美章网 精品范文 大数据时代意义范文

大数据时代意义范文

前言:我们精心挑选了数篇优质大数据时代意义文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

大数据时代意义

第1篇

【关键词】大数据 政府统计 发展政府统计

国家政策的制定,各种决策的产生都需要政府统计部门进行全面的信息统计工作。政府的统计工作的有效进行是维护国家大环境平稳运行的有力保障,对社会和谐发展也具有重要意义。面对“大数据”时代的来临,政府应该正确认识大数据的基本内涵,重视其对统计工作的影响,积极主动配合大数据的时代特点进行政府统计工作的调整。

一、大数据时代

大数据时代的产生是伴随着信息的数字化和智能化的发展形成的[1]。近年来信息领域的专家对其产生与发展讨论激烈,在讨论过程中使人们意识到大数据的重要性。大数据的特点是容量大,形式复杂,数据生成快且信息价值密度低。其中形成的数据整体规模不断扩大,导致信息数据的跳跃式发展状态。随着数据来源渠道的增多,数据的结构也发生改变,其结构类型包括结构化、非结构化、半结构化。数据的数量与速率的提升,导致其利用程度大大提升,使其在诸多领域发挥其应用价值,因此,对于政府的统计工作也具有重要意义

二、大数据时代对政府统计工作的意义

(一)改变传统的政府统计工作的特点

(1)数据量整体提升,改变数据的有限性。传统的政府统计要在一定时间内处理大量来自各种门类,各种行业的报表,这些报表的上交都是统计工作人员根据相应的调查目的,要求企业直接上交的数据信息,虽然数据的整体数量大,但其数据的有限性突出。在大数据的背景下,政府的统计部门在进行报表的收集和处理时,各企业对其报表进行数字化的转换,然后进行数字化的数据传输,使收集过程变得简单明了,由于政府统计人员在进行数据收集时没有目的性,各行业的数据按规定定期上交,使统计数据成倍增长,从而减弱了数据的有限性特点。

(2)改变其单一类型的特点。传统的政府统计工作处理的数据类型主要以文字、表格、数字为主,导致数据的处理类型单一,大数据的运用,改变了传统、单一的数据处理类型,其类型由文字、表格、数据转化为多种形式的可以被计算机所识别的数据。例如,多媒体的音频、视频、图片等。

(3)改变数据分析的难度。传统的政府统计工作由于对企业报表的调查目的性强,使数据在收集、处理时程序简单,核算方式、核算结果都比较明确,数据收集与数据调查的关联性大,使数据分析过程简单容易。现今大数据的广泛应用使数据的收集与调查关联性减弱,大量的数据涌入统计系统,统计人员在进行调查时要将众多数据信息进行目的性的分类,在分类中根据调查目的进行数据的分析,导致数据分析难度加大,缺乏高超的技术性分析,很难得出有价值、有作用的分析结果。

(二)提高政府名录库建设

统计部门进行政府名录库建设是其基本工作职能之一,政府名录库的建设可以促进统计工作的有效进行。现今,大数据的背景下,信息之间交流日趋便捷,交流渠道多样,导致数据的总体数量逐步提升。政府应根据现今社会的发展模式,充分利用大数据,将企业的发展动向,和企业的发展现状相结合,分析企业出现状况的原因,从而促进企业的发展。另一方面,在动态的数据分析中,发现企业新的利益增长点,从而形成数据更新及时,数据涵盖全面的名录库,使其服务企业,服务政府的功能得以实现。

(三)促进统计知识宣传氛围的形成

现今,政府的统计部门由于工作量大,工作过程具有严格的保密性,导致对政府统计部门的工作质疑声越来越多,人们对统计知识的了解不足也导致对政府统计部门的不信任。在大数据的背景下,技术得到前所未有的更新,技术的更新使统计部门在进行数据的传输中速度加快,为促进统计知识宣传氛围的形成提供了技术保障。在逐步进行统计知识宣传中,打破人们对于统计部门的思维定式,消除统计部门在人们心中的疑虑,使统计工作得到人民大众的支持。

(四)改进数据的采集、数据的处理

传统的政府统计数据的采集和处理均采用联网直接报表的形式,其形式虽然对统计工作有一定的积极影响,但其存在的弊端也十分明显。在大数据的背景下,政府统计部门建立一个新的信息处理系统。在新的程序运行下进行数据的采集,对数据的质量进行合理的分析,找出其存在的问题,针对问题进行及时处理,减少系统中数据的错误以及更新不及时的问题出现,从而提高统计数据的质量,促进政府统计工作的有效进行。

