美章网 精品范文 海洋测绘论文范文

海洋测绘论文范文

前言:我们精心挑选了数篇优质海洋测绘论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

海洋测绘论文

第1篇

英文名称:Acta Geodaetica et Cartographica Sinica

主管单位:中国科学技术协会

主办单位:中国测绘学会

出版周期:双月刊

出版地址:北京市

种:中文

本:大16开

国际刊号:

国内刊号:

邮发代号:

发行范围:国内外统一发行

创刊时间:1957

期刊收录:

CBST 科学技术文献速报(日)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

Caj-cd规范获奖期刊

联系方式

第2篇

江西测绘杂志基础信息:

本刊本着反映现代高新技术的发展,推动测绘科技成果向生产力转化,促进测绘行业科技进步的办刊宗旨,在广泛交流测绘理论研究、应用技术、生产经验等方面受到了广大测绘科技工作者的关爱。

江西测绘杂志栏目设置:

主要以发表研究论文为主,也报道相关学科的研究综述与述评、研究进展与动态、研究短讯、新技术与新方法等。

江西测绘杂志订阅方式:

CN:36-1123/P,地址:江西省南昌市省政府大院内江西省测绘学会秘书处,邮政编码:330046。

江西测绘杂志相关期刊

海洋测绘杂志测绘与空间地理信息杂志测绘文摘杂志测绘通报杂志测绘科学杂志测绘工程杂志测绘标准化杂志测绘杂志北京测绘杂志江西科学杂志

江西测绘杂志社简介

一、摘要与关键词:文章要提供100-200字的摘要,客观反映论文的主要内容;提供3-5个关键词,用分号隔开;撰写的文章字数以2500-4500字为宜。

二、作者简介:姓名(出生年月)、性别、工作单位、邮政编码、职称、职务、学历、主要研究方向等(研究生须注明博士研究生或硕士研究生)。

三、注释:注释序号(上标)用带圆圈的阿拉伯数字表示,附于文末。

四、非正式出版物(如博士或硕士学位论文)、未正式发表的讲话等不能作为参考文献引用。

五、参考文献的格式:

1、参考专著:[序号]作者.书名.出版地:出版社,出版年。

2、参考报纸、期刊:[序号]作者.文题.报刊名,出版年,卷(期、版次),其止页码(具体情况可以参照国家GB7714-87“文后参考文献著录规则”)。

六、资助项目需注明资助者、项目编号。

七、体例要求:以“一”、“1”、“(1)”作为文章层次,(1)之下以小标题方式提炼主要观点。

八、图表要求:表格:将表名置于表上方居中;图:将图名置于图下方居中。表、图内文字统一用楷体。

第3篇

一、适用范围

本条件适用于测绘专业各分支专业,即大地测量、摄影测量与遥感、工程测量(含矿山测量、水利测量等)、地形测量、海洋测绘、地籍测绘、房产测绘、地质测绘、地图制图与地图制印、地理信息工程专业中从事科学研究、技术设计、技术生产及测绘仪器设备维修、质量检查监督、技术管理、技术开发、科技信息等工作的工程技术人员。

二、政治思想条件

遵守国家法律和法规,有良好的职业道德和敬业精神。任现职期间,年度考核合格以上。

三、学历、资历条件

获博士学位后,从事本专业技术工作,取得工程师资格2年以上。或大学本科毕业以上学历,从事本专业技术工作,取得工程师资格5年以上。

四、外语、计算机条件

(一)较熟练掌握一门外语,参加全国职称外语统一考试,成绩符合规定要求。

(二)较熟练掌握计算机应用技术,参加全国或全省职称计算机考试,成绩符合规定要求。

五、专业技术工作经历(能力)条件

取得工程师资格后,具备下列条件之一:

(一)省(部)级测绘科技项目、工程项目的主要参加者。

(二)主持完成市(厅)级测绘科技项目、工程项目两项以上。

(三)主持技术推广项目,采用新技术、新材料、新工艺或开发新产品两项以上或主要参加三项以上。

(四)编制和审核大中型测绘项目综合技术设计两项以上或单项设计书四项以上,并组织或主持完成大型测绘工程项目或生产项目一项以上。

(五)主持完成三项以上大中型测绘工程项目的质量检查,编写相应的技术报告。

(六)编辑设计或编审大型普通地图集或专题图集,并已出版。

(七)承担完成三种类型10台以上测绘仪器维修或检测鉴定任务,并能独立解决其重大技术难题。

(八)承担完成重大测绘仪器的研制、改装或精密仪器安装调试工作。

(九)主要参加基础地理信息系统的建设及技术推广,完成数字化制图或编辑入库等项目工作。

六、业绩成果条件

取得工程师资格后,具备下列条件之一:

(一)国家、省(部)级测绘科技成果获奖项目的主要完成人、或市(厅)级测绘科技进步一、二等奖获奖项目的主要完成人。(以奖励证书为准)

(二)主持或组织完成的项目成果获得市(厅)级优秀成果奖、优秀图书奖一等奖以上。(以奖励证书为准)

(三)主持完成大型测绘项目,经省级业务主管部门审定,其项目设计水平先进、质量优良,产生显著的效益。

(四)主持开发、推广的科技成果两项以上,取得明显的经济效益。

七、论文、著作条件

取得工程师资格后,公开发表、出版本专业有较高水平的论文(第一作者)、著作(主要编著译者),撰写有较高价值的专项技术分析报告,具备下列条件之一:

(一)出版本专业著作1部。

(二)在省级以上专业学术期刊2篇以上。

(三)在国际或全国学术会议宣读或交流论文2篇以上。

(四)为解决复杂技术问题撰写有较高水平的技术报告2篇以上或重大项目的立项研究(论证)报告2篇以上。

八、破格条件

为不拘一格选拔人才,对确有突出贡献者,并取得工程师资格2年以上,具备下列条件中的两条,可破格申报:

1、获国家级发明奖、自然科学奖、科技进步奖项的主要完成人;或省(部)级自然科学奖、科技进步奖二等奖一项或三等奖二项以上,获奖项目的主要完成人。(以奖励证书为准)

2、在推广新新技、新工艺和科技成果转化等方面取得了重大经济社会效益,处于本行业领先水平,并被省(部)级授予优秀科技工作者荣誉称号。

3、担任大、中型工程项目中的技术负责人,完成大型工程一项或中型工程二项以上,取得显著的经济效益,并通过省级权威部门鉴定,填补了省内外技术领域空白。

4、在国家级学术刊物上发表有价值的学术论文3篇、省级5篇以上,或正式出版专著1部(独著10万字以上,合著20万字以上)。

九、附则

1、凡冠有“以上”的,均含本级(或本数量)。

第4篇

关键词:RTK 航道测量 转换参数 精度

中图分类号:P2 文献标识码:A 文章编号:1672-3791(2012)10(b)-0021-02

1 实时差分GPS测量技术

RTK测量的基本思想是,在基准站上安置一台GPS接收机,对所有可见GPS卫星进行连续地观测,并将其观测数据,通过无线电传输设备,实时地发送给用户观测站。在流动站上,GPS接收机在接收GPS卫星信号的同时,通过无线电接收设备,接收基准站传输的观测数据,然后根据相对定位的原理,实时地计算并显示流动站的三维坐标及其精度。

(1)卫星信号接收系统在实时动态定位测量系统中。应至少包含两台GPS接收机,分别安置在基准站和流动站上。当基准站同时为多用户服务时,应采用双频GPS接收机,其采样率与流动站采样率最高的相一致。(2)数据传输系统(数据链)。由基准站的数据发射装置与流动站数据接收装置组成,它是实现实时动态测量的关键性设备。其稳定性依赖于高频数据传输设备的可靠性与抗干扰性。为了保证足够的数据传输距离及信号强度,一般在基准站还需要附加功率放大设备。(3)软件解算系统。实时动态定位测量的软件解算系统对于保障实时动态测量结果的精确性与可靠性,具有决定性的作用。

