景上的驱动,还有其庞大的用户数据体系支撑。
综合来看,三家互联网巨头在进军AI领域上有着天然的AI基因,只是因各自所涉及业务的不同,AI基因也各不相同。但从综合实力来看,拥有全方位的技术支持和丰富的场景应用,以及掌握算法功能才是开启AI领域的最佳起点。
AI产品上:场景出现重合,涉足范围广泛者博得头彩
人工智能领域虽说涉及的场景丰富,但最终还是无法脱离人们的衣食住行等各个方面。无论各企业在AI领域的构想如何丰富多彩,最终的成果检验还是要看产品的落地。因而,人工智能概念出现了这么多年,近两年终于加快了产品落地的步伐,国内尤以BAT为首的人工智能产品现已扎堆面世,为人们开启了新一轮的AI产品检验潮。
百度:借助先发优势,百度现已有多款人工智能产品落地,涉及的场景范围广泛且全面。其中,百度研发的一款智能音箱产品raven H搭载旗下的人工智能操作系统DuerOS 2.0,在这项系统的加持下,raven H在语音对话交互方面达到高度智能化,同时在与人类交互的功能上还能不断学习和进化,以达到与用户使用习惯的高度融合。这款智能音箱产品拥有很强的唤醒率,即使相隔一堵墙也能被轻易唤醒服务,还能用于控制家居产品如灯光、电视等家居产品,相当于掌握了智慧家庭入口。
同时,在人工智能产品发展逐渐步入正轨,许多人工智能场景如智慧生活、智慧出行等方面急需语音系统支持的情况下,百度的人工智能操作系统DuerOS应运而生,为赋能上下游产业链付诸行动。在上游,百度DuerOS与紫光展锐、ARM等芯片厂商达成合作,提升硬件基础以最终赋能于人工智能产品上;在下游,百度DuerOS与海尔、美的、TCL等传统家电厂商同样达成战略合作。有了DuerOS的支持,用户将能通过DuerOS,实现对电视、冰箱等智能家电产品的操控。
另外,百度研发的深度语音识别系统Deep Speech,在高精度的语音识别领域展开部署。当下的AI领域,语音识别涉及的场景也较为广泛,人工智能的初衷就是带给人们无处不在的便捷体验,“能动嘴尽量不动手”的语音识别更是深受AI研发企业的欢迎,也深受消费者的追捧。在这项语音识别系统的加持下,相关产品不仅为用户提供了多国语言的互译功能,也为用户带来了便捷的翻译体验。
除此之外,百度还研发了无人驾驶技术平台Apollo,旨在建立多方合作的生态体系,为汽车企业和用户搭建一套新的完整的自动驾驶系统,推动无人自动驾驶技术发展和普及。目前,Apollo已经开放两款落地产品,其中一款小度人车交互系统,不仅拥有智能语音助手和人脸识别功能,还能实现疲劳检测和AR导航,目前小度车载系统已与多家车企达成合作,多款车型将进入量产阶段。
阿里:同样,语音这项连接人工智能与人类频率颇高的交互接口,阿里也有涉足。其中,阿里云研发的一款人工智能产品ET大脑,在智能领域实现了新的突破,除了具备智能语音交互和生物识别等技术,还能帮助人们在复杂的情况下快速做出最佳选择。
同时,在智慧家庭领域,阿里研发的一款智能音箱产品天猫精灵,在语音识别上也拥有多项功能,此外通过内置人机交互系统开放给业界,已有多家产品链接到天猫精灵,为布局全局的智慧家庭入口夺得先机。
腾讯:在人工智能领域后入局的腾讯,在人工智能领域的开发更加注重提升自家产品的用户体验上。围绕智能语音识别和自然语言处理等板块,腾讯目前已提供了多种人工智能服务,为自身产品在语音识别上进一步提升用户体验。
此外,腾讯拥有为智能音箱厂商提供后台支持的云小微,在微主机Ministation衍生的智能家居设想上,逐步拓展到在线教育和家庭控制中心等。
