前言:我们精心挑选了数篇优质减少碳排放措施文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
作者简介:石岳峰,博士生,主要研究方向为农田温室气体排放。
基金项目:Climate, Food and Farming Research Network (CLIFF)资助;中国农业大学研究生科研创新专项(编号:KYCX2011036)。
摘要
农田是CO2,CH4和N2O三种温室气体的重要排放源, 在全球范围内农业生产活动贡献了约14%的人为温室气体排放量,以及58%的人为非CO2排放,不合理的农田管理措施强化了农田温室气体排放源特征,弱化了农田固碳作用。土壤碳库作为地球生态系统中最活跃的碳库之一,同时也是温室气体的重要源/汇。研究表明通过采取合理的农田管理措施,既可起到增加土壤碳库、减少温室气体排放的目的,又能提高土壤质量。农田土壤碳库除受温度、降水和植被类型的影响外,还在很大程度上受施肥量、肥料类型、秸秆还田量、耕作措施和灌溉等农田管理措施的影响。本文通过总结保护性耕作/免耕,秸秆还田,氮肥管理,水分管理,农学及土地利用变化等农田管理措施,探寻增强农田土壤固碳作用,减少农田温室气体排放的合理途径。农田碳库的稳定/增加,对于保证全球粮食安全与缓解气候变化趋势具有双重的积极意义。在我国许多有关土壤固碳与温室气体排放的研究尚不系统或仅限于短期研究,这也为正确评价各种固碳措施对温室气体排放的影响增加了不确定性。
关键词 农田生态系统;温室气体;秸秆还田;保护性耕作;氮素管理;固碳
中图分类号 S181 文献标识码 A
文章编号 1002-2104(2012)01-0043-06 doi:10.3969/j.issn.1002-2104.2012.01.008
人类农业生产活动产生了大量的CO2, CH4和N2O等温室气体,全球范围内农业生产活动贡献了约14%的人为温室气体排放量,以及58%的人为非CO2排放(其中N2O占84%,CH4占47%)[1]。在许多亚洲、拉丁美洲和非洲的发展中国家,农业更成为温室气体的最大排放源,同时由于人口快速增长带来了粮食需求的大量增加,使得未来20年中农田温室气体的排放量也会有所增加[2]。大气中温室气体浓度的升高可能引起的全球气候变化已受到各国的广泛重视。
农业生态系统中温室气体的产生是一个十分复杂的过程,土壤中的有机质在不同的气候、植被及管理措施条件下,可分解为无机C和N。无机C在好氧条件下多以CO2的形式释放进入大气,在厌氧条件下则可生成CH4。铵态氮可在硝化细菌的作用下变成硝态氮,而硝态氮在反硝化细菌的作用下可转化成多种状态的氮氧化合物,N2O可在硝化/反硝化过程中产生。在气候、植被及农田管理措施等各因子的微小变化,都会改变CO2,CH4和N2O的产生及排放。
而通过增加农田生态系统中的碳库储量被视为一种非常有效的温室气体减排措施。农田土壤碳库除受温度、降水和植被类型的影响外,还在很大程度上受施肥量、肥料类型、秸秆还田量、耕作措施和灌溉等农田管理措施的影响。通过增施有机肥、采用免耕/保护性耕作、增加秸秆还田量等措施,可以减少农田土壤CO2净排放量,同时起到稳定/增加土壤有机碳含量作用。农田碳库的稳定/增加,对于保证全球粮食安全与缓解气候变化趋势具有双重的积极意义[3]。中国农田管理措施对土壤固碳的研究主要集中在土壤碳的固定、累积与周转及其对气候变化的反馈机制,正确评估农田土壤碳固定在温室气体减排中的作用,加强农田碳汇研究具有重要意义。
1 农田固碳
土壤是陆地生态系统的重要组成成分,它与大气以及陆地生物群落共同组成系统中碳的主要贮存库和交换库。土壤碳分为土壤有机碳(soil organic carbon, SOC)和土壤无机碳(soil inorganic carbon, SIC)。SIC相对稳定,而SOC则时刻保持与大气的交换和平衡,因此对SOC的研究是土壤碳研究的主要方面。据估计,全球约有1.4×1012-1.5×1012t的碳是以有机质形式储存于土壤中,土壤贡献给大气的CO2量是化石燃料燃烧贡献量的10倍[4],因此SOC的微小变化都将会对全球气候变化产生重要影响。同时,土壤碳库与地上部植物之间有密切关系,SOC的固定、累积与分解过程影响着全球碳循环,外界环境的变化也强烈的影响着地上部植物的生长与土壤微生物对土壤累积碳的分解。
Lal认为SOC的增加可以起到改善土壤质量,增加土壤生产力,减少土壤流失风险,降低富营养化和水体污染危害的作用,且全球耕地总固碳潜力为0.75-1.0 Pg•a-1, IPCC 第四次评估报告剔除全球农业固碳1 600-4 300 Mt a-1(以CO2计),其中90%来自土壤固碳[5]。农田生态系统是受人类干扰最重的陆地生态系统,与自然土壤相比,农田土壤在全球碳库中最为活跃,其土壤碳水平直接受人类活动的影响和调控空间大,农田土壤碳含量管理及对温室气体影响机制正日益受到学术界的广泛关注。农田管理措施是影响SOC固定、转化及释放的主要因素,同时还受土地利用方式、气候变化等多因素的共同影响,因此对农田碳库的评价及调整措施需全面考虑多种因素的交互作用。
2 农田固碳措施对温室气体排放的影响
近年来,农田土壤固碳的研究已经成为全球变化研究的一大热点。大量研究表明,SOC储量受诸多因素的影响,如采用保护性/免耕措施、推广秸秆还田、平衡施用氮肥、采用轮作制度和土地利用方式等,上述管理措施的差异导致农田土壤有机碳库的显著差别,并影响农田温室气体排放水平。
2.1 保护性耕作/免耕措施
保护性耕作作为改善生态环境尤其是防治土壤风蚀的新型耕作方式,在多个国家已经有广泛的研究和应用。中国开展的保护性耕作研究证明了其在北方地区的适用性[6],并且已进行了保护性耕作对温室效应影响的相关研究。统计表明2004年全球范围内免耕耕作的面积约为95 Mha, 占全球耕地面积的7%[7], 并且这一面积有逐年增加的趋势。