2 转换参数的求取方法研究

根据RTK的原理,参考站和流动站直接采集的均为WGS84坐标,参考站一般以一个WGS84坐标作为起始值,实时地计算点位误差并由电台发射出去,流动站同步接收WGS84坐标并通过电台来接收参考站的数据,条件满足后就达到固定解,流动站就可实时得到高精度的相对于参考站的WGS84三维坐标,这样就保证了参考站与流动站之间的测量精度。如果要附合到已知点上,需要把原坐标系统和现有坐标系统之间的转换参数求出来。

RTK直接测量的坐标属于WGS84坐标系,而我们通常使用的是1954年北京坐标系、1980西安坐标系和地方坐标系,所以必须进行坐标系的转换。由于它们之间并不是一个椭球,如果要求得精确的转换参数,通常有七参数法和四参数法两种。转换参数的求取方法:一是使用已有的静态数据;二是采取现场采集的方法,通过键入一定数量控制点的地方坐标,然后在这些控制点上采集WGS84坐标,通过点校正得到最佳转换参数,其转换参数的准确性与控制点的数量及分布有关。四参数和七参数并不是一个概念,四参数是同一椭球不同坐标系之间的转换参数,表示为X、Y、A(旋转角)、K(尺度比),七参数是两个不同椭球之间的转换参数,表示为x、y、z、α、β、γ、κ,三个平移、三个旋转和一个尺度参数。四参数和七参数是不能同时使用的,两者只能选其一,在具体测量时怎么确定这两种参数是一个关键问题。

求取四参数是把WGS84的原始经纬度作为北京54经纬度处理,这样一来就可以通过采集两个或两个以上的北京54已知点来求取。而七参数的求解方法一般是靠控制测量即静态测量,通过平差软件进行处理后自动求出七参数,在进行RTK测量时可直接输入使用。七参数相对于网参数来说,可以认为是更准确、精度更高,有条件的话尽量使用七参数。拟合参数是指高程拟合参数,在需要高精度的正常高高程值时,用RTK测量必须合理地求解高程拟合面,这样才能满足一般作业要求。

3 GPSRTK测深技术原理研究

随着GPS全球定位技术的不断发展,GPS实时动态测量在实时导航定位方面的应用越来越广泛。目前GPS定位中应用较多的是DGPS技术,这是一种采用简单的码数据(波长300 m)相位平滑的技术,定位精度在nm级,水下地形高程则需要通过验潮确定。对于大比例尺的水下地形测量或作业区远离陆域不便于验潮的地方,DGPS技术已难于满足要求,而GPS实时动态相位差分(RTK)是一种直接应用L1和L2载波(波长分别为19 cm和24 cm)相位的GPS定位技术,它在三维坐标上可以提供cm级的精度,在水下地形测量中无需通过验潮确定泥面高程,这种方法称为GPS无验潮测深。

假定参考站天线高为h1,参考站的正常高为h2,流动站的天线高为h3,参考站GPS天线处的正常高和大地高分别为h4、h5,流动站GPS天线相位中心的大地高和正常高分别为h6、h7,换能器的瞬间高程为h8,测点高程为h。由图1中可以看出。

根据GPS差分原理,参考站与流动站间的距离小于30 km,可认为下式成立:

则换能器的瞬间高程h8=h1+h2-h3-(h5-h6)。换能器的瞬间高程确定后,所测的水底点的高程就很容易求出:h=h8-测深仪所测的深度。

这样就实现了在水深测量中,无需通过验潮来确定泥面高程,这种方法称为GPS无验潮测深。众所周知,动吃水发生在垂直方向,在实时动态定位时,该方向上的位移量可通过架设在船体中心上方的GPS天线相位中心的瞬间高程信息获得,该高程减去GPS天线到换能器的垂距,便是换能器发射面的瞬间高程,而换能器测量的深度正是建立在该高程的基础上,因而说,船体的动态吃水不用专门去测定,换能器的瞬间高程已经包含了该信息。这是无验潮测深模式所特有的,也是相对传统方法测量精度较高的原因所在。

4 航道测量的基本作业步骤

航道测量的作业系统主要由GPS接收机、数字化测深仪、数据通信链和便携式计算机及相关软件等组成。测量作业分三步来进行,即测前的准备、外业的数据采集测量作业和数据的后处理形成成果输出。

4.1 测前的准备

(1)求转换参数。

①将GPS基准站架设在已知点A上,设置好参考坐标系、投影参数、差分电文数据格式、发射间隔及最大卫星使用数,关闭转换参数和七参数,输入基准站坐标(该点的单点84坐标)后设置为基准站。②将GPS移动站架设在已知点B上,设置好参考坐标系、投影参数、差分电文数据格式、接收间隔,关闭转换参数和七参数后,求得该点的固定解(84坐标)。③通过A、B两点的84坐标及当地坐标,求得转换参数。

(2)建立任务,设置好坐标系、投影、一级变换及图定义。

(3)作计划线。如果已经有了测量断面就要重新布设,但可以根据需要进行加密。

4.2 外业的数据采集

(1)架设基准站在求转换参数时架设的基准点上,且坐标不变。

(2)将GPS接收机、数字化测深仪和便携机等连接好后,打开电源。设置好记录设置、定位仪和测深仪接口、接收数据格式、测深仪配置、天线偏差改正及延迟校正后,就可以进行测量工作了。

4.3 数据的后处理

数据后处理是指利用相应配套的数据处理软件对测量数据进行后期处理,形成所需要的测量成果―― 航道图及其统计分析报告等,所有测量成果可以通过打印机或绘图机输出。

5 影响航道测量精度的几种因素及相应对策

5.1 水下地形点高程的误差主要来源

(1)仪器误差:GPS接收机和测深仪精度。(2)转换误差:由于实时相位差分得到的是WGS84坐标下的高程,属于大地高程系统,如工程采用其他高程系统,这就需要把测得的大地高程转换成相应高程。(3)其他误差:如动吃水、风浪造成的测深船起伏和摇摆等。由于GPS天线与测深仪换能器之间为一固定值,因此测深船的垂直起伏不会给水下地形测量精度带来影响,如动吃水、波浪等影响可以消除。

在实际的使用无验潮方式进行航道测量时,测量结果精度会由于船体的摇摆、采样速率、同步时差及RTK高程的可靠性等因素造成的误差的影响,这些误差远远大于RTK定位误差,从而成为无验潮方式航道测量精度提高的瓶颈因素。

5.2 船体摇摆姿态的修正

船的姿态可用电磁式姿态仪进行修正,修正包括位置的修正和高程的修正。姿态仪可输出船的航向、横摆、纵摆等参数,通过专用的测量软件接入进行修正。

5.3 采样速率和延迟造成的误差

GPS定位输出的更新率将直接影响到瞬时采集的精度和密度。现在大多数GPS-RTK都可以最高输出率达20Hz,而测深仪的输出速度各种品牌差别很大,数据输出的延迟也各不相同。因此,定位数据的定位时刻和水深数据的测量时刻的时间差造成定位延迟。对于这项误差可以在延迟校正中加以修正,修正量可在斜坡上往返测量结果计算得到,也可以采用以往的经验数据。

