前言:我们精心挑选了数篇优质基于模型的优化设计文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
关键词:给水管网;管网优化;数学模型
中图分类号:TV212.2 文献标识码:A 文章编号:1672-3198(2007)09-0249-01
1 引言
自从60年代Carmelita以及Shake等人提出利用系统分析的方法,尤其是优化算法进行给水管网设计的课题以来,前人在如何建立管网优化模型方面已经做了大量的研究和探索工作。
给水管网的优化设计,应考虑到4个方面:即保证供水所需的水量和水压、水质安全、可靠性和经济性。管网技术经济计算就是以经济性为目标函数而将其余的作为约束条件,据此建立目标函数和约束条件的表达式以求出最优管径或水头损失。由于水质安全性不容易定量的进行评价,正常时和损坏时用水量会发生变化,二级泵房的运行和流量分配等有不同方案,所有这些因素都难以用数学式表达。因此,管网技术经济计算主要是在考虑各种设计目标的前提下求出一定设计年限内管网建造费用和管理费用之和为最小时的管段直径或水头损失,也就是求出经济管径或经济水头损失。
2 数学优化模型
2.1 压力流单水源环状网的优化设计数学模型
起点水压未给的管网需要供水动力费用,而动力费用随泵站的流量和扬程而定,扬程则决定于控制点要求的最小服务水头,以及输水管和管网的水头损失等。水头损失又和管段长度、管径、流量有关。所以,管径由管网的建造费用和管理费用之和为最低的条件确定,这时目标函数为:
该数学模型是以经济性为目标函数,将其余条件作为约束条件(水力约束和可靠性约束)。由于水质的可靠性指标难以量化,故未考虑水质的约束条件,同样由于可靠性指标的度量问题,水压的约束也仅仅是要求水源泵站扬程必须满足控制点的水压要求,只要控制点的压力在最高用水时可以达到最小服务水头,整个管网就不会存在低压区。此外,也要考虑管径的范围约束,以保证管网的水量和水压。
2.2 多水源环状网的优化设计数学模型
多水源管网供水安全,可以节省造价和电能。其优化设计计算原理与单水源时相同,目标函数为:
该数学模型与上述系统不同的是,每一水源的供水量,随着供水区用水量、水源的水压以及管网中的水头损失而变化,从而存在各水源之间的流量分配问题,即要考虑到水源的水量约束条件。
2.3 设加压泵站环状网的优化设计数学模型
为满足管网中局部地区的水压应在管网中设置加压泵站。当加压泵站位置靠近水源泵站时,水源水泵降压快,而加压泵加压流量大;加压泵站远离水源泵站时,水源水泵降压慢,而加压泵加压流量小。这样,目标函数在进行优化设计计算时应考虑水源泵站和加压泵站两项动力费用。因此建立如下数学模型:
该数学模型与上述系统不同的是:在满足管网水力约束和可靠性约束的同时要满足加压扬程约束。加压泵站流量属于待求的未知数,可近似取为所属管段的管段流量。
对上述系统采用优化的方法进行实现,最终求得系统最优时的管径、管段流量、流速、水力坡度、水泵扬程、各节点的水压等。
3 结束语
给水管网是给水工程中投资最大的子系统,一般要占到工程总造价的50%-80%。在工程总投资有限的前提下,在保证整个供水系统中水量、水压、水质安全以及供水可靠性的基础上,以整个系统的总造价或年费用为目标函数进行管网优化设计,寻求目标函数最小的设计方案,对加强安全可靠性、降低工程成本、提高经济效益和社会效益有着重要的现实意义。
参考文献
[1]王训俭,张宏伟,赵新华.城市配水系统宏观模型的研究[J].中国给水排水,1988,4,(2).
[2]俞国平.城市配水管网的优化设计[J].中国给水排水,1987,(5):48-53.
关键词:发动机悬置系统;能量解耦;Pareto遗传算法;稳健优化设计;Monte Carlo法
中图分类号:U464.12 文献标志码:A 文章编号:1005-2550(2012)04-0016-04
Robust Optimal Design of Engine Mounting System Based on Tolerance Model
WANG Xin-kan1,2
(1.Institute of Noise and Vibration Research,Hefei University of Technology,Hefei 230009,China;2. Anhui Key Laboratory of Automobile NVH and Reliability,Hefei 230009,China)
Abstract:Considering the influence of the uncertainty of design variable on the results,the robust optimization design theory is used to build robust model. Pareto Genetic Algorithms is adopted to optimize the stiffness of mounting of engineer mounting system which takes the decoupling of energy distribution as a target,and the Monte Carlo method is used to analyze the optimized results. The results show that the method can improve the robustness of mounting system.