(五)强化数据分析能力

政府的统计工作的重点停留在业务数据的处理层,国家在进行决策使难以从静态的数据中提炼大量的有价值的信息[3]。在“大数据”时代,数据的静态形式渐渐消除,利用大数据中的“云计算”技术,可以同时进行大量数据的运算,将计算结果进行动态的呈现,使数据中的潜在价值得以有效发挥,在计算中建立数据与数据之间的内在联系,使政府统计工作高效、准确。

综上所述,政府的统计工作在面对大数据时代的来临时,首先要正确认识大数据的基本内涵,充分运用大数据的优势促进政府统计工作的进行。注重依靠大数据在改变传统的政府统计工作的特点,加快政府名录库建设,促进统计知识宣传氛围的形成,改进数据的采集、数据的处理方式,强化数据分析能力方面的意义,从而促进政府统计工作的顺利完成。

参考文献:

[1]李冬梅.大数据时代背景下政府统计工作模式创新及其配套举措研究[J].统计与咨询,2014,(01).

第2篇

在这样的故事中,现在比较喧嚣的就是“大数据”。什么是大数据,已经有诸多的论述,总体上来看大同小异。涉及到大数据对不同领域的影响,如何正确认识大数据及其在国际传播中的意义,似需逐步理清如下几个线索。

第一,计算方式革命奠定了大数据的时代意义

大数据的发展,是信息高速公路硬件铺设后,在信息流量的增加、信息积累方式的多元、数据存储和分析技术的突破、用户数量的飞跃等因素推动下,对于数据认识和数据挖掘上的革命性突破。

简而言之,大数据实现了两种计算方式上的革命:

首先是精确计算。一个充分利用信息传播新兴终端的主体,即充分享受了移动、即时、通信的终端服务的主体,其个人信息将被全息记载,精确计算。比如一个普通人,在大数据时代享受的便利包括,使用google等搜索引擎,可以快捷地享受到信息广泛和瞬间的汇总——但个人的IP地址以及搜索关键词、搜索习惯所有痕迹被记录在案;医疗健康信息历史和当下的储存、比照以及血压安全阈值的监测;个人消费数据和投资的检测分析等。

其次,模糊计算。个人在享受大数据提供的信息超值服务的同时,也将自我的信息分享出去,在“个体(individual)”的对面,还有一个利益集团的狼群,在不断搜集“群”、“众”一类的信息,并将他们通过大数据的模糊计算,不断通过对个人精确信息的获取而将这些模糊信息精确化个人被算计而不知。

这个用户和“对面”的用户,既是“个体”、“主体”或者个人,也可以是一个公司、集团,在某种程度上也可以是一个国家。

第二,社会控制手段“质”的飞跃凸显了大数据的政治意义

从量的积累到质的飞跃的道理广为人知。从社会控制的角度来看,大数据将这个道理最终落到了实处。大数据提醒我们,“社会控制”在信息时代的价值内涵,已经不再是虚拟的,而是通过采集和分析每个主体的个人信息,实现最优化的、不同层面的利益最大化和社会控制。有这样一则大数据在美国政治传播领域的调查案例结果引人思考。

2012年4月23日到5月6日,美国宾夕法尼亚大学安娜伯格传播学院迈克尔·德利·卡皮尼(Michael X,Delli Carpini)教授和约瑟夫·特罗(Joseph Turow)教授带领两位博士生Nora Draper和Rowan Howard-Williams进行了一项有关大数据政治传播方面的研究。由研究人员设计了20分钟的调查问卷,普林斯顿国际调查研究机构(Princeton Survey Research AssociatesInternational)抽取了有代表性的美国成人网民1503个样本进行电话访谈(包括座机和手机),就大数据时代概念运用于政治选举时,选民对定制性的政治推广的看法进行了调查。

2012年7月24日公布的调查结果显示,占很大比重的美国人绝对反对(dead-set against)针对他们个人量身定制的政治广告(tailored political advertising)尤其是当时在即将到来的2012大选中类似的活动在前所未有地上升的背景下。实际上,很多美国人非常不喜欢量身定制的政治广告,他们表示,如果发现自己打算投票的目标候选人卷入类似行为的话,他们的支持率会大大降低。更详细的数据包括:86%的人说,他们不欢迎“根据个人兴趣量身定制的政治广告”。这个数据远远高于那些拒绝“量身定制型传播”(tailored communication)形式人群的比例(61%)、“量身定制的新闻(news thatis tailored to your interests)”(56%),“量身定制的折扣(discounts that are tailored to your interests)”(46%)。