6 作业时应注意的问题

(1)因为RTK技术的关键在于数据处理技术和数据传输技术,RTK定位时要求基准站接收机实时地把观测数据(伪距观测值,相位观测值)及已知数据传输给流动站接收机。所以:①电台天线要尽量高。如果距离较远,则要使用高增益天线;否则将影响到作业距离。②电源电量要充足,否则也将影响到作业距离。(2)设站时要限制最大卫星使用数,一般为8颗。如果太多,则影响作业距离;太少,则影响RTK初始化。(3)如果不是使用七参数,则在设置基准站时要使TransformToWGS84(转换到WGS84坐标系)处于off(关闭)状态。(4)如果使用七参数,则x、Y、AZ都小于±100较好,否则重求。(5)在求转换参数前,要使参数转换和七参数关闭。

参考文献

第5篇

关键词;市政工程 GPS 技术,测量

中图分类号:P228.4 文献标识码:A 文章编号:

如今GPS 技术在工程应用中更加普及,比如矿山测量,交通土建选线,城市建设等等。但是GPS 由于布设价格的昂贵,所以不会被大范围应用到一般的土建和交通建设中,它只是作为提供控制用,例如:在工程建设开始阶段,交付几个GPS 控制点,作为导线和三角网的基线,由它们向外扩展,用全站仪引出加密点或是作为静态的GPS 基线,配合RTK 来进行动态图籍测绘。但是在90 年代以后,平面控制测量基本都被GPS取代。

1、GPS技术概述

GPS定位是以GPS 卫星和用户接收天线之间的距离为基本观测量,根据已知的卫星瞬时坐标,确定用户天线所对应的位置,其实质是空间距离后方交会。在一个测站上只需3个独立距离观测量。GPS 采用的是时差测距原理,即通过测量GPS 信号从卫星传播到用户接收机的时间差计算距离,由于卫星钟与用户接收机钟不同步,因此,观测的测站至卫星间的距离称为伪距。卫星钟差可以通过卫星导航电文提供的钟差参数修正,接收机钟差难以预先准确确定,可将其作为未知参数与观测站坐标在数据处理中一并解出。在一个测站上,除了三个待定位置参数外,还需要增加一个接收机钟差参数,因而至少应有4个同步伪距观测量,即至少必须同步观测4颗GPS 卫星。

GPS 技术相对于其他的定位、测量技术,其技术优势是很明显的,主要表现在以下几个方面:

1.1 功能多、用途广。

GPS 系统不仅可用于测量、导航,还可用于测速、测时。测速的精度可达0.1 m/s,测时的精度可达几十毫微秒。其应用领域不断扩大。

1.2 定位精度高。

GPS 可为各类用户连续提供动态目标的三维(立置、三维速度及时间信息)。随着GPS定位技术及数据处理技术的发展,其精度还将进一步提高。

1.3 实时定位。

利用GPS 进行导航,既可实时确定运动目标的三维位置和速度,由此可实时保障运动载体沿预定航线运行,亦可选择最佳航线。特别是对军事上动态目标的导航,具有十分重要的意义。

2、GPS 的定位方式

按定位方式,GPS 定位分为单点定位和相对定位(差分定位),单点定位就是根据一台接收机的观察数据来确定接收机位置的方式,它只能采用伪距观测量,可用于车船等的概略导航定位.相对定位(差分定位)是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相对观测量,大地测量或工程测量均应采用相位观测值进行相对定位,对常规测量而言相对测地定位是主要的应用方式, 而按照用户天线可分为动态定位和静态定位。

2.1 动态定位

在定位观测时,若载体上的接收机在跟踪GPS 卫星的过程中相对于地球表面运动,接收机用GPS 信号实时的测得运动载体的状态参数,则称为动态定位。动态定位的特点:逐点测得,多余观测量少,精度较低。依目前GPS 定位的精度动态定位可分为:a. 20m左右的低精度定位,如用于车船等概略导航定位的伪距单位定位;b. 5m 左右的中等精度定位,如用于城市车辆导航定位的米级精度的伪距差分定位;c. 厘米级的高精度的定位,如用于测量放样等的厘米级的相位差分定位(RTK),其中实时差分定位需要数据将两个或多个站的观测数据实时传输到一起计算。

2.2 静态定位

在定位观测时,若接收机在跟踪GPS 卫星的过程中相对于地球表面静止,则称为静态定位。接收机高精度的测量GPS 信号的传播时间,联合GPS 卫星在轨的已知位置,从而解算出固定不动的接收机所在位置的三维坐标。静态定位的特点;多余观测量大,定位精度高,可靠性强,在进行控制网观测时,一般均采用这种方式由几台接收机同时观测,它能最大限度地发挥GPS 的定位精度。

3、GPS在市政工程测量中的应用

GPS是英文Navigation Satellite Timing and Ranging/Global Positioning System的字头缩写词NAVSTAR/GPS的简称。其含义是导航卫星测时测距/全球定位系统。

GPS是全球性的卫星定位和导航系统,能够提供连续的实时的位置、速度和时间信息。整个系统包括空间(卫星)、地面控制站和用户(接收机)三个部分。它具有全能性、全球性、全天候、连续性和实时性的精密三维导航与定位功能,而且具有良好的抗干扰性和保密性。因此,GPS技术率先在大地测量、工程测量、航空摄影测量、海洋测量、城市测量等测绘领域得到应用,并在军事、交通、通信、资源、管理等领域展开了研究并得到广泛应用。下面是GPS在市政工程中的应用实例。本工程为某工业园工程,该工业园属于一个比较方方正正的地形,由于工业园里有很多树,而且通视比较困难,工期比较急,考虑种种因素,决定采用GPS测量。

3.1 GPS测量的技术设计

(1)设计依据

GPS测量的技术设计主要依据1999年建设部的行业标准《城市测量规范》和应采用的《全球定位系统城市测量技术规程》及工程测量合同有关要求制定的。

(2)设计精度

根据工程需要和测区情况而定。

(3)设计基准和网形

控制网共6个点,其中联测已知平面控制点2个。采用4台GPS接收机观测,网形布设成边连式,等级为一级。

(4)观测计划

根据GPS卫星的可见预报图和几何图形强度(空间位置因子PDOP),选择最佳观测时段(卫星多于4颗,且分布均匀,PDOP值小于6),并编排作业调度表。

3.2 GPS测量的外业实施

(1)选点

GPS测量测站点之间不要求一定通视,图形结构也比较灵活。因此,点位选择比较方便。但考虑GPS测量的特殊性,并顾及后续测量,选点时应着重考虑:①每点最好与某一点通视,以便后续测量定向使用;②点周围高度角15。以上,不要有障碍物,以免信号被遮挡或吸收;③点位要远离大功率无线电发射源、高压电线等,以免电磁场对信号的干扰;④点位应选在视野开阔、交通方便、有利扩展、易于保存的地方;⑤选点结束后,按要求埋设标石,并填写点记之。

(2)观测

根据GPS作业调度表的安排进行观测,采取静态模式定位,卫星高度角≥15。,时段长度45min,采样间隔10s。在4个点上同时安置4台接收机天线(对中、整平、定向),量取天线高,测量气象数据,开机观察,当各项指标达到要求时,按接收机的提示输入相关数据,则接收机自动记录,观测者填写测量手簿。

3.3 GPS测量的数据处理

GPS网数据处理分为基线解算和网平差两个阶段,基线解算采用随机软件,网平差采用武测宝威GPS―Adj3.0软件完成。经基线解算、质量检核、外业重测和网平差后,得到GPS控制点的二维坐标,其各项精度指标符合技术设计要求。

4、结束语

GPS 技术的发展日新月异,包括GPS卫星静态和RTK都深入到生产生活中,随着GPS,GIS,RS及其他科学的不断相互渗透,它的应用也将越来越广泛。这里也有我们需要注意的,GPS由于参数设定的问题,在测量高程是产生的误差也是很大的,这个跟球体有关。总的来说现在的GPS 可以用在,土建,交通,地籍测绘,海洋测绘,国土资源,城市规划,空间测量,急救等等领域,是一种多元化学科,以后的发展会更加的广阔。