常规耕作措施会对土壤物理性状产生干扰,破坏团聚体对有机质的物理保护,影响土壤温度、透气性,增加土壤有效表面积并使土壤不断处于干湿、冻融交替状态,使得土壤团聚体更易被破坏,加速团聚体有机物的分解[8]。免耕/保护性耕作可以避免以上干扰,减少SOC的分解损失[9]。而频繁的耕作特别是采用犁耕会导致SOC的大量损失,CO2释放量增加,而免耕则能有效的控制SOC的损失,增加SOC的储量,降低CO2的释放量[10]。West和 Post研究发现从传统耕作转变为免耕可以固定0.57±0.14 Mg C ha-1yr-1[11]。但对于保护性耕作/免耕是否有利于减少温室气体效应尚不明确,这是由于一方面免耕对减少CO2排放是有利的,表现为免耕可以减少燃油消耗所引起的直接排放;另一方面,秸秆还田以后秸秆碳不会全部固定在土壤中,有一部分碳以气体的形式从农田释放入大气[12]。
免耕会导致表层土壤容重的增加,产生厌氧环境,减少SOC氧化分解的同时增加N2O排放[13];采用免耕后更高的土壤水分含量和土壤孔隙含水量(Water filled pore space, WFPS)能够刺激反硝化作用,增加N2O排放[14];同时免耕导致的N在表层土壤的累积也可能是造成N2O排放增加的原因之一,在欧洲推广免耕措施以后,土壤固碳环境效益将被增排的N2O抵消50%以上[15]。但也有新西兰的研究表明,常规耕作与免耕在N2O排放上无显著性差异[16],还有研究认为凿式犁耕作的农田N2O排放比免耕高,原因可能是免耕时间太短,对土壤物理、生物性状还未产生影响。耕作会破坏土壤原有结构,减少土壤对CH4的氧化程度[17]。也有研究表明,翻耕初期会增加土壤对CH4的排放,但经过一段时间(6-8 h)后,CH4排放通量有所降低[18]。
总之,在增加土壤碳固定方面,保护性耕作和免耕的碳增汇潜力大于常规耕作;在净碳释放量方面,常规耕作更多起到CO2源的作用,而保护性耕作和免耕则起到CO2汇的作用;在碳减排方面,免耕和保护性耕作的减排潜力均大于常规耕作;由于N2O和CH4的排放受多种因素的综合影响,因此耕作措施对这两种温室气体排放的影响还有待进一步研究。
2.2 秸秆管理措施
作物秸秆作为土壤有机质的底物,且作物秸秆返还量与SOC含量呈线性关系,因此作物秸秆是决定SOC含量的关键因子之一。秸秆还田有利于土壤碳汇的增加,同时避免秸秆焚烧过程中产生温室气体。因此,秸秆还田是一项重要而又可行的农田碳汇管理措施。秸秆还田以后,一部分残留于土壤中成为土壤有机质的来源,另一部分将会以CO2气体的形式散逸到大气中,因此,随着秸秆还田量的增加CO2排放也会增加。有研究表明,秸秆经过多年分解后只有3%碳真正残留在土壤中,其他97%都在分解过程中转化为CO2散逸到大气中[19]。秸秆还田会增加土壤有机质含量,而有机质是产生CH4的重要底物,因此秸秆还田会增加CH4的排放。综合考量,秸秆还田措施会引起CH4排放的增加,但直接减少了对CO2的排放,同时秸秆还田相对提高了土壤有机质含量,有利于土壤碳的增加,对作物增产具有积极作用。
秸秆还田措施对农业生态系统C、N循环的影响可表现为:一方面由于供N量的增加,可促进反硝化和N2O排放量的增加;另一方面表现为高C/N的秸秆进入农田后会进行N的生物固定,降低反硝化N损失;同时在秸秆分解过程中还可能产生化感物质,抑制反硝化[20]。我国采用秸秆还田农田土壤固碳现状为2389Tg•a-1,而通过提高秸秆还田量土壤可达的固碳潜力为4223Tg•a-1[3],与国外研究结果相比较,Vleeshouwers等研究认为,如果欧洲所有农田均采用秸秆还田措施,欧洲农田土壤的总固碳能力可达34Tg•a-1[21]。La1预测采用秸秆还田措施后全球农田土壤的总固碳能力可达200Tg•a-1[22]。随着农业的发展及长期以来氮肥的过量投入,氮肥损失也是日益严重,可通过秸秆还田措施与氮肥的配合施用降低氮肥的反硝化作用及N2O的排放。但秸秆还田后秸秆与土壤的相互作用异常复杂,因此需要进一步开展秸秆施入土壤后与土壤的相互作用机理及田间实验研究。
2.3 氮肥管理措施
在农田生态系统中,土壤中的无机氮是提高作物生产力的重要因素,氮肥投入能够影响SOC含量,进而对农田碳循环和温室气体排放产生重要影响。长期施用有机肥能显著提高土壤活性有机碳的含量,有机肥配施无机肥可提高作物产量,而使用化学肥料能增加SOC的稳定性[23]。农业中氮肥的投入为微生物生长提供了丰富的氮源,增强了微生物活性,从而影响温室气体的排放。但也有研究在长期增施氮肥条件下能够降低土壤微生物的活性,从而减少CO2的排放[24]。有研究表明,CO2排放与土壤不同层次的SOC及全N含量呈正相关性,说明在环境因子相对稳定的情况下,土壤SOC和全N含量直接或间接地决定CO2排放通量的变化[25]。对农业源温室气体源与汇的研究表明,减少氨肥、增施有机肥能够减少旱田CH4排放,而施用缓/控释氮肥和尿素复合肥能显著减少农田土壤NO2的排放[26]。但也有研究表明,无机氮肥施用可减少土壤CH4的排放量,而有机肥施用对原有机质含量低的土壤而言可大幅增加CH4的排放量[27]。长期定位施肥实验的结果表明,氮肥对土壤CH4氧化主要来源于铵态氮而不是硝态氮,因为氨对CH4氧化有竞争性抑制作用。此外,长期施用氮肥还改变了土壤微生物的区系及其活性,降低CH4的氧化速率,导致CH4净排放增加[28]。全球2005年生产的100 Mt N中仅有17%被作物吸收,而剩余部分则损失到环境中[29]。单位面积条件下,有机农田较常规农田有更少的N2O释放量,单位作物产量条件下,两种农田模式下N2O的释放量无显著性差异[23]。尿素硝化抑制剂的使用可以起到增加小麦产量,与尿素处理相比对全球增温势的影响降低8.9-19.5%,同时还可能起到减少N2O排放的目的[30]。合理的氮素管理措施有助于增加作物产量、作物生物量,同时配合秸秆还田等措施将会起到增加碳汇、减少CO2排放的作用。同时必须注意到施肥对农田碳汇的效应研究应建立在大量长期定位试验的基础上,对不同气候区采用不同的氮肥管理措施才能起到增加农田固碳目的。