综合来看,BAT三家所研发的人工智能产品虽有不同,但都涉及了同一个生活场景,那便是智慧家庭领域。尤其是涉及多个人工智能领域场景维度的语音交互系统,包括冰箱、空调、智能音箱等家用电器。在这方面,谁能拥有强大的语音操控系统,谁就能牢牢把握这一出现频率较高的交互接口。同时,为人类带来丰富惊喜体验的人工智能领域,同样需要丰富的产品加以支撑,才能为往后智慧生活的进一步实现提供有力的产品支撑。
AI理念上:与自身业务紧密结合,取得先机者得天下
AI理念,即企业做AI的核心思想。从最初的产品定位,到产品的生产和落地,均离不开最初的理念支持,即产品将要成为什么样、将为人类带来何种便利,每个阶段都围绕最初的理念开展。总体看来,BAT的人工智能理念是在自身原有业务的基础上,围绕AI领域展开构想,并将这一设想付诸实践。
百度:从百度的人工智能理念来看,人工智能在未来会涵盖其所有的产品和服务,成为新的增长引擎。而事实上,百度在人工智能领域早已从七、八年前开始,从基础层到感知层以及生态层和应用层等,百度均有着明晰的战略规划方向。此外,经过一段时期的打磨和经验总结,百度的人工智能理念开始跟随产品一同落地,整个人工智能战略规划也从理论开始走向实用阶段。
阿里:电商起家的阿里,在人工智能的布局比百度稍晚一些,其人工智能理念多围绕电商这一核心业务,从仓储到物流,从产品到制造,阿里在零售业的人工智能轨迹很清晰,并且与自家业务紧密结合。同时阿里发挥所长,全面赋能零售体系。
腾讯:在AI矩阵布局上,腾讯目前拥有人工智能实验室、微信智能语音团队等技术的支持。同时其人工智能领域更关注场景、计算能力等,腾讯同样也是从自身业务出发,布局游戏、社交和内容AI,对比其他两家来说起步较晚,但初涉人工智能领域的腾讯也不甘落后,建起了人工智能实验室,用于人工智能方面的研究和开发。
综合来看,在人工智能的战略布局和理念构想上,百度已经抢占了先机,从技术优势到场景落地,战略规划进一步照进现实。因而在人工智能领域,必然是取得先机者拥有绝对的话语权,在未来的业务范围拓张上也卯足了底气。
AI基因、产品、理念的加持下,未来的AI行业谁将剑指巅峰?
综上所述,人工智能产业最终的走向必然是加快产品落地的同时迈向高度商业化的未来。无论是阿里的智慧新零售,还是腾讯的场景重要性,抑或是是百度的从出行,到赋能实体制造业的全方位操作,都在各自的领域有着明确的产品构想。
因而,在AI基因、AI产品以及AI理念的加持下,接下来的人工智能产业,各个企业都将在自身基础的战略布局上,进一步将计划落地实施。不过需要注意的是,人工智能这个庞大的产业,并非一家企业就能独自撑起,而是需要各行各业的相互协作共同推动,才能将企业的人工智能核心理念从理想照进现实。因此,在企业界的共同推动下,未来的人工智能社会化场景中,人工智能所带给人们的便捷将得到更大化的展现,人类的生活是无处不在的方便和舒适。
这种便捷或许将在以下两个场景中得到高度化的体现。日常家庭生活上,只需“开口说话”这一个动作,便能顺利操控各个家居产品工作,实现家居产品与用户需求的高度融合;日常交通出行上,也无需用户亲自“动手”,汽车便能自动上路,不仅从一定程度上解放了人的双手,同时也“解放”了“脑袋”,留给用户足够的思维空间专注其他工作,方便又安全。
关键词:智能科学与技术;交叉学科;相关学科
我国智能科学与技术本科专业(简称智能专业)已经历了10年的发展历程,而且越来越多的高校经教育部批准,加入智能领域的人才培养行列中,对智能专业的教育教学已有一定的实践经验与成果。如今,社会已经步入信息智能化时代,如何更好地适应智能化社会的人才需求,应在已有基础上对智能专业及相关学科的发展作进一步探讨。
1 智能专业的发展基础