参考文献:

[1]黄声享,郭英起,易庆林,等、GPS在测量工程中的应用[M],北京:测绘出版社。2007

[2]王立富,王永国,周晓愚,GPS 基线评估与优化[J];东北测绘;2000年04期;

第6篇

关键词:RTK 三维 水深测量 精密 单波束 误差

水深测量是测绘活动中一项常见而重要的内容,在海图测绘、江河湖泊及水库调查、涉水项目工程设计、涉水建筑物安全维护、航道监测、水道冲淤研究等方面均需要进行不同比例尺的水下地形图的测绘。

水深测量的目的是获取水底不同位置相对于某一稳定的高程(深度)基准面的高程(水深),测深和定位是水深测量两项最主要的内容。由于在绝大部分情况下水深测量都是动态条件下的测量,测量载体的姿态和水深基准面的确定在大多数情况下已成为影响着水深测量精度的主要因素。因此确定水深测量时测量载体的姿态变化和测量瞬间的测量基准面的位置成为提高水深测量的关键。

最新的《水运工程测量规范》(JTS131-2012)已规定可以采用“RTK三维水深测量”方法进行精密水深测量,并规定了指导性的作业方式和数据处理方法。其定义为:“RTK三维水深测量是利用GPS RTK 提供的瞬时高精度三维解,通过时延改正、姿态改正,最终为回声测深系统换能器提供准确的三维基准,进而根据回声测深结果,得到水底点的三维坐标。”但对何种条件下必须采用姿态传感器,规范里并无明确的规定。

为此需要分析不同条件下的水深测量误差,确定需要采用姿态传感器设备的条件。

水深测量误差分析

正如前面分析所言,水深测量的误差来源众多,包括定位的误差、测深仪自身的测距误差,测量介质引起的声速效应误差、测量载体姿态引起的测量误差等。其中定位误差目前已可忽略,测深仪自身的测距误差也远小于其它因素的影响。这里可以认为对测量深度的主要因素包括传播介质、测量载体等相关效应,有声速、姿态和船只静、动吃水的影响。具体分析如下。

1、声速效应对测深的影响

声速效应的影响直接影响到回声测深仪测量的深度部分,根据回声测深原理,深度等于介质中声波传输速度与传播时间一半的乘积,而声波在水体中的传播速度并非是一个固定值,它和测时环境相关,同水体的温度、盐度、密度以及声波频率相关,可以根据测区水域的温度和盐度进行改正,通常公式计算某温度、盐度下的声速。

由于水体中(特别是海区)的水温和盐度在垂直方向上存在梯度分布,引起声速在垂直方向上存在梯度分布,而且位置不同,声速梯度分布也不尽相同。在测量的时候,不同的测点需采用该测点测量时声速传播路径上的平均声速(可采用声速剖面仪测定),采用后处理的方法进行声速改正,

理论上:平均声速Cm应为声波传播全路径上的瞬时声速平均值,若采用水深参数h表达应为:

■(1),(1)中:D为从换能器到水底的深度。

由于不可能知道声速传播路径上每一处的声速,故在实际计算中采用式(2)进行抽样离散的计算:

■(2),式(2)中,n为声波路径上的抽样数,也就是分层数;di为各水层的厚度,Ci为各水层的声速值,n值越大,即抽样数越多,结果越准确。

上式(2)可称为计算平均声速的精确公式。

实际上在水深测量的时候,我们都将一个固定的设计声速C0(一般取1500m/s或者某一位置的表层声速)输入测深仪,此时测得的每一个位置的水深实际上是一个近似水深,需要在后处理时进行声速改正。声速改正值dh=h(Cm-C0)/ C0 。 (3)

从上式(3)可知,测深值的声速改正值与观测深度成正比,水深越大,声速改正值越大,还与声速差成正比。改正值数值的大小见下表1所示:

表1 声速改正值数值表

2、测船姿态变化产生的测深误差

姿态影响是指载体受到风、浪、流的作用而导致的测量不准,无论是横摇、纵摇、艏摇和倾斜,其作用机理都是导致测深仪中心波束倾斜而产生复杂的误差变化,它是一个即影响平面定位又影响深度测量的复杂过程。

2.1 测船横摇产生的测深误差

理论上,波浪对测深的影响是通过对船姿态的改变来产生作用的,因此,波浪对测深的影响可分为测船纵摇,横摇、升沉等对测深的影响几个方面。

设α为测船横摇角,左舷下倾时取正值,θ为换能器半波束角,s为记录深度,d为真实深度。很明显,如果│α│≤θ,α角造成的测深信号的偏移仍在波束角范围之内,所测得的深度可以认为是没有附加误差的,则发射的测深信号偏离了垂直方向而产生了附加误差。

一般情况下,测深线是沿水底地形变化梯度方向布设的,所以沿测深线垂直方向(即测船的横摇方向)可以认为是平面,此时产生的附加深度误差Δdroll可以估计为:

Δdroll = H'-H =s[cos(α-θ)-1] (4)

从上式(4)可以看出,由横摇α产生的附加深度误差Δdroll与测量水深值H成正比。

以波束角7°为例,在不同的水深H和横摇角度α的条件下,产生的横摇误差Δdroll见下表2所示:

表2 不同的水深H和横摇角度α的条件下横摇误差Δdroll

在进行水深测量时,若同时测定了横摇α角,真实的深度为:

H'= H cos(α-θ) (5)

可是若通过(5)式的该算,就产生了另外一个问题,改正后的水深H'是测深仪换能器的中心的垂线上,因为横摇α角的存在,引起了定位中心与测深中心不在一个水平面上,这是就产生了定位的误差,其偏离数值的大小与定位天线与测深中心的距离成正比。在建立了严密的船体坐标系并实时测量了船体姿态的条件下,能对定位中心作出正确的改算。

2.2 测船纵摇产生的测深误差

测船纵摇产生的测深误差比较复杂,若海底是平台的,则产生的误差与横摇产生的误差类似,可按照(5)式进行深度改正。显然,纵摇不产生偏离测深线的位移,但使水深点在测线上前后摆动。如过不进行改正,即使水底是光滑的平面,但记录的图像可能不是一个平面。不过在浅水区,假定H≤50, θ=3.5°,当纵摇角β≤6°时,引起的水深误差≤5cm,可以不予考虑。

2.3 测船升沉对测深值的影响

测量的时候,换能器固定安装在船体的下方,与测船形成刚体连接,因此,测船的升沉的变化值就直接反映在水深值里。

测船升沉对测深值的影响的大小和测深仪换能器与测船的测船的相对关系有关。通过理论分析,当测深仪换能器与测船的重心重合是,测船姿态和升沉的变化对测深值的影响最小,而且有利于通过HEAVE传感器或者其他方式对其作出改正。

目前,对升沉的改正一般有以下两种方式:①HEAVE传感器法:通过高精度的涌浪传感器(其原理一般为加速速计)直接测定船体的升沉,当传感器与测深仪换能器位置一致时,传感器测得的数值即为水深值的改正值;②RTK高程分量法:即利用高精度的GPS高程测量分量进行升沉改正。