64%的美国人说,如果他们获悉他们倾向投票的候选人在竞选过程中购买他们(选民)的上网行踪(onlineactivities)以及他们邻居的在线行踪等数据,并依此向他们推送不同类型的政治信息的话(这些行为在2012年的大选中已经很普遍),37%的人说会大大降低他们的支持率,27%的人说无论如何也会降低他们的支持率。

70%的成年美国人说,如果他们获悉他们倾向投票的候选组织在竞选过程中运用脸谱网(Facebook)向他们的链接朋友发送包含朋友的文件照片以及表示支持候选人的“声称”广告的话,50%的人会大大降低他们的支持率,22%的人说无论如何也会降低他们的支持率(而这种类似的行为在201 2年大选中已经发生)。

77%的美国人同意(其中35%的人严重同意)如果一个网站将我浏览该网页的信息分享给那些政治广告人,我将再不会返回这个网站。(实际上,很多网站,或者自主、或者通过第三方都在分享类似的数据。)

85%的人同意(其中47%的人严重同意)如果发现脸谱网(Facebook)用我在帐户中已经设置为私人信息的东西制作并推送给我政治候选人广告的话,我会很愤怒。

主持这项研究的约瑟夫·特罗教授说,2012年的大选标志着在线广告推介的一个分水岭。空前的途径和范围,全美政治大选组织运用几百件细碎的、有关个人在线和离线的生活信息以确保他们认为的“正确的”人被“正确的”信息所命中。“但是我们也发现,与市场营销人员所宣称的迥然不同的是,大多数成年美国人不希望根据他们的个人兴趣来制造和推送政治广告”。

这个案例中似乎是很专业的分析“定向广告”(Targeting advertising),即就个体数据的分析来决定“谁”应该接到劝说性的信息,“如何(how)、何时(when)”以及“出于什么原因”(for what reasons)。“量身定制性广告”(Tailored advertising)意味着给某个独特的个体打造某种劝说性的信息——这个定向的过程基于对这个独特个体兴趣和价值的分析结论。但是,这个所谓专业化的案例直指大数据的政治传播实质,从批评的声音中我们也看到,人们认为这样的行为威胁了隐私权并侵蚀民主价值观。市场营销人士也包括政治竞选活动顾问们则辩护说,这样做可以给美国人他们实际想要的东西:与他们的关注焦点密切相关的政治广告以及其他形式的内容。

从中国现实来看,以往每个个体,无论是从事何种工作,都具有很强的地域性、个体性、阶段性,社会关系也或者类似“山药蛋”——一个圈层一个圈层各自独立,类似先生所总结的乡土社会格局。在自己交往能力、经济能力以及权势所能辐射的范围内活动,顶多再配上一些“烟花”——比如远方亲戚、外地工作亲属、外地同学等弱关系。尤其每个人的社会活动都相对比较封闭。

但是,大数据互联网背景下,每个人都触网、上网,成为社会大网络上的一个物理性节点。在全国乃至全球物理性一张网的概念下,个体的任何活动都具有了可追溯性、可复原性,最重要的是可分析性。大型信息网站通过多维数据源来进行人的跟踪和定位,精确把握用户信息,并进行裸的掠夺式使用。除了GPS进行物理定位外,通过个人消费行为和习惯也可以进行人的性格乃至行为取向定位,比如浏览网页、收发电子邮件、搜索关键词和关心信息、手机号码、网吧频率。

由此激发人们思考的是,每个人的个人信息都有哪些机构在搜集,都有可能被用于何处?比如买手机有不同的公司,上网实名制,银行,学校,单位,超市会员等等,都在进行着大众个人化信息的搜集和汇总。

那么,再进一步思考,又有多少外国机构、利益集团乃至犯罪机构等通过这些渠道进行跨国的、中国国民信息的搜集和分析,已经将这样的信息用向何方呢?第三,政治边界内涵改变和重组揭示大数据的国际传播意义

毋庸置疑,大数据将为人们认识世界和改造世界提供新的强有力工具,使人们能更加容易地把握事物规律,更准确地预测未来。亟需更宽大、长远的顶层设计,以之来调适数据规模以及计算模式的革命给既往思维、管理模式带来的挑战。