2.4 水分管理措施
土壤水分状况是农田土壤温室气体排放或吸收的重要影响因素之一。目前全球18%的耕地属水浇地,通过扩大水浇地面积,采取高效灌溉方法等措施可增加作物产量和秸秆还田量,从而起到增加土壤固碳目的[31]。水分传输过程中机械对燃料的消耗会带来CO2的释放,高的土壤含水量也会增加N2O的释放,从而抵消土壤固碳效益[32]。湿润地区的农田灌溉可以促进土壤碳固定,通过改善土壤通气性可以起到抑制N2O排放的目的[33]。土壤剖面的干湿交替过程已被证实可提高CO2释放的变幅,同时可增加土壤硝化作用和N2O的释放[34]。采用地下滴灌等农田管理措施,可影响土壤水分运移、碳氮循环及土壤CO2和N2O的释放速率,且与沟灌方式相比不能显著增加温室气体的排放[35]。
稻田土壤在耕作条件下是CH4释放的重要源头,但通过采取有效的稻田管理措施可以
减少水稻生长季的CH4释放。如在水稻生长季,通过实施一次或多次的排水烤田措施可有
效减少CH4释放,但这一措施所带来的环境效益可能会由于N2O释放的增加而部分抵消,
同时此措施也容易受到水分供应的限制,且CH4和N2O的全球增温势不同,烤田作为CH4
减排措施是否合理仍然有待于进一步的定量实验来验证。在非水稻生长季,通过水分管理尤
其是保持土壤干燥、避免淹田等措施可减少CH4释放。
许多研究表明,N2O与土壤水分之间有存在正相关关系,N2O的释放随土壤湿度的增加而增加[36],并且在超过土壤充水孔隙度(WFPS)限值后,WFPS值为60%-75%时N2O释放量达到最高[37]。Bateman和Baggs研究表明,在WFPS为70%时N2O的释放主要通过反硝化作用进行,而在WFPS值为35%-60%时的硝化作用是产生N2O的重要途径[38]。由此可见,WFPS对N2O的产生释放影响机理前人研究结果并不一致,因此有必要继续对这一过程深入研究。
2.5 农学措施
通过选择作物品种,实行作物轮作等农学措施可以起到增加粮食产量和SOC的作用。有机农业生产中常用地表覆盖,种植覆盖作物,豆科作物轮作等措施来增加SOC,但同时又会对CO2,N2O及CH4的释放产生影响,原因在于上述措施有助于增强微生物活性,进而影响温室气体产生与SOC形成/分解[39],从而增加了对温室气体排放影响的不确定性。种植豆科固氮植物可以减少外源N的投入,但其固定的N同样会起到增加N2O排放的作用。在两季作物之间通过种植生长期较短的绿被植物既可起到增加SOC,又可吸收上季作物未利用的氮,从而起到减少N2O排放的目的[40]。
在新西兰通过8年的实验结果表明,有机农场较常规农场有更高的SOC[41],在荷兰通过70年的管理得到了相一致的结论[42]。Lal通过对亚洲中部和非洲北部有机农场的研究表明,粪肥投入及豆科作物轮作等管理水平的提高,可以起到增加SOC的目的[31]。种植越冬豆科覆盖作物可使相当数量的有机碳进入土壤,减少农田土壤CO2释放的比例[39],但是这部分环境效益会由于N2O的大量释放而部分抵消。氮含量丰富的豆科覆盖作物,可增加土壤中可利用的碳、氮含量,因此由微生物活动造成的CO2和N2O释放就不会因缺少反应底物而受限[43]。种植具有较高C:N比的非固氮覆盖作物燕麦或深根作物黑麦,会因为深根系统更有利于带走土壤中的残留氮,从而减弱覆盖作物对N2O产生的影响[44]。综上,通过合理选择作物品种,实施作物轮作可以起到增加土壤碳固定,减少温室气体排放的目的。
2.6 土地利用变化措施
土地利用变化与土地管理措施均能影响土壤CO2,CH4和N2O的释放。将农田转变成典型的自然植被,是减少温室气体排放的重要措施之一[31]。这一土地覆盖类型的变化会导致土壤碳固定的增加,如将耕地转变为草地后会由于减少了对土壤的扰动及土壤有机碳的损失,使得土壤碳固定的自然增加。同时由于草地仅需较低的N投入,从而减少了N2O的排放,提高对CH4的氧化。将旱田转变为水田会导致土壤碳的快速累积,由于水田的厌氧条件使得这一转变增加了CH4的释放[45]。由于通过土地利用类型方式的转变来减少农田温室气体的排放是一项重要的措施,但是在实际操作中往往会以牺牲粮食产量为代价。因此,对发展中国家尤其是如中国这样的人口众多的发展中国家而言,只有在充分保障粮食安全等前提条件下这一措施才是可考虑的选择。
3 结语与展望
农田管理中存在显著增加土壤固碳和温室气体减排的机遇,但现实中却存在很多障碍性因素需要克服。研究表明,目前农田温室气体的实际减排水平远低于对应管理方式下的技术潜力,而两者间的差异是由于气候-非气候政策、体制、社会、教育及经济等方面执行上的限制造成。作为技术措施的保护性耕作/免耕,秸秆还田,氮肥投入,水分管理,农学措施和土地利用类型转变是影响农田温室气体排放的重要方面。常规耕作增加了燃料消耗引起温室气体的直接排放及土壤闭蓄的CO2释放,而免耕、保护性耕作稳定/增加了SOC,表现为CO2的汇;传统秸秆处理是将秸秆移出/就地焚烧处理,焚烧产生的CO2占中国温室气体总排放量的3.8%,而秸秆还田直接减少了CO2排放增加了碳汇;氮肥投入会通过对作物产量、微生物活性的作用来影响土壤固碳机制,过量施氮直接增加NO2的排放,针对特定气候区和种植模式采取适当的氮素管理措施可以起到增加土壤碳固定,减少温室气体排放的目的;旱田采用高效灌溉措施,控制合理WFPS不仅能提高作物产量,还可增加土壤碳固定、减少温室气体排放;间套作农学措施、种植豆科固氮作物以及深根作物可以起到增加SOC的目的,减少农田土壤CO2释放的比例;将农田转变为自然植被覆盖,可增加土壤碳的固定,但此措施的实施应充分考虑由于农田面积减少而造成粮食产量下降、粮食涨价等一系列问题。