Key words:engine mounting system;energy decoupling;Pareto genetic algorithms;robust optimal design;Monte Carlo method
人们对汽车乘坐的舒适度要求越来越高,发动机是汽车主要的振源,其振动经悬置系统传递给车架或车身,因而发动机悬置系统的参数设计对汽车整车减振来说非常重要。对于发动机悬置系统的优化设计,可以从不同角度提出目标函数和约束条件,并建立不同的数学模型。常见的目标函数主要有:发动机悬置系统六自由度完全解耦或是部分解耦,移频使系统固有频率处在合理的区间,系统的支反力(矩)最小或是传递率最小。考虑到研究的车型上的悬置位置和安装角度已经确定,因而以悬置的刚度为设计变量,主要从移频且使悬置系统部分解耦来进行多目标参数优化设计。悬置厂商提供的悬置垫,悬置刚度参数一般都有很大的可变性,主要来源于悬置材料的变化和悬置几何形状的变化。另外在悬置与支架等的装配过程中,往往会产生预应力以及悬置形状的扭曲,也将造成悬置刚度值的变化[1]。传统的确定性解耦优化方法往往忽略了悬置刚度值的可变性,忽略了刚度偏差对悬置系统解耦的影响,使实际的工况下解耦效果很不理想。基于对悬置参数不确定因素影响的考虑,应该选择一种方法一方面寻求目标函数的最优值,另一方面应该考虑设计变量的误差等不确定因素,这就需要我们在优化设计中结合稳健设计的思想,即稳健优化设计。本文将稳健优化设计应用于发动机悬置系统的解耦优化中,充分考虑了各种干扰和设计变量的变差情况,不仅保证设计结果的合理性,同时也保证设计结果对悬置参数的不敏感性。同时利用Monte Carlo方法对结果进行分析验证,对悬置刚度对系统性能的影响程度进行研究。
1 稳健优化设计模型
传统确定性优化模型为:
min f(x)s.t. gi(x)≤0 i=1,2,L,m xL≤x≤xu(1)
式中:x,xL,xu分别为设计变量及其上下界; f(x)为目标函数;gi(x)(j=1,2,L,m)为m个约束函数。
稳健优化设计中,不仅考虑目标函数均值?滋f变化,而且要考虑目标函数的标准差?滓f的变化。均值?滋f和标准差?滓f的计算,可以通过泰勒级数展开来近似。考虑变量相互独立,则目标函数的均值和标准差分别为:
?滋f =f(?滋x)+■■■?滋xi?滓2xi?滓f =■ (2)
对于约束函数,由于变量变化因而引起约束的变化,于是原问题的约束变为:
?滋g i(x)+n?滓g i(x)≤0 (3)
同时为了表示设计变量偏离的可行性,相应的设计变量的边界变为:
xL-n?滓x≤x≤xu+n?滓x (4)
(2)、(3)式中n为任意常数,当n=3,x随机变差时,其设计的可行率可达到,能满足实际要求。
综上,稳健优化模型为[3]:
min ?滋f ?滓ff(x)s.t. ?滋g i(x)+n?滓g i(x)≤0 i=1,2,L,m xL-n?滓x≤x≤xu+n?滓x(5)
2 发动机悬置系统优化模型
【关键词】旅游线路;优化设计;数学模型
一、引言
旅游线路是指在一定的区域内,为使游人能够以最短的时间获得最大观赏效果,由交通线把若干旅游点或旅游区域合理地贯穿起来并具有一定特色的路线。假设江苏徐州有一位旅游爱好者从2011年五月一日上午八点出发,预选了表1中所示的十个景点。在以下的几种需求下分别建立相应的数学模型,优化设计出最佳的旅游线路。
表1预选的十个省市旅游景点
旅行中的必要假设:车票或机票可预订到;旅行期间天气良好,交通顺畅;晚上20:00至次日早晨7:00之间,如果在某地停留超过6小时必须住宿,住宿费用不超过200元/天,吃饭等其它费用60元/天;景点的开放时间为8:00至18:00。符号说明:m:总的旅游费用;T:总的旅游时间;cij:第i个城市到第j个城市所需的交通费用;dij:第i个城市到第j个城市所需的交通时间;Zi:第i个景点的住宿费用;T12:交通花费总时间;ti:在第i个景点的停留时间;yi:第i个景点的住宿时间;n:游览景点的数目;rij值为1表示从第i个景点直接到第j个景点,为0表示其他情况;Si值为1表示在第i个景点住宿,为0表示其他情况。