人类社会从农业社会、.工业社会到信息社会,发展到今天,在越来越多的领域,人工智能工具都能够根据不断出现的新情况来调整自身的规则系统,需要人工的产业也越来越少,但却苦于信息与机器无智能的问题,因此有了以信息智能化和机器智能化为目标的智能科学与技术研究领域的出现。我国也非常重视其发展,在国家863项目指南中,智能化人机交互与中文处理平台已被列为计算机软硬件主题的重点项目,并将智能机器人纳入863计划长期支持的重要领域;国家中长期科技发展规划纲要(2006—2020年)强调发展认知科学、智能交通管理系统、智能信息处理技术、智能感知技术、智能服务机器人等智能科学技术。智能科学与技术将在未来国家科技发展规划和重大科研课题中扮演重要角色,也将成为智慧地球、智慧城市和智慧生活的引导者。我国智能科学技术教育已走出了一条星光大道,争取在我国学位体系结构中增设智能科学与技术博士和硕士学位授权一级学科,同时把我国智能科学与技术本科专业建设和人才培养推向一个更高的阶段。
近年来,信息领域学科的热门专业也开始面临不同程度的就业压力,作为信息领域的一支新生力量,智能专业便成为高等学校进行专业结构调整的着眼点。继2003年北京大学首个提出并成立智能专业后,众多高校把握先机,申请并建设了智能专业。
智能科学与技术本科专业是一门融合了电气、计算机、传感、通讯、控制等众多学科领域,多学科相互合作、相互研究的跨学科专业。它涉及机器人技术、微机电系统、以新一代网络计算为基础的智能系统,以及与国民经济、工业生产及日常生活密切相关的各类智能技术与系统等。
经调研,大部分高校的智能专业是基于自动化、通信与电子系统、计算机科学与技术、电气工程、人工智能、机器视觉、数据挖掘、信息检索及知识工程等领域发展而来,并且具有雄厚的师资力量,为智能科学与技术未来的发展做好了充足的准备。部分高校智能科学与技术专业的师资队伍所属学科的比例如图1所示。
2 智能科学与技术专业学生的继续深造方向
智能科学与技术专业涉及非常多的专业领域,就其中的一个领域而言,就可以进行更深一步的研究,成为其继续深造学科,例如智能专业本科后可以从事控制工程与科学、计算机科学与技术、智能科学与技术等学科,本文只列举其中几个例子。
2.1 控制科学与工程
控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。
经调研,以湖南科技大学为例,该学科特色研究工作主要体现在群机器人协作控制技术、故障智能诊断方法研究与应用、非线性系统分析与综合、煤矿安全监控系统应用技术等方面:其中群机器人协作控制技术借鉴昆虫的群智能行为,利用人工智能等技术使多个个体机器人完成一系列合作任务,面对未知环境搜索定位等复杂任务;故障智能诊断方法研究与应用运用智能检测、智能故障诊断、传感器融合等技术研制大型机电设备与其复杂的运动控制及诊断系统,该研究成果已成功应用于“机车走行部在线故障诊断系统”。群智能、智能检测、故障诊断等技术的运用证明了智能科学与技术在此学科中起到重要的作用。
以北京信息科技大学为例,智能科学与技术系的4位教授分别在控制科学与工程学科的控制理论与控制工程、检测技术与自动化装置、模式识别与智能系统、导航制导与控制二级学科指导研究生,从事的相关研究为专家系统、智能检测系统、服务机器人、智能系统与智能导航。以其导航制导与控制二级学科为例,现设方向1——自主导航与控制,方向2——惯性仪表与惯性基组合系统,方向3——微/纳机械传感器,方向4——多自由度电动伺服定位技术。方向1在研究机器学习在导航与控制中的应用、智能伺服技术、新概念飞行器等方面,方向2在信息融合与估计理论、多模组合导航技术、新型机器人的自然感知和运动机理、自主式初始对准等方面,方向3在研究性能稳定可靠、敏感灵敏度高和准数字输出的声表面波惯性传感器方面,方向4在研究基于模型和基于数据驱动的无模型自适应控制方法方面,都离不开智能理论与方法,并促进智能理论与方法的发展。