在我国许多有关土壤固碳与温室气体排放的研究尚不系统或仅限于短期研究,因此为正确评价各种管理措施下的农田固碳作用对温室气体排放的影响增加了不确定性。本文结果认为,保护性耕作/免耕,秸秆还田,合理的水、氮、农学等管理措施均有利于增加土壤碳汇,减少农田CO2排放,但对各因素协同条件下的碳汇及温室气体排放效应尚需进一步研究。在未来农田管理中,应合理利用管理者对农田环境影响的权利,避免由于过度干扰/管理造成的灾难性后果;结合农田碳库特点,集成各种农田减少温室气体排放、减缓气候变化的保护性方案;努力发展替代性能源遏制农田管理对化石燃料的过度依赖,从而充分发掘农田所具有的增加固碳和温室气体减排的潜力。
参考文献(Reference)
[1]Prentice I C,Farquhar G D, Fasham M J R, et al. The Carbon Cycle and Atmospheric Carbon Dioxide[A]. Houghton JT. Climate Change 2001: The Scientific Basis, Intergovernmental Panel on Climate Change[C]. Cambridge: Cambridge University Press, 2001:183-237.
[2]Robert H B, Benjamin J D, et al. Mitigation Potential and Costs for Global Agricultural Greenhouse Gas Emissions [J]. Agricultural Economics, 2008, 38 (2): 109-115.
[3]韩冰, 王效科,逯非, 等. 中国农田土壤生态系统固碳现状和潜力 [J]. 生态学报, 2008,28 (2): 612-619. [Han Bing, Wang Xiaoke, Lu Fei, et al. Soil Carbon Sequestration and Its Potential by Cropland Ecosystems in China [J]. Acta Ecologica Sinica, 2008, 28(2): 612-619.]
[4]李正才, 傅懋毅, 杨校生. 经营干扰对森林土壤有机碳的影响研究概述 [J]. 浙江林学院学报, 2005, 22(4): 469-474. [Li Zhengcai, Fu Maoyi,Yang Xiaosheng. Review on Effects of Management Disturbance on Forest Soil Organic Carbon [J]. Journal of Zhejiang Forestry College, 2005, 22(4): 469-474.]
[5]Lal R. Carbon Management in Agricultural Soils [J]. Mitigation and Adaptation Strategies for Global Change, 2007, 12: 303-322.
[6]高焕文,李洪文,李问盈.保护性耕作的发展 [J].农业机械学报,2008,39(9):43-48.[Gao Huanwen, Li Hongwen, Li Wenying. Development of Conservation Tillage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9): 43-48.]
[7]Derpsch R. The Extent of Conservation Agriculture Adoption Worldwide: Implications and Impact [M]. Nairobi, Kenya, 2005. 3-7.
[8]Paustian K, Andren O, Janzen H H, et al. Agricultural Soils as a Sink to Mitigate CO2 Emissions [J]. Soil Use and Management, 1997, 13(4): 230-244.
[9]Follett R F. Soil Management Concepts and Carbon Sequestration in Cropland Soils [J]. Soil Tillage Research, 2001, 61(1-2): 77-92.
[10]金峰, 杨浩,赵其国.土壤有机碳储量及影响因素研究进展 [J].土壤, 2000,(1):11-17. [Jin Feng, Yang Hao, Zhao Qiguo. Advance in Evaluation the Effect of Soil Organic Carbon Sequestration and the Effect Factors [J]. Soil, 2000, (1):11-17.]
[11]West T O, Post W M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis [J]. Soil Science Society of America Journal, 2002, 66: 1930-1946.