美国已经将大数据提升到国家战略层面上实施。美国是最先提出“大数据”概念并开展应用的国家,依靠其先进的信息技术以及数据科学的研究水平逐步建立起了系统的“大数据”基础理论和应用模式,并在实际应用中积累了丰富的经验。2012年12月10日,美国国家情报委员会了名为《2030年全球趋势——不一样的世界》(Global Trends 2030:Alternative Worlds)的报告。这是全美情报界最高层级战略评估性情报分析产品,提交给总统,意在为其提供未来20年内的全球趋势预测,为白宫和情报界远景战略政策提供思考框架。报告反映了美国政府16个情报机构对未来20年世界局势的预判,其中提到的四类技术将影响2030年前全球经济、社会和军事发展:信息技术,制造和自动化技术,资源相关技术,卫生保健技术。在信息技术领域,大数据存储和处理技术、社交网络技术以及智能城市技术等将改变人们的生活和经营方式,社交媒体和网络安全会成为新兴市场。大数据的存储和处理会协助政策制定者有效应对经济和治理的难题。

大数据概念和实践提示我们,在信息化时代,国家和机构的权力半径在一定程度上取决于风险预警和信息获取的半径。大数据技术提供了这样一种可能,那就是物理和行业的边界已经被信息重新划定,包括信息的获取、处理和分析能力重组了国家的实际权力的发挥以及发挥的实质性内涵。举例来说,一个国家的领土规模可能很大,但信息无障碍传播和获取分析处理能力低下的情况,有可能决定了这个国家或地区的权力延伸物理半径很是狭小,以至于权力延伸和发挥影响的心理和生理半径则会呈现一种疑窦重生和肢端萎缩的趋势;相反,一个国家和另外一个国家的距离可能很远,可是通过信息传感器的充分布设以及信息处理能力的提升,另外一个国家可能会沦为信息强国的一个节点和包围,丧失任何的信息主动权而深度为奴。

余论

20世纪著名的三论——信息论、系统论、控制论,在大数据时代充分得以验证。

第3篇

在大数据时代中,大数据的应用效能、应用方便度、应用当地覆盖面是未来大数据应用所关注的重点,而目前在大数据应用方面存在许多的问题,这些问题的存在影响了未来大数据的应用,如何解决这些问题,重现在开始从最基础方面开始,解决这些问题是大数据未来应用的重要工作。本文首先列举了目前大数据应用中存在的问题,分析了产生这些问题的原因,针对这种情况提出了基于基础数据结构体系建立的解决方案设想,为未来大数据应用发挥更大效益的解决方法。

【关键词】大数据 基础数据结构 软件工程 数据标准

随着智慧城市建设项目的开展,作为智慧城市建设的重要基础就是围绕大型基础数据平台的建设,在业界定义为大数据时代的来临。围绕大数据的概念,在全国范围内的各领域各行业都在大数据的如何组织、如何应用、如何共享、如何关联召开了各类研讨会。大数据应用的云计算技术、数据仓库技术等成为业内讨论的重要话题。本人认为,在做了这些工作后,应回过头来看一看,无论数据量有多大,都离不开基础数据结构与体系的建设,在此要阐明的一个基本观点就是在大数据时代更应该重视基础数据结果的研究与应用。

1 大数据的概念

什么是大数据, IBM 最早的定义是:将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:第一,数据体量巨大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T);第二,数据类型繁多。比如,网络日志、视频、图片、地理位置信息等等。第三,价值密度低,商业价值高。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。

在大数据概念中的第一条是数据量大,这是大数据的特点,而却随着信息系统应用的深入,数量的数量级也在不断的提高,这是毋容置疑的。我们在此要讨论的是第二条数据类型繁多的问题。

2 目前大数据应用存在的主要问题

随着信息化系统应用的深入,在社会、自然界、生活中所涉及的数据面越来越广,由此使得数据类型也越来越多,数据类型的数量在不断增加,这些数据类型之间的关系和相互关联性也越来越复杂,大数据量下的数据应用造成了困难。数据结构类型繁多造成问题主要表现在以下几个方面。

2.1 数据类型是有限量的认识不清楚

未来大数据情况下,数据类型是有限量的还是无限量的概念模糊,为此首先要么明确一个基本的概念,那就是,数据类型在繁多,但是数据类型的数量是有限量的,只是这个限量的数量级大一些而已。在数据类型是有限量的情况下,对于解决数据类型繁多的方法是完全不同的。