2.2 计算机科学与技术
计算机科学与技术学科主要是围绕计算机的设计与制造,以及信息获取、标识、存储、处理、传输和利用等领域方向,下设计算机应用和计算机软件与理论两个二级学科,其中包括智能信息处理、人工智能与嵌入式系统等方向。信息时代的信息处理要求更高,当前信息处理技术逐渐向智能化方向转变,以图像、视频、音频等多媒体信息为研究对象,从信息的载体到信息处理的各个环节,都模拟人的智能来处理这些信息。人工智能学科与认知科学的结合,会进一步促进人类的自我了解和控制能力的发挥。目前,我国自主开发的“特定图像内容监控系统”已通过上海移动公司的实地测试。通过研究具有认知机制的智能信息处理理论与方法,探索认知的机制,建立可实现的计算模型并发展应用,可以带来未来信息处理技术突破性的发展。
2.3 智能科学与技术
经调研,以厦门大学为例,智能科学与技术作为硕士点一级学科包括认知逻辑学、计算语言学、智能计算方法、艺术认知与计算、脑高级功能成像这5个研究方向。其重点科研平台之一的“智能信息技术福建省高等学校重点实验室”的主要研究方向有中文信息处理、中医信息处理、数字化中国人器官建模仿真及其临床应用。在中医信息处理中,主要围绕着如何构建信息化中医诊断的智能方法体系展开研究,涉及中医诊断认知逻辑、中医智能专家系统的构成技术、中医海量知识的数据挖掘技术、中医四诊信息的获取与分析技术、实用中医信息系统的开发等。此方向的研究可赋予计算机以人的智能,从而实现对病人的症状诊断与治疗。除此之外,智能机器人也是学习智能科学与技术的一个良好平台,为了更好地学习智能,研究机器拟人化,FIRA世界杯于1995年被提出,其远景目标之一是使机器人足球队战胜人类足球队。此平台大大拓宽了人工智能技术的应用领域。
3 智能科学与技术专业培养方案与专业发展前景分析
从智能专业的发展基础分析可知,智能科学与技术专业是一个紧跟时代潮流的专业,涉及的知识面和学科领域非常广。但是,智能专业作为一个全国普通高等学校本科专业,有其不同于其他专业的知识内核。中国人工智能学会教育工作委员会提出智能专业培养方案的核心课程应有:智能科学与技术导论、智能数学基础、脑与认知科学基础和机器智能,这是各高校智能专业培养方案的共性部分,是基础模块。其他基础模块、专业特色模块,目前阶段应在各高校智能专业建立和发展的专业学科基础上设置,例如,侧重控制系统的、侧重计算机软件的、侧重知识工程的等。智能专业再发展一段时期后,各高校的智能专业的共性部分应越来越多,个性部分也越来越独立于源头专业,例如,独立于计算机科学与技术专业、自动化专业、电子工程专业等。这样,在智能专业上层自然就形成智能学科,从而独立于计算机科学与技术学科。这是专业发展的必然结果。
另一方面,专业的良性发展离不开社会的就业或创业需求。智能专业的本科生,需要了解掌握计算机、电子、控制等各领域的知识和技术,而且在本科生4年课程的教学中融入相关学科的前沿知识,这使得在这个专业学习的学生不仅可以拥有较为广阔的知识面,对专业知识的理解也有一定深度。可以说这样一个既有广度又有深度的专业具有广阔的就业前景。社会中也有新生的行业,近些年来,有关智能系统开发的公司相继出现,涉及机器人、交通、楼宇、信息系统等多方向的智能系统开发,为本科毕业生创造了更恰当更明确的就业方向与途径。