[12]胡立峰,李洪文,高焕文. 保护性耕作对温室效应的影响 [J]. 农业工程学报, 2009, 25(5): 308-312. [Hu Lifeng, Li Hongwen, Gao Huanwen. Influence of Conservation Tillage on Greenhouse Effect [J]. Transactions of the CSAE, 2009, 25(5): 308-312.]
[13]Steinbach H S, Alvarez R. Changes in Soil Organic Carbon Contents and Nitrous Oxide Emissions after Introduction of NoTill in Pam Pean Agroecosystems [J]. Journal of Environmental Quality, 2006, 35(1): 3-13.
[14]Six J, Ogle S M, Breidt F J, et al. The Potential to Mitigate Global Warming with NoTillage Management is Only Realized When Practiced in the Long Term [J]. Global Change Biology, 2004, 10: 155-160.
[15]Smith P, Goulding K W, Smith K A, et al. Enhancing the Carbon Sink in European Agricultural Soils: Including Trace Gas Fluxes in Estimates of Carbon Mitigation Potential [J]. Nutrient Cycling in Agroecosystems, 2001, 60(1-3): 237-252.
[16]Choudhary M A, Akramkhanov A, Saggar S. Nitrous Oxide Emissions From a New Zealand Cropped Soil: Tillage Effects, Spatial and Seasonal Variability [J]. Agriculture, Ecosystems and Environment, 2002, 93(1): 33-43.
[17]Prieme A, Christensen S. Seasonal and Variation of Methane Oxidation in a Danish Spurce Forest [J]. Soil Biology Biochemistry, 1997, 29(8): 1165-1172.
[18]万运帆, 林而达.翻耕对冬闲农田CH4和CO2排放通量的影响初探 [J].中国农业气象,2004, 25(3): 8-10.[Wan Yunfan, Lin Erda. The Influence of Tillage on CH4 and CO2 Emission Flux in Winter Fallow Cropland [J]. Chinese Journal of Agrometeorology, 2004, 25(3): 8-10.]
[19]王爱玲.黄淮海平原小麦玉米两熟秸秆还田效应及技术研究 [D].北京:中国农业大学,2000.[Wang Ailing. Effects and Techniques of Straw Return to Soil in WheatMaize Rotation of Huanghuaihai Plain [D]. Beijing: China Agricultural University, 2000.]
[20]王改玲,郝明德,陈德立.秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响[J].植物营养与肥料学报,2006.12(6):840-844.[Wang Gailing,Hao Mingde,Chen Deli.Effect of Stubble Incorporation and Nitrogen Fertilization on Denitrification and Nitrous Oxide Emission in an Irrigated Maize Soil[J].Plant Nutrition and Fertilizer Science.2006,12(6):840-844.]
[21]Vleeshouwers L M,Verhagen A.Carbon Emission and Sequestration by Agricultural Land Use:A Model Study for Europe[J].Global Change Biology,2002.(8):519-530.
[22]Lal R,Bruce J P.The Potential of World Grop Land Soils to Sequester C and Mitigate the Greenhouse Effect[J].Enviornmental Science & Policy,1999.(2):177-185.
[23]王绍强, 刘纪远. 土壤碳蓄积量变化的影响因素研究现状 [J]. 地球科学进展, 2002, 17 (4): 528-534. [Wang Shaoqiang, Liu Jiyuan. Research Status Quo of Impact Factors of Soil Carbon Storage [J]. Advance In Earth Sciences, 2002, 17 (4): 528-534.]
[24]Richard D. Chronic Nitrogen Additions Reduce Total Soil Respiration and Microbial Respiration in Temperate Forest Soils at the Harvard Forest Bowden [J]. Forest Ecology and Management, 2004, 196: 43-56.
[25]李明峰, 董云社, 耿元波, 等. 草原土壤的碳氮分布与CO2排放通量的相关性分析 [J]. 环境科学, 2004, 25(2): 7-11. [Li Mingfeng, Dong Yunshe, Geng Yuanbo, et al. Analyses of the Correlation Between the Fluxes of CO2 and the Distribution of C & N in Grassland Soils [J]. Environmental Science, 2004, 25(2): 7-11.]
[26]张秀君. 温室气体及其排放的研究 [J]. 沈阳教育学院学报, 1999, 1(2): 103-108. [Zhang Xiujun. Studies on Greenhouse Gas and Its Emission [J]. Journal of Shenyang College of Education, 1999, 1(2):103-108.]
[27]齐玉春, 董云社, 章申. 华北平原典型农业区土壤甲烷通量研究 [J].农村生态环境, 2002, 18(3): 56-58. [Qi Yuchun, Dong Yunshe, Zhang Shen. Methane Fluxes of Typical Agricultural Soil in the North China Plain[J]. Rural EcoEnvironment, 2002, 18(3): 56-58.]
[28]胡荣桂. 氮肥对旱地土壤甲烷氧化能力的影响 [J]. 生态环境, 2004, 13(1): 74-77. [Hu Ronggui. Effects of Fertilization on the Potential of Methane Oxidation in Upland Soil [J]. Ecology and Environment, 2004, 13(1): 74-77.]
[29]Erisman J W, Sutton M A, Galloway J, et al. How a Century of Ammonia Synthesis Changed the World [J]. Nature Geoscience, 2008, 1: 636-639.
[30]Bhatia A, Sasmal S, Jain N, et al. Mitigating Nitrous Oxide Emission From Soil Under Conventional and NoTillage in Wheat Using Nitrification Inhibitors [J]. Agriculture, Ecosystems and Environment, 2010, 136: 247-253.
[31]Lal R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security [J]. Science, 2004a, 304: 1623-1627.
[32]Liebig M A, Morgan J A, Reeder J D, et al. Greenhouse Gas Contributions and Mitigation Potential of Agricultural Practices in Northwestern USA and Western Canada [J]. Soil Tillage Research, 2005, 83: 25-52.