如果数据类型的量是无限量的,那么解决问题的方法是要研究解决数据类型问题的方式是研究规律,拿出解决问题的方式与方法,对于具体数据类型时,按照方式方法理论与技术去解决问题。如果数据类型是有限量的话,那么解决问题的方式就不只是从理论上的解决问题方法,而应该更加切合实际的去针对每一种数据类型直接进行研究,形成数据标准,指导各个系统对每一个具体数据类型的应用。

2.2 相同数据在不同系统中的表现类型繁多

由于系统开发方各自的开发经验、所开发系统的规模不同,系统应用方对系统要求不同,系统应用行业的不同,使得在开发过程中,对于数据类型的定义只遵循本系统使用需要进行定义,没有完整的标准,即是有相应的国家或国际标准,也不能完全遵循。

2.3 各个行业制定的标准相互矛盾

各个行业在制定相应的标准时,是以满足自身需要为主导,造成了数据类型在其数据定义时不但长度不同,就是数据类型都不相同。这也就造成了各个系统在未来大数据应用中出现了严重的数据应用障碍。

2.4 大数据应用的实现效率低

由于不同系统技术数据结构的不统一,使得对于大数据的应用上要对不同系统的数据结构进行分析,构建关联,而后才能进行数据的应用,这项工作的工作量大,技术含量高,降低数据的应用效率。这些都是事后分析数据存在的问题。

2.5 数据浪费巨大

由于数据各个系统间数据结构的不同,加上分析手段的局限性,使许多的数据无法进行使用,由此也降低了数据的使用率。并造成数据的大量浪费。

3 造成目前对大数据应用存在问题原因

由于以上几方面的问题存在,为了做好大数据的应用,许多相应的技术应运而生,数据仓库技术、网格技术、云计算的数据处理技术等等。这些技术促进了数据应用的发展,提高了数据应用效率,为大数据应用发挥了巨大作用。但是这种做法只能针对具体的大数据应用项目起到作用,不能从根本上解决问题。那么造成这种问题根本是什么呢?

3.1 理论基础有偏差

目前所有这些高精尖技术的发展,为大数据应用的发展起到了不可替代的作用,但是这些技术在理论出发点上存在偏差,那就是,这些技术的理论出发点设定的是,数据类型是无限量的,是无穷尽的,所以所有的技术研究都不面对具体的数据项,这样做的结果是促进技术的发展,弊端是不能面对具体的应用,所有的技术应用都要在这就技术下进行二次应用研究。也就是,这些理论是治标不治本的做法。

有限量数据类型与无限量数据类型是两个根本不同的概念,对于技术的发展影响也是完全不同的。为此,目前在无限量数据类型概念下的大数据应用技术与体系将会存在极大的局限性,对未来的大数据应用造成影响。

3.2 对大数据认识有偏差

目前在各个系统对大数据的应用中,对大数据的认识是,只要有足够量的数据,就是大数据,而对于数据之间的关系,整体的数据结构体系没有很深的认识,甚至将原有的多个分散的系统中的数据库,做一个小的关联数据库,就认为是数据云计算,就是综合数据平台了,而在这种情况下,对于大数据的应用,因为系统的独立,数据库的独立、数据结构的不统一造成了大数据应用的瓶颈和障碍,在系统应用到一定程度后,数据量是很大,但是无法进行大数据应用,或者说是要进行大数据的应用,需要另外投入很高的成本进行数据整理、数据管理和数据分析。所以应该明确的是,在数据结构混乱的情况下,在大的数据量也不能称为大数据,这个观念上的偏差,是造成目前数据应用困难的原因之一。

3.3 数据结构不规范

这些情况的出现,归结的一起,就是数据结构不规范,不统一。在三方面主要原因造成这个局面,一是目前的应用系统的开发,由不同的公司进行,每个开发单位对数据结构的定义有各自的标准,基本都是按照多年开发经验总结出来的,因此各个公司开发的系统在数据结构上相差很远。二是对于同一个公司不同时期开发的系统所涉及的数据结构不统一,到后期,开发单位不愿意在投入成本对前期开发的系统进行重新开发,这就造成了前期开的的系统中的数据结构与后期开发的数据结构不统一。三是对于应用开发单位在开发每一个具体应用项目时,由于是不同的开发小组在进行,为此,在进行数据结构设定时,只为了满足本系统开发的需要,而没有考虑系统未来的发展和系统的整体架构,这也造成了不同应用系统中对相同字段的设定不相同,数据结构不统一。以上这些都是在应用系统开发过程中遗留的问题,而这些问题严重影响了大数据的使用。