3、换能器动态吃水对测深值的影响

动态吃水是一个水中运动载体的一种客观现象。一般地,动态吃水采用如下定义:因船只航速变化引起船体沉浮而使换能器吃水产生的动态变化。

动态吃水ΔH测定的方法很多,目前规范上和实际采用的主要有:①水准仪定点观测法;②水准仪固定断面法;③RTK定位法。

根据实际工作中的经验,采用合适的测船非常重要,既不能太小,也不能太大,太小了稳定性不够,太大了动态吃水较大。测量是的船速亦需要控制,不可盲目追求高速。

从另一个角度来说,既然RTK发能够准确地确定换能器的动态吃水,当采用“RTK三维水深测量”方法的时候,可以利用高精度的高程分量来对动态吃水进行准确的改算。

4、时延改正及其影响

时延反映的是GPS RTK 定位与测深的不同步。为将GPS RTK 三维归位到换能器,为测深提供瞬时平面和垂直基准,并最终实现波束在水下的归位计算,就必须消除时延的影响。

若船速为8 节(约4.111 m/s),导航时延确定误差为0.2 秒,则导航时延确定误差统计结果表明:时延误差引起的最大平面位置偏差为0.8m。

通过理论研究,时延对平面定位和测深的影响最为显著,其影响与船速成正比。因此,实际作业中,一方面应根据实验精确计算时延;另一方面应尽量减小船速,保持测量载体的稳定性,将时延确定误差的影响减小到最小。

无姿态传感器条件下的RTK三维水深测量的实施

无姿态传感器的“RTK 三维水深测量”构成简单,只是在常规的水深测量系统别强调了厘米级的定位和高程测量。由于GPS RTK测量或者是PPK测量获得高精度的平面定位和高程数据已经是相当成熟的技术,在多年的测量实践中已得到验证和应用,太多的论文和文献对这个问题进行了阐释。

无姿态传感器的“RTK 三维水深测量”主要包括以下几个环节:①测区控制网测量;②高程转换模型的建立;③高精度声速剖面的测量;④内业资料处理;⑤精度评估。

笔者在80公里的长江入海口河段进行了验证测量,该河段属于感潮河段采用常规的验潮站进行水下地形测量需要耗费大量的人力。而采用“RTK 三维水深测量”将大大地减小工作量。

验证测量实施过程如下:在测区两岸布设一定密度的E级GPS控制网,联测控制点的水准高程,采用几何曲面模型构建了该区域的高程转换模型。实现了GPS大地高到正常高系统的无缝转换。

在进行“RTK 三维水深测量”的同时,根据规范的要求。在测区两岸布设了20个验潮站进行潮位控制,以便两者进行对比。通过两种方法对水下测点高程的计算,对计算出的差异成果按照0.1m的区间宽度进行分析统计。共统计测点测点32153个,差异区间如下表3所示。

表3 两种方法计算的测点高程差值统计表

以上实例表明,该项目中采用不需要任何姿态传感器的RTK的三维水深测量技术得到的测量结果与常规的潮位控制得到的结果没有明显的差异,其精度和可靠性都得到了很好的验证。

总结

从以上从六个引起测深误差的主要方面进行了分析,并定量地分析计算了在不同的测量条件下,这些影响因素对测深带来的误差的数值,同时通过实例进行了分析,可以得出很重要的结论:

在目前的技术条件下,定位和测深引起的误差在水深测量误差中已退居次要地位,声速改正误差和测量载体的姿态误差等因素已称为水深测量误差的主要来源。

辅以姿态传感器、罗经等外部设备的“RTK三维水深测量”,能够精确地改正各项的主要测量误差。为了简化操作,且在经济上简便易行,有必要研究无姿态传感器条件下RTK三维水深测量的实施条件。

具备一定的的测量环境,可以不需要任何姿态传感器(包括罗经和涌浪传感器)就可实现基于RTK的三维水深测量技术的单波束精密测深。

参考文献:

[1] 周丰年,赵建虎,周才扬. 多波束测深系统最优声速公式的确定[J]. 台湾海峡,第20卷第4期,2001,11.

[2] 管铮. 西北太平洋大于200米水深回声测深改正公式[J]. 测绘学报,第16卷第1期,1987年2月.

[3] 申家双 陆秀平. 水深测量数据处理方法研究与软件实现[J]. 海洋测绘,第22卷第5期,2002年9月.

[4] 刘雁春. 海洋测深空间结构及其数据处理[M]. 测绘出版社,2003.

第7篇

【关键词】GPS;市政工程;工程测量

近些年来,随着对交通的迫切需求,大量的交通基础建设项目开工建设。同时,科技的进步也促使了富有特色的交通项目不断出新,如各式各样特大桥、磁悬浮轨线等。这些都对测绘工作提出了新的要求:快速、经济、准确。传统的测量方法越来越难以跟上设计技术的步伐和快速的施工速度。GPS技术的出现正迎合了现代测绘的新要求。目前GPS 技术已被成功应用于道路勘测设计、施工放样以及运营过程中的安全检测等各个方面。

1、GPS 技术概述

GPS 定位是以 GPS 卫星和用户接收天线之间的距离为基本观测量,根据已知的卫星瞬时坐标,确定用户天线所对应的位置,其实质是空间距离后方交会。在一个测站上只需3个独立距离观测量。GPS采用的是时差测距原理,即通过测量GPS信号从卫星传播到用户接收机的时间差计算距离,由于卫星钟与用户接收机钟不同步,因此,观测的测站至卫星间的距离称为伪距。卫星钟差可以通过卫星导航电文提供的钟差参数修正,接收机钟差难以预先准确确定,可将其作为未知参数与观测站坐标在数据处理中一并解出。在一个测站上,除了三个待定位置参数外,还需要增加一个接收机钟差参数,因而至少应有4个同步伪距观测量,即至少必须同步观测4颗GPS卫星。

全球定位系统(GlobalPositioingSystem)卫星定位技术是美国陆海空三军联合研制的卫星导航系统,随着数字地球概念的深入和发展,不断的改进、完善其硬件和软件,以其自动化、高效益、全天侯、连续性、实时性导航定位和定时等功能及显著的特点,能为各类用户提供精密的三维坐标.速度和时间,GPS系统的用户是非常隐蔽的,它是一种单程系统,用户只需接收而不必发射信号,因此用户的数量也是不受限制的,赢得了广大用户的信赖,并成年感的应用于大地测量、工程测量、航空摄影测量、地形地籍测量、海洋测绘、地球动力学、资源勘察等学科,加快了整发世界向前发展的进程。

GPS技术相对于其他的定位、测量技术,其技术优势是很明显的,主要表现在以下几个方面:

1) 功能多、用途广。GPS系统不仅可用于测量、导航,还可用于测速、测时。测速的精度可达 0.1m/s,测时的精度可达几十毫微秒。其应用领域不断扩大。2) 定位精度高。GPS可为各类用户连续提供动态目标的三维位置、三维速度及时间信息。随着GPS定位技术及数据处理技术的发展,其精度还将进一步提高。3) 实时定位。利用GPS进行导航,既可实时确定运动目标的三维位置和速度,由此可实时保障运动载体沿预定航线运行,亦可选择最佳航线。特别是对军事上动态目标的导航,具有十分重要的意义。

2、GPS 在市政工程测量中的应用探讨

2.1 GPS在市政公路测量中的应用

随着公路等级的提高,对公路测量提出更高的要求。一般可以根据测区范围的大小和测量仪器的精度高低,将公路勘测分为传统公路勘测和现代公路勘测。所谓传统公路勘测,是指用普通测量仪器 (经纬仪、测距仪、水准仪等) 所从事的路线勘测,即现场选定路线交点和转点,然后布置中线,进而完成整个路线勘测工作。现代公路勘测,是指用精密测量仪器(GPS、全站仪、水准仪等) 所从事的路线勘测,采用的是纸上定线法。随着GPS定位技术,特别是实时GPS动态定位技术在公路勘测中的应用,公路勘测作业流程的改革已进入可行阶段,一次性外业测量完成工作目标变成可能,从而大为减轻测量作业人员的劳动强度。这种作业方式的显著特点是测量精度高,工作流程少,作业效率高。一般用于测区范围较大、必须考虑地球曲率影响的公路测设。