[33]Monteny G J, Bannink A, Chadwick D. Greenhouse Gas Abatement Strategies for Animal husbandry [J]. Agriculture, Ecosystems and Environment, 2006, 112: 163-170.
[34]Fierer N, Schimel J P. Effects of DryingWetting Frequency on Soil Carbon and Nitrogen Transformations [J]. Soil Biology Biochemistry, 2002, 34: 777-787.
[35]Cynthia M K, Dennis E R, William R H. Cover Cropping Affects Soil N2O and CO2 Emissions Differently Depending on Type of Irrigation [J]. Agriculture, Ecosystems and Environment, 2010, 137: 251-260.
[36]Akiyama H, McTaggart I P, Ball B C, et al. N2O, NO, and NH3 Emissions from Soil After the Application of Organic Fertilizers, Urea, and Water [J]. Water Air Soil Pollution, 2004, 156: 113-129.
[37]Linn D M, Doran J W. Effect of Waterfilled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and NonTilled Soils [J]. Soil Science Society of America Journal, 1984, 48: 1267-1272.
[38]Bateman E J, Baggs E M. Contributions of Nitrification and Denitrification to Nitrous Oxide Emissions from Soils at Different Waterfilled Pore Space [J]. Biology Fertility of Soils, 2005, 41: 379-388.
[39]Jarecki M, Lal R. Crop Management for Soil Carbon Sequestration Critical Reviews in Plant Sciences [J]Plant Sciences, 2003, 22: 471-502.
[40]Freibauer A, Rounsevell M, Smith P, et al. Carbon Sequestration in the Agricultural Soils of Europe [J]. Geoderma, 2004, 122: 1-23.
[41]Reganold J P, Palmer A S, Lockhart J C, et al. Soil Quality and financial Performance of Biodynamic and Conventional Farms in New Zealand [J]. Science, 1993, 260: 344-349.
[42]Pulleman M, Jongmans A, Marinissen J, et al. Effects of Organic Versus Conventional Arable Farming on Soil Structure and Organic Matter Dynamics in a Marine Loam in the Netherlands [J]. Soil Use and Management, 2003, 19: 157-165.
[43]Sainju U M, Schomberg H H, Singh B P, et al. Cover Crop Effect on Soil Carbon Fractions under Conservation Tillage Cotton [J]. Soil Tillage Research, 2007, 96: 205-218.
[44]McCracken D V, Smith M S, Grove J H, et al. Nitrate Leaching as Influenced by Cover Cropping and Nitrogen Source [J]. Soil Science Society of America Journal, 1994, 58: 1476-1483.
[45]Paustian, K. et al. Agricultural Mitigation of Greenhouse Gases: Science and Policy Options[R]. Council on Agricultural Science and Technology Report, 2004. 120.
Advance in Evaluation the Effect of Carbon Sequestration Strategies on
Greenhouse Gases Mitigation in Agriculture
SHI Yuefeng1 WU Wenliang1 MENG Fanqiao1 WANG Dapeng1 ZHANG Zhihua2
(1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
2. College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China)
Abstract