二、不同旅游需求下的数学模型
1.需求一:时间不限,花费费用最少。总的旅游费用由交通费用、门票费用、住宿费用和吃饭及其他费用4部分组成,而门票费用、吃饭及其他费用已经确定,只需在游客游览完十个景点的条件下使交通费用和住宿费用最少即可。通过在网上查询可得到:十个景点门票总费用为1225元,市内交通总费用为224元。
由于该问题是典型的TSP(旅行商问题)问题。我们以旅游费用最少为目标建立一个单目标优化模型,引入两个0-1变量分别表示是否游览某个景点和是否在某景点住宿,从而得出旅游费用的目标函数表达式,并给出相应的约束条件。目标函数:
根据此模型,使用LINGO编程进行求解得到的旅游线路如下:徐州->黄鹤楼->庐山(住宿)->黄山->普陀山->恐龙园(住宿)->崂山->八达岭长城->乔家大院->西安市秦始皇兵马俑->洛阳市龙门石窟->徐州。通过制定详细的旅游行程表表明此路线可行,确定总费用在2880元左右,在可接受范围之内,表明此模型可用。
2.需求二:费用不限,花费时间最少。需求二不限制旅游费用,而要求在最短时间内游遍十个景点。旅游时间由交通花费时间、景点停留时间、住宿时间3部分组成。考虑飞机时刻安排以及在景点停留最短时间要求,我们尽量使景点停留时间和住宿时间最少。从网上收集各城市交通情况,并根据常规车速估计,各城市机场或车站与景点间的市内交通总时间为:T2=25小时。在需求一基础上,改变目标为时间最少,调整约束条件,建立如下模型。目标函数:
使用LINGO编程求解,得到最短时间为9天。推荐最佳旅游路线为:徐州->乔家大院->崂山(住宿)->普陀山(住宿)->八达岭长城(住宿)->龙门石窟(住宿)->秦始皇兵马俑(住宿)->黄山(住宿)->庐山(住宿)->黄鹤楼(住宿)->恐龙园(住宿)->徐州。通过制定详细的旅游行程表表明此路线可行,且时间安排合理。
3.需求三:限定费用,尽可能多游览景点。需求三限定旅游费用,时间不限,设计在此条件下能游览最多景点的最佳路线。使用单目标优化模型,以景点数最多为目标,在需求一基础上加上总费用小于2000元的约束条件,建立模型如下。目标函数:Max n,约束条件:在需求一约束上加上总费用约束,m≤2000元。然后编程求解,得到最多景点数为7,时间为8天。推荐最佳旅游路线为:徐州->恐龙园->庐山->黄鹤楼->八达岭长城->乔家大院->秦始皇兵马俑->龙门石窟->徐州。旅游花费费用为1217元左右,但程序在求解时未考虑每天吃饭费用60元这个定值,所以总的旅游费用为1217+60×8=1697元。通过制定详细旅游行程表表明此路线可行且合理,总的旅游花费满足要求。
4.需求四:限定时间,尽可能多游览景点。需求四限定时间,旅游费用不限,我们建立以游览景点数为目标的单目标规划模型,并在需求二基础上加上总时间不大于5天的约束条件,建立模型如下。目标函数:
编程求解,得到5天时间内最多游览6个景点。推荐最佳旅游路线为:徐州->八达岭长城->龙门石窟(住宿)->秦始皇兵马俑->乔家大院(住宿)->黄鹤楼(住宿)->恐龙园(住宿)->徐州。同样制定了详细的旅游行程表,表明此路线可行,且在5天内游览景点数最多。
5.需求五:限定时间和费用,尽可能多游览景点。把旅游费用作为新的约束加入约束条件,模型如下。目标函数:Max n,约束条件:
利用模拟退火算法思想设计算法,并编程求得结果:5天时间内游览5个景点,共花费1910元左右。推荐最佳旅游路线为:徐州->八达岭长城->乔家大院->秦始皇兵马俑->黄鹤楼(住宿)->恐龙园->徐州。同样可以利用此线路设计结果制定详细且安排合理的旅游行程表。
参考文献
[1]马勇.区域旅游线路设计初探[J].旅游学刊.1990,V5(3)
[2]姜启源.数学模型(第三版).高等教育出版社,2003
[3]谢金星,薛毅.《优化建模与LINDO/LINGO软件》.清华大学出版社,2005