在实际测量时,具体的作业方法如下:采用两台(或两台以上) 接收机,分别安置在一条(或数条) 基线的端点,根据基线长度和要求的精度,按GPS测量系统外业的要求同步观测四颗以上的卫星数时段,时段长度根据测量等级确定。

在采用GPS对公路进行测量时,特别要注意以下技术问题:

1)当确认外接电源电缆及天线等各项连接完全无误后,方可接通电源,启动接收机。2) 开机后接收机有关指示显示正常并通过自检后,方能输入有关测站和时段控制信息。3) 接收机在开始记录数据后,应注意查看有关观测卫星数量、卫星号、相位测量残差、实时定位结果及其变化、存储介质记录等情况。4) 一个时段观测过程中,不允许进行以下操作:关闭又重新启动;进行自测试(发现故障除外);改变卫星高度角;改变天线位置;改变数据采样间隔;按动关闭文件和删除文件等功能键。

2.2 GPS在市政电力工程测量中的应用

电力工程测量是市政电力工程建设中一项重要的内容,按照其作业服务对象一般分为厂站工程测量、送电工程测量及施工工程测量等内容。电力工程测量既具有一般工程测量作业特点,又具有其独特的行业特点,主要表现在:

1)虽然一般厂区的建设面积不大,但是其有很多附属设施,如电厂有除灰管线系统、取排水系统、输变电系统、铁路运输系统等等;而所有这些系统都不是独立的,都和外界有着千丝万缕的联系,都要和城建规划系统、国家坐标高程系统联系在一起。2) 厂区控制测量对内部精度要求比较高,特别是要能满足设备安装时施工放样测量的要求,比如平面控制要求为:对于厂区平面控制网的坐标系统,主测区内投影长度变形值不大于2.5cm/km。利用GPS技术可以很方便快捷的实现对电力工程厂区内的测量,主要测量技术步骤如下:

1)方格网的设计,既要满足将来施工放样的需要,同时要保证方格网的边要与主建筑物平行,还要考虑到施工过程中临时建筑和道路的影响,防止在施工过程中受到破坏;以往方格网的设计是以总平面图为基础,以主厂房为主线作为控制因素,桩位的位置在总平面图上不易直观反映且可能在施工过程中受到影响;如果采用在CAD下应用总平面图并结合施工单位的实际需求,将能合理策划方格网的边长和位置,方便直观地获知方格网点位置坐标。2) 放样方格网点位置在埋设桩位过程中要得到确定,防止调整桩位坐标位置时偏离出桩位。对方格网点点位中误差应满足< 士5”的精度要求,是容易做到的。但对于方格网直线度限差< 士5”的要求,如果采用全站仪必须进行多次调整,才能满足要求,结合已经成熟的GPS技术和3D技术,在精确获得桩位中心坐标的前提下,在CAD下精确获取各方格网点的调整数据,然后再用高精度全站仪进行放样调整方格网点,将会提高调整方格网点满足精度要求的准确性。3) 应用GPS快速静态测量技术配合全站仪进行方格网直线度限差的检验,再用全站仪随机抽检部分直线角,然后比较和GPS 快速静态测量角度的差值来推算判定整个方格网的精度情况将会大大提高作业效率和减轻劳动强度。

3、结语

GPS 技术发展的过程也是其在测量应用上不断完善的过程。GPS技术是一门新型的定位技术,因此我们在测量应用中既要顾及GPS自身存在的问题,又要解决测量上固有的矛盾。

参考文献:

[1]胡成良. 浅谈市政工程测量中应用GPS RTK的新模式[J].改革与开放.2009(07)

第8篇

关键词:移动雷达;应急通信;卫星通信

Thesatellitecommunicationofmobilemeteorologicalradarsystem

DouYiwen(BeijingmeteorologicalBureau,Beijing100089)

Abstract:Inordertotranslatemobileradar'sdatatoserverofBeijingmeteorologicalBureau.Thistextcomparedadvantagesanddisadvantagesofwirelesscommunication'smethod.Theaboveanalysisnaturallyleadsustothesystemofthesatellitecommunicationcreated.Theresultsshows:thesystemcansatisfythecommunicationrequirementofmobileradar.Thesystemhasagoodexampleforcreatingemergencycommunication.

Keywords:Mobileradar;Emergencycommunication;Satellitecommunication

1引言

随着气象信息自动采集的不断发展,自动采集数据越来越成为气象信息采集的主流。新一代天气雷达系统,可以进行较大范围降水的定量估测,获取降水和降水云体的风场信息等,在短时灾害性天气预报和应急服务中发挥巨大的作用,特别是对风害和冰雹相伴随的灾害性天气的监测和预警[1]。为了把移动雷达实时数据传输到北京市气象局,通信方式的选择成为信息采集的重要环节,目前气象应用通信方式有很多种。如CDMA/GPRS/3G、北斗卫星、无线局域网(WLAN)、专线等,还有下面要讨论的基于亚洲卫星通信线路。移动雷达对通信的主要需求是网络质量可靠;带宽至少要达到双向2Mbps;移动雷达采集数据地点不固定。如何满足移动雷达的要求是本系统需要解决的问题。

2通信方案的设计

2.1气象信息传输通信方式对比分析

目前气象应用通信方式有很多种,如CDMA/GPRS/3G、北斗卫星、无线局域网(WLAN)、专线等。由于天气雷达数据量大,要求网络质量高,固定地点天气雷达的数据传输一般都是利用专线传输。表1是常用无线通信方式传输气象数据的对比。无线局域网传输距离短,安全性差,一般只能作为数据的传输中继;北斗卫星是我国自主研制的卫星导航定位系统,安全性高,用于传输字节少如自动站等的数据比较适合;CDMA/GPRS,运行成本低,但是其通信速率要求低,不能满足雷达数据传输要求;3G下行速率理论值是2.8Mbps,实际传输效果没有达到此值,而且网络质量与基站覆盖有很大关系。天气雷达如果地点固定,而且在市内或县城内,使用专线较好,有充足的时间建立专线的话,应用2Mbps专线传输雷达数据是一种好的选择。卫星通信作为天气雷达数据的备份是一种最佳选择,因为它的网络带宽、移动性、实时性、开通周期等方面都能满足要求。

2.2卫星通信特点分析

卫星通信是以人造通信卫星作为中继的一种微波通信方式。卫星通信的优点:通信距离远,建设成本与通信距离无关;不受地理环境影响;广播方式,卫星覆盖区域内的任何点可实现通信;通信容量大;可自发自收。卫星通信的缺点:信号极弱(毫微微瓦级),对技术和设备的要求较高;时延;多址问题;存在单一故障点;雨衰。

3卫星通信的应用

综合考虑雷达数据传输的速率在2Mbps以上,支持视频、移动、应急等方面的要求,选择亚洲卫星通信是本系统的最佳选择。本系统采用等效口径为0.95m的偏馈型椭圆抛物面天线,天线面使用四片碳化纤维面板组成。天线系统工作在Ku频段。天线控制系统内置高性能信标接收机,可在5分钟内自动对星,通过对中卫一号、亚洲二号、亚洲三号、亚洲四号四个卫星两种极化方式的上百次测试,寻星准确率100%,配置40W功放时具备传输速率大于等于3Mbps,保证传输速率大于等于2.048Mbps,完全具备传输多路话音、2路视频图像、2路数据的业务能力。图1就是本系统建立的移动雷达卫星网络结构图。从图中可以看到移动雷达系统采集数据到数据处理服务器(192.168.3.5/24)或模拟语音经过语音网关,通过网络交换机和IP加速器(192.168.3.3/24),由调制设备(192.168.3.2/24)调制信号传输到卫星,再由卫星接收站传送到地面,通过调制解调器(192.168.3.10/24)和IP加速器(192.168.3.11/24)指向路由器(192.168.3.1/24,192.168.2.1/24),由路由器转发到防火墙(192.168.1.1/24),在防火墙上作语音网关和数据服务器NAT地址转换。最后在服务器(192.168.2.254/24)上可以看到雷达系统上传的数据,在电话终端上可以进行语音通话。这个网络是双向的,不仅数据可以双向传输,而且在北京市气象局可以监控到卫星通信系统的状态。本系统因为经费有限,建立了电话通信模式,并留有视频接口。