Agricultural field is an important source for three primary greenhouse gases (GHGs), including CO2, CH4 and N2O. Unreasonable agricultural managements increase GHGs and decrease the effect of soil carbon sequestration. Agricultural activities generate the largest share, 58% of the world’s anthropogenic noncarbon dioxide (nonCO2) emission, and make up roughly 14% of all anthropogenic GHG emissions. And soil carbon pool is the most active carbon pools in ecosystems. In addition, soil carbon pool could be a source or sink of GHGs.
[关键词]低碳城市;指标体系;评价
[中图分类号]F205 [文献标识码]A [文章编号]1005-6432(2010)45-0121-03
1 建立低碳城市评价指标体系的意义
1.1 低碳城市评价指标体系建立的目的
在所有碳排放中,作为生产和生活活动高度密集的地区,城市的碳排放量占排放总量的86%(从终端需求角度计算)。可以看出,减少城市碳排放是减少整体碳排放的关键。城市碳排放根据其源头可以分为建筑、交通和生产三个部分。因此,为创建低碳城市也应主要从以上几个方面入手。以上三个类别中的碳排放比例因不同城市的发展程度、工业结构和社会文化不同而存在差异。
1.2 低碳城市评价指标体系建立的意义
低碳城市评价指标体系为环境友好型城市提供发展方向。适当的低碳城市评价指标体系是政府管理部门制定规划和发展方向的依据。规划部门可以通过所在城市自身优势与缺陷确定城市可以加以利用的优势和存在的需要重点解决的问题,争取达到取长补短的效果。
低碳城市评价指标体系将低碳城市的抽象概念转化为操作层次的指标,有利于公众对其加深了解和执行部门贯彻实施。指标体系对抽象的概念进行量化和具体化,避免了定性或定序区分的模糊性造成的评价的困难。公众可以通过具体化的指标体系深入理解低碳城市的内涵和它与自身行为模式的联系;规划的执行者也可以通过指标体系准确判断规划的执行效果。
低碳城市评价指标体系为低碳城市目标的实现程度提供评价依据。在低碳城市评价指标体系存在的情况下,对各城市低碳发展的实现程度的评价将变得有据可依。
2 指标体系的基本框架
低碳城市的含义包括以下三个层次:产生途径、碳排放减量与经济发展之间的关系的协调程度、政府部门采取措施的力度。从以上三个角度制定的低碳城市评价指标体系可以从成果、途径和措施实施力度三个方面反映一个城市在低碳方面的环境友好程度。在考虑碳排放量应当减少的同时,也不应忽略低碳作为总的发展方向应当与城市的经济发展相协调。低碳城市概念提出的目的是为了实现环境与经济的双赢发展,而不是为了遏制全球温室效应加剧而限制经济的发展。
2.1 有关减少碳排放指标
有关减少碳排放的指标包括建筑、交通和生产三个方面,主要反映的是在从源头上减少碳排放方面的低碳城市的实现程度。建筑碳排放指标包括住宅生活和公共建筑碳排放两大类。交通方面碳排放可通过城市车辆总量、城市节能汽车比例、城市公共交通覆盖程度、城市分布密集程度四个指标来反映。城市注册的正在使用的汽车总量能反映城市总体的交通碳排放量,能反映一个城市的碳排放对自然生态的压力;节能汽车比例可以反映交通节能化的实现程度,说明在固定汽车总量的条件下,一个城市的交通低碳程度;城市生产用能源消耗总量反映一个城市总体生产规模和其相应的对生态环境造成的压力大小;城市生产用非化石燃料能源比例反映一个城市生产过程中燃料投入方面的低碳实现程度;城市产业结构反映城市的成熟化程度,进而间接说明一个城市在生产方面实现低碳的难易程度和未来所需时间。
2.2 反映碳排放减量与经济发展之间关系的指标
这类指标有城市总体人均碳排放量、碳生产率和含碳能源消费系数三项。城市人均碳排放量的计算方法是碳排放总量/人口总量,反映不同消费模式导致的城市人均碳排放水平差异,是从消费角度考虑的指标。碳生产率是城市GDP与城市碳排放总量的比值,说明整个城市的能源生产效率,具体说明一个城市的低碳技术水平对于城市低碳化发展的影响程度。碳能源消费系数为整个城市的碳排放总量与能源消费总量的比值,主要用于衡量资源禀赋、能源结构和能源效率等。
2.3 反映政府部门采取措施力度的指标
这类指标包括政府组织机构符合低碳城市要求程度、低碳城市宣传教育覆盖程度、低碳城市研究工作科研资金占科研总投资比例、研究基金在规定期限内到位比例和城市绿化面积比例五项指标。以上五项均为衡量政府部门为实现低碳城市而采取措施力度的指标。
农业生态系统的温室气体产生是一个复杂的过程,气候、植被、土质及农田管理诸条件中任何一个因子的微小变化,都会改变CO2、N2O、CH4的产生和排放。相对于常规农作,有机农业禁止合成的化学品投入,一定程度上影响着温室气体的产生和排放。
1.1二氧化碳(CO2)排放
农业源CO2的排放主要有两个途径:化石燃料燃烧引起的直接排放和能源间接消耗的排放(如化肥和农药的生产和运输)[57],其中合成化学氮肥的能耗造成的CO2间接排放达0.4~0.6Gt[89],相当于全球农业直接排放的10%。有机农业的原则之一是减少不可再生资源的使用,相对于常规农作,有机农业不使用合成的农药和化肥。研究表明,有机生产比集约化常规生产能够明显减少能源的消耗[67,1011]。不同地区农产品在有机和常规农作间CO2的排放差异。由表1可知,冬小麦的有机种植比常规生产减少46%~57%的CO2排放量,而种植有机土豆则减少13%~33%的CO2排放量[1214]。其中,农药和化肥合成造成的CO2间接排放占据一定比例:例如,英国常规小麦生产中,化肥和农药占总能耗的比例分别为56%和11%[8];美国的常规小麦和玉米生产则是30%~40%和9%~11%[22];中国常规梨生产化肥占总能耗的29%~41%[20]。因此,从单位面积(每公顷)CO2排放量看,有机农业CO2总排放量低于常规农作,主要是与有机农业的标准有关,例如,有机农业禁止高能耗的化学氮肥和农药的投入以及较少喂养高能耗的动物饲料。然而,如果从另一角度——单位产量来比较有机和常规生产CO2排放的差异,不同农作排放的研究结果则不尽相同。例如:种植1hm2有机土豆比生产常规土豆CO2排放量低,但生产1t有机土豆CO2排放量则比常规土豆高[1314];同样有机牧场的养殖研究表明,生产1kg有机牛奶的平均CO2排放量比常规牛奶高[16];与常规梨生产相比,生产1t有机梨的CO2排放量在不同地区结果不同,有高有低[20]。不同农作单位产量CO2排放量变化范围从+81%到50%,主要影响因素是产量和机械耕作的强度[1221]。从耕作角度研究有机农业CO2的排放,有研究人员提出一些地区的有机生产中,因禁止使用除草剂而大量使用机械除草,导致燃油消耗产生的CO2排放量增多。但大多数研究表明机械耕作的能耗通常少于合成化肥和农药的能耗[5,2324]。总体来说,相对于常规农作,有机农业通过减少投入品的使用,作物轮作,尤其是和大豆的轮作,提高了肥料使用效率,减少了虫害管理的农业措施,从而直接(使用成本)和间接(化学生产和运输)地减少了使用化肥投入品的能源消耗[5,11,2526]。