3.4 有统一的标准不用

在系统开发过程中涉及的数据结构,许多都有相应的标准,主要有以下几个方面,一是国家法律层面的,对于一些重要的数据要求以立法方式进行规范。二是国家标准,制定和规范了国家层面的有关方面的数据要求和限定。三是部颁标准,由各个部委办局制定的相应标准,这些标准有一大部分直接针对信息化系统建设的应用和数据标准。四是行业标准,作为每一个行业内进行行为约束的标准,这种标准虽然不具备强制性,但是在行业内是一个自觉遵守的标准。四是国际相关标准,虽然国际标准没有任何的法律约束性,但是为了走出去,各行各业都在遵循这个标准。

这些标准都是在系统建立时的数据结构依据,但是目前许多系统在进行数据结构设定时,都没有按照这些标准执行,而是根据自己系统的需要进行设定的。这使得许多的系统中的数据不能相互交换使用,由此而影响了大数据的应用。

3.5 不同行业对标准的设定不统一

在国家标准体系中,由于标准制定的年代不同,同是一个部门颁布的标准对相同的数据要求也不同,各个部门由于独立制定标准,同样出现相同数据在不同部门制定的标准中规定的不同,这几方面原因也就造成了即使遵照标准,也存在着相同数据在不同应用系统中的数据结构不同的现象。

以上是大数据应用问题出现的主要原因,作为大数据应用的刚刚起步阶段,应针对这些问题进行研究给出相应的解决方案,为未来大数据应用的发展打下一个良好的基础,避免今后的大数据应用走弯路。

4 解决大数据应用问题的对策

解决大数据应用存在的问题,应从最基础的数据结构建立开始,从根本上去解决问题,也为未来大数据应用的发展打下一个良好的基本数据结构基础,对此提出以下几方面的对策。

4.1 开展和加强对基础数据结构建立的理论研究

从软件工程学的角度出发,以数据结构类型是有限量的概念为依托,围绕具体的数据类型开展数据结构体系的理论研究。依托一个数据结构分类的理论体系来支撑整个数据结构体系的划分,其中包括划分方法、划分层次、划分的软件工程学理论支撑等内容,制定大数据底层数据结构划分的理论体系,形成在大数据下的数据结构构建的理论体系。

4.2 开展对具体数据结构的研究

按照建立的数据结构理论体系要求,对每一个具体数据结构进行研究,针对数据项的名称、类型、含义、层次、结构、与其他数据的关系、涉及内容规定等方面制定出具体数据的标准。这项工作可以在有组织的情况下由全社会共同参与,按照指导理论的要求进行研究,这样,随着应用系统的不断深入,所涉及的数据类型项将逐步扩展,最终实现数据的全覆盖,而完成整个架构体系的建立。

4.3 制定相应的数据结构标准

对于由各个方面制定的数据结构进行分类、筛选、审核,而后想这些结构形成一个统一的架构体系,制定相应的技术标准,通过这个标准来规范应用系统的开发,形成完整的、规范的、统一的数据结构体系,为大数据应用打下坚实的基础。

4.4 成立相应的机构来负责这项工作的完成

对于这项工作的开展,应在软件工程相应的有关组织下,建立一个专门的机构,负责指导这项工作的完成。由这个机构成立专门的实验室,负责整体架构的制定,数据类型项的搜集、分类、筛选,并形成统一的数据库体系,为所有的应用系统的开发提供数据库基础支撑和服务。

综上所述,通过对基础数结构的研究与体系的建立,从根本上解决大数据应用的效率,充分发挥未来大数据的作用,简化大数据应用的方式与过程。

参考文献

[1]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013(04).

[2]李学龙,龚海刚.大数据系统综述[J].中国科学:信息科学,2015(01).

[3]方璐.大数据时代的科学研究方法[J].浙江工业大学,2014.

作者简介

李铧(1962-),男,江苏省无锡市人。学士学位,现为无锡科技职业学院教师、高级工程师。主要研究方向为软件工程学、物联网概论。

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

学术顾问

免费咨询 学术咨询 期刊投稿 文秘服务