图1移动雷达卫星网络结构图

4结论

本系统采用的亚洲卫星通信系统具有一键对星功能,天线能够自动展开/收藏,自动定位、自动捕获和自动跟踪卫星,5分钟内完成寻星任务并建立卫星通讯链路。在传输速率、网络安全、天线对星时间、网络接口、应急通信等方面都能满足实时雷达传输数据的要求。

致谢:国家气象信息中心网络室和视频与卫星室、西安瑞兴通信有限公司、北京市人工影响天气办公室、北京市气象信息中心、北京市大气探测技术保障中心在系统建设中给予的大力支持。

参考文献

[1]张海虹,钱建伟.新一代多普勒天气雷达简介[J].科技咨询,2009(18):205-205.

[2]刘霁宇.北斗卫星SCADA通信组网方案[J].黑龙江科技信息,2009(24):50-50.

[3]谈振辉,乔晓瑜.短距离低功率无线通信接入系统[J].2009,15(4):39-43.

[4]罗艳碧,张令通.无线通信网络发展趋势研究与分析[J].科技创新导报,2009(19):238-237.

[5]周治宇,陈豪.未来全球宽带无线通信系统构想[J].空间电子技术,2009(2):1-7.

[6]闵士权.关于构建国家应急卫星通信网的思路[J].航天器工程,2009,18(3):1-7.

[7]周任飞.基于TD-SCDMA的雷达情报数据无线传输研究[J].信息系统工程,2009,9:70-73.

[8]邓玉芬,张博,沈明,等.基于北斗卫星的海洋测量数据传输系统[J].海洋测绘,2009,29(4):67-69.

[9]王毳,赵齐.卫星宽带IP技术研究[J].无线电通信技术,2009,35(4):16-19.

[10]徐江,杨凡,王视环.卫星通信多址接入方式的比较和分析[J].电力系统通信,2004(10):49-53.

征稿启事

《网络与信息》杂志是经国家科技部和国家新闻出版总署批准的国内外公开发行的计算机网络应用类专业媒体,CNKI中国学术期刊全文数据库收录期刊、中国学术期刊综合评价数据库统计源期刊、中国核心期刊(遴选)数据库收录期刊、ASPT来源刊、中文科技期刊数据库全文收录期刊、全球中文电子期刊协会入编期刊、2007及2008年网络传播分类阅读国内外TOP10期刊。

《网络与信息》为月刊,每月9日出刊。大16开全彩色精美印刷,每期定价10元,邮发代号82-58。

国内统一连续出版物号:CN21-1380/TP

国际标准连续出版物号:ISSN1008-0252

主要刊登计算机技术、网络与通信技术、信息化建设、信息管理、工程评估、项目咨询与管理、电子商务、会计电算化、计算机辅助教学及管理、网站开发及管理、无线网络技术及应用、信息安全技术等方面的论文及文章。

投稿须知

1.来稿严禁抄袭,文责自负,切勿一稿多投。凡在本刊发表之作品,如双方无特殊约定,一经发表自动视为作者已将该作品的著作权全部转让给《网络与信息》杂志社。

本刊已被CNKI中国学术期刊全文数据库、中国学术期刊综合评价数据库、中国核心期刊(遴选)数据库、中文科技期刊数据库、龙源期刊网、全球中文电子期刊协会收录,其作者文章著作权使用费与本刊稿酬一次性给付。如作者不同意文章被收录,请在来稿时向本刊声明,本刊将做适当处理。本刊亦有权不予刊登不同意收录的论文。

2.文稿要求层次分明、条理清晰、论点明确、数据可靠、文字准确简练。

3.文稿署作者真实姓名、工作单位、电话、通信地址、邮政编码和电子信箱。

4.来稿请按标题(不超过20字,必要时可加副标题)、作者、单位(外加圆括号)、摘要(不超过150字)、关键词(3-5个)、正文和参考文献的顺序撰稿。若是基金项目,请注明课题全称和批准文号。

5.本刊有权对拟用文稿作文字上的修改、删节处理,对图表有权按规范、标准等要求作技术处理;凡不同意者,请在来稿时申明。

6.杂志每版的字数为2200左右(不包括图表,如有图表则字数酌减)。

7.来稿请注明“投稿《网络与信息》”字样,并以Word格式发送到:,同时注明投稿者姓名、单位、邮编和地址、电话、E-mail,以便联系和邮寄样刊。

8.编辑部收到作者稿件后,5天内给作者反馈稿件处理情况。

联系方式:

电话:024-31318681

第9篇

[关键词] 时空可视化表达 台风信息系统 Flex技术

1 概述

台风是世界上最严重的自然灾害之一。在全球的台风生成区中,西北太平洋地区的发生频率最高,占全球总数的1/3以上,同时西北太平洋中的台风强度也是最强的[1]。福建省所处的地区台风灾害发生频繁,是中国遭受台风影响最严重的省份之一。由于其造成的经济损失剧增,同时对民众生活也造成一定影响,人们对台风的关注也越来越多,为了满足这种需求就需要有一个表现力强,信息表达明确的信息了解渠道。高交互性、富客户端的基于Flex、WebGIS的台风灾害数据的时空可视化表达技术越来越受到人们的关注。通过该技术可以动态、直观、多层次地掌握台风信息,使得台风信息的表达更加丰富,从而给予人们更多的台风信息服务。本文以台风“珍珠”登陆为例,构建基于ArcGIS Server以及Flex的台风灾害数据的时空可视化表达的开发,将台风从发生到结束过程中,受影响的各个站点的信息;包括各大新闻频道的信息、相关政府管理部门的应急措施以及现场情况;按照时间的先后顺序进行可视化表达,为用户提供展现台风灾害信息的时空可视化表达系统。

2 WebGIS与Flex技术研究现状

2.1 WebGIS研究进展

随着Internet 技术的发展,GIS与Internet结合成为必然的趋势,WebGIS顺应而生,WebGIS是在Internet或Intranet环境下实现对地理信息的获取、存储、查询、分析、显示和输出的计算机系统,它是GIS发展的重要方向[2]。与传统的Web应用相比,WebGIS的最大特点是在空间框架下实现图形、图像数据与属性数据的动态链接,提供可视化查询和空间分析的功能[3-4]。但是,WebGIS与传统的Web应用一样,具有一定的局限性,体现在:(1)用户界面图形显示和交互能力较弱,不能满足Web技术不断发展下用户对系统丰富体验的要求,降低了系统的可用性。(2)没有充分利用客户端的处理能力,大多数用户请求集中在服务器端处理,加重了服务器的计算负担,提高了对网络带宽的要求。(3)基于HTML静态标签建立,语义性差、可重用性和可扩展性都不强,建立新的应用大多要重新设计和开发[5]。

2.2 Flex研究进展

由于传统WebGIS存在以上不足,因此能够创建高交互性、富客户端的RIA技术也应用于WebGIS客户端的生成过程。

RIA(Rich Internet Applications)称为富互联网应用,具有高度互动性、丰富用户体验以及功能强大的客户端[6]。RIA的特点是在客户端可以进行完整的数据处理,与用户的交互更加友好,更迅速。界面交互并不依赖页面,消息通过异步请求传递,面向用户界面中的各个小模块,客户端的模块之间关系清晰,处理起来也更灵活。在不会影响到原有应用的前提下,RIA技术对表现层进行了大幅度的增强,更好的提升了界面的友好程度。并减少了用户与系统的远程交互频率,也减少了带宽需求 。

Flex是Adobe公司推出的RIA解决方案,Flex是一种基于标准编程模型的高效RIA开发产品集,使用Flex技术开发部署RIA应用程序非常简单。由于Flex技术基于MXML标准、CSS标准、XML标准、Action Script 3.0标准,并提供丰富的组件,使得Flex开发人员只需将注意力集中于业务逻辑开发上。Flex编程模型和各个产品构成了完整的RIA开发平台,并且拥有完善的文档和示例,拥有规模较大的开发社区,是目前最成熟和完善的RIA技术[4-5]。

2.3 Flex技术与WebGIS技术结合应用于气象领域现状

随着科学技术的快速发展,人类获取台风数据的技术愈加快速、准确,这使得台风信息内容更充实,决策辅助的准确性也大幅度提高。近几年来,随着地理信息系统(Geographic Information System,GIS)在各领域应用的广泛和深入,气象领域的应用也越来越普及,更多气象工作者开始认识到地理信息系统技术的应用价值,地理信息系统的发展,为台风数据的管理提供了技术手段,同时,GIS在气象领域的应用也为地理信息系统与台风预报系统的有效结合提供了依据[7]。

目前,国内在将WebGis技术应用于台风数据管理和方面取得了一定成果,如中国中央气象台网站、中国香港天文台网站、福建水利信息网、广西气象台网站、四创公司“风影2005”软件等。其中中国中央气象台网站在2009年将Flex技术引入了台风的网站建设上来,使用户能够更方便,更快捷,更丰富的接触到台风信息,同时能够提供有关信息供相关部门及时的采取相应救助措施[8]。自从该网站运来以来,经受了较大的公众用户的并发访问量,证明了其技术路线的可行性。故本文引入了Flex技术进行基于WebGIS的台风灾害数据时空可视化表达的系统开发中来。

另一方面,从以上网站的运行结果来看,目前大部分台风网站的台风数据并没有与时间相联系,只是纯粹地展现台风的空间数据,而没有将相关的政府应急,包括各类灾害信息融入,在信息的丰富程度上存在不足。因此本文以台风“珍珠”登陆为例,进行基于ArcGIS Server以及Flex技术的台风灾害信息数据的时空可视化表达的开发,为用户提供展现台风灾害数信息的一个应用服务窗口。

3 基于Flex 的台风灾害信息数据时空可视化表达系统开发

3.1 系统开发平台

本系统是以美国ESRI公司的ArcGIS Server以及Macromedia公司的Flex Builder系列软件作为WebGIS的开发平台,以及Microsoft公司的IIS作为网络服务软件,运用Flex 技术、技术进行开发的基于WebGIS的台风灾害数据时空可视化表达。

3.2 系统总体结构

本次系统的框架主要分为3层,即表现层、应用层、数据层。

表现层。基于浏览器的一个富客户端,为用户呈现一个丰富的、具有高交互性的可视化界面,以图文一体化的方式显示空间和属性信息,主要包括台风信息数据的获取、网上距离的量测、多媒体信息的游览等。

应用层。主要是负责响应Flex富客户端请求的核心层。它接受来自客户端的请求,并根据用户请求类型做出相应响应。通过.NET应用服务器与ArcGIS Server服务器进行响应空间数据和属性数据请求,对空间数据进行分析和控制。

数据层。它是系统的底层,负责空间数据和属性数据的存取机制,维护各种数据之间的关系。具体的框架如图1所示。

3.3 系统核心功能设计和实现

3.3.1 常规地图操作功能

平台具有对地图图层的各种操作功能,如放大、缩小、漫游、全图显示、前一视图、后一视图、量距、测量面积、属性信息获取等功能。当台风逼近某一城市时,可方便地测量任意两点和多点之间的距离,根据当前位置和预报位置,结合移动速度和风圈半径,为实施防汛预案提供科学依据。

3.3.2台风灾害信息数据聚合获取

台风信息数据及相关灾害信息数据的获取主要通过两种渠道,一种是直接调用数据库内容,另一种实时数据,则需要直接连接到远程相关政府部门信息网站,以信息聚合形式将相应信息按来源分类加以整理,并返回XML格式的文档,接着由Flex直接获取XML数据,并在浏览器端根据数据类型来加以显示。以台风信息数据为例,主要包括台风的中心气压,经纬度信息,最大风速,风力,移动速度信息,方向,以及七级、10级、12级风圈半径信息等文本信息数据。相应灾害信息如灾害警报,启动的预案等级等。由于从各相应政府管理部门实时聚合获取的数据中不少有明确时间标识,因此可将此数据直接通过时空可视化表达系统按时间来动态表达。获取的数据中除普通的文本信息数据,还可以是图像数据,视频数据,这依据于相应政府管理部门数据源而定。

3.3.3台风路径动态显示及灾害信息可视化表达功能

该可视化表达系统的总体界面框架如图2所示,界面中间位置为地图显示窗口和时间轴控制窗口,中间部分上部为地图操作工具条,界面框架左上角为时间信息,左下角为类似于福建气象局、中央气象局等各类相关政府管理部门的台风灾害信息窗口,右上角为信息控制中心,包括数据的导入,动态播放的控制,右下角为相应多媒体信息的播放。

台风信息动态显示的功能如界面中间部分的地图内容所示,随着时间的变化,点击播放时,会进行台风路径动态的播放,同时将不同时刻中各相关政府部门的数据及信息在相应的左下角位置进行更新,同时各类带有时间属性的图片、视频信息也可在右下角的多媒体信息播放窗口进行相应显示。这样可以较好地将相应灾害事件及政府管理部门应对措施通过时空的概念明确结合在一起,实现灾害信息数据的时空可视化表达。

如需直接控制播放速度,或快速浏览动态变化结果,则可使用界面中间位置的时间轴控制窗口来灵活拖动,这样各类相关信息就会自动刷新。

4 结语

本文基于ArcGIS Server、Flex技术,对台风灾害数据信息的时空可视化显示平台的建设进行了探讨,并通过实际WebGis应用信息系统的设计将Flex技术融入到台风灾害相关数据信息网站的建设中来。系统开发结果在台风灾害信息可视化表达方面效果较好,但作为一个GIS应用系统,系统还需要在专业性和为各部门的服务上加强研究,为Webgis技术应用于相关灾害管理和信息上提供有益的经验。

参考文献:

[1] 戴伟.基于ArcGIS Server平台的WebGIS台风预报系统应用研究[D].武汉理工大学硕士学位论文,2009.

[2] 杨明,李全.基于J2EE和ArcIMS的地籍管理WebGIS[J].计算机工程, 2007, 33(15):267-268.

[3] 方海涛,华连生,方亚明. 基于WebGIS和SVG技术的气象参数信息系统[J].计算机工程,2008,34(10):264-265.

[4] 刘二年,丰江帆,张宏.基于Flex的环保WebGIS研究[J].测绘与空间地理信息, 2006,29(2):71-72.

[5] 龙明,汶博,魏娟.基于RIA的网络地理信息系统的设计与实现[J].海洋测绘, 2006,26(5):38-41.

[6] 刘光,唐大仕.WebGIS开发――ARCGIS Server与.NET[M].北京:清华大学出版社,2009