1.2氧化亚氮(N2O)排放
农业源N2O的排放占全球人类活动排放的60%[2](N2O的温室气体当量值为CO2的298倍[2]),主要来自于化肥和有机氮肥的使用及豆科作物种植;排放量取决于肥料的种类以及肥料的处理和施用方式。有机农业禁止化肥的施用不仅能够减少生产化肥的能耗,而且减少化肥使用过程中NOx排放。文献报道在1960~2000年期间,随着化肥施用量的增多,全球作物氮的利用效率从80%降到30%,从而增加了NOx排放的风险[27]。同样,在中国,化肥投入和有机物质投入对农田直接NOx排放的贡献份额分别为77.64%和15.57%[28]。按照目前每年生产化学氮肥的数量计算,排放N2O的总量是农业上人为温室气体排放的10%[9]。因此,有机农业在一定程度上能够减少N2O的排放风险。基于单位面积计算N2O排放,有机农业比常规耕作低[2930],而Syvsalo等[31]指出有机牧场产生的N2O排放比常规耕作低,但没有明显差异。如果基于单位产量计算N2O的排放,两种农作系统则相似[67,32],或有机农作略高,例如Lundstrm[16]研究了奶牛场的NOx排放量,发现生产单位产量(1kg)有机牛奶的NOx排放量略高于常规牛奶生产。与此同时,有研究表明生产管理措施能够减少有机农业中N2O的排放率,如耕作方式、粪肥的使用、种植豆科作物(N来源)及牧场和草地管理等。Unwin等[33]认为,通过改进排水,减少耕作和机械除草(而不是除草剂的使用),有机耕作可以减少N2O的排放。也有研究表明一些因素会提高有机农业上N2O的排放[34],比如豆科作物的高比例种植,堆肥过程N2O的排放,高强度的耕作导致土壤氮的矿化和N2O的排放。
1.3甲烷(CH4)排放
农业源CH4的排放占全球人类活动排放的50%[2](CH4的温室气体当量值是CO2的25倍)[2],主要来自于牲畜养殖、水稻种植以及废弃物分解(包括动植物废弃物和垃圾),其中将近80%的CH4排放来自牲畜肠道消化代谢,而20%来自排泄物,并且,液态排泄物释放CH4的可能性比固体排泄物大。动物粪肥的储藏和处理以及饲料的种类均会影响农业CH4的排放。研究表明:CH4排放的效果主要和堆肥的产生和使用有关系。如果有机系统的堆肥进行发酵,经常通风能够减少厌氧产生的CH4。此外,有机养殖通常在牧场和稻草房内进行;而常规养殖通常使用粪池进行粪肥处理,在这种厌氧环境下极易产生大量的CH4[24]。然而,相对于常规养殖的粮食喂养,有机养殖的牲畜通常摄取低质量的粗饲料,增加了CH4排放的可能,研究发现有机养殖粗粮的高投入导致CH4的排放量增加8%~10%[7,16,35]。如果研究单位面积CH4的排放,重要的影响因素主要包括牲畜放养的密度、每头牛喂养的周期、粪肥系统、反刍牲畜的比例等。Cobb等[29]、Unwin等[33]、Lampkin等[36]研究发现有机农场单位面积的CH4排放比常规低。原因主要是有机养殖的牲畜密度通常比常规低,而喂养周期比较长,其中非产奶期的比例比常规喂养低,从而产生较少的CH4排放;但有机农场反刍牲畜的比例为80%而常规则为60%,这一因素造成的CH4排放量增加与有机农场的低密度养殖减少CH4排放可以相互抵消。而单位产量的CH4排放量,尤其是奶牛场,有机和常规没有明显的区别[67,37];而Unwin等[33]和Piorr等[34]研究发现有机农场的产奶量比常规低20%,从而有机奶场单位牛奶的CH4排放比较高。土壤能够氧化CH4,从而减少CH4排放而成为CH4库。有研究发现有机管理的土壤CH4自身调节的效率比常规管理的土壤高,施有机肥的土壤CH4氧化能力是施化肥土壤的两倍[3839]。然而,由于缺乏CH4排放研究,有机农业环境资源利用很少评估CH4的净平衡及其他定量数据。专家根据文献推导出以下结论:有机农业中单位面积CH4的排放可能较少,而单位产量的CH4排放则比常规农作高(仅限于牛奶生产研究)。
2有机农作土壤固碳潜能分析
另一个减少温室气体排放的措施是提高土壤的固碳能力。实例研究表明有机农业不仅能够减排,而且通过施入有机投入品(生物质和粪肥),采用保护地耕作(覆盖耕作)、大豆轮作等农业措施,提高土壤有机碳的含量[4,25,40]。不同地区的专家针对有机管理的农田土壤固碳潜能开展了研究,发现有机管理的土壤每年每公顷固碳量为0.2~0.4t(C),每年固定0.9~2.4Gt的CO2,相当于全年农业排放温室气体总量的15%~47%[4145];同样,有机管理土壤的每年每公顷固碳量为300~600kg[10]。一系列有机和常规农田土壤固碳比较研究也显示,有机管理的土壤中有机质含量比常规管理土壤的有机质含量高[45],有机农田的土壤固碳高于常规农田。例如,Pimentel等[11]开展了22年的试验发现,有机管理的土壤有机碳含量提高15%~28%,而常规耕作则仅提高9%;美国中部35组有机和常规耕作的比较研究也发现,有机管理措施下的土壤有机碳含量比常规耕作高很多[46]。瑞士专家经过长期(21年)试验表明,有机管理系统土壤碳含量稳定,而常规管理系统中碳含量减少15%;Clark等[47]8年长期试验表明,有机低投入系统的土壤有机碳含量比常规农作提高10%。同样,在荷兰,70年有机管理的农场土壤有机碳含量明显高于常规管理[4849]。
分析有机管理土壤有机碳含量比常规高的原因在于,有机农田系统投入较多的动植物残体增加土壤的碳含量,或者减缓土壤有机碳的分解率,即碳投入率超过了分解率。研究表明相对于常规和免耕操作而言,有机农户通常施入较多的有机碳或者含有机碳的投入品,通过投入合适碳氮比的多种有机物质创造一个相对稳定的有机物质库[50];同样,USDA在马里兰进行了长期的有机生产和免耕常规生产比较研究,发现长期有机耕作的土壤明显优于常规免耕,原因在于使用粪肥和覆盖作物能够弥补耕作引起的碳损失[51]。Drinkwater等[52]在宾夕法尼亚州开展有机和常规玉米大豆种植系统的比较试验,发现与豆科植物的长期轮作,不仅可减少土壤有机质投入,降低土壤碳氮比,同时可提高土壤有机碳含量,改善土壤的物理性质。同样,有机农作比常规农作确实能增加15%~28%的有机碳。因此,动物粪肥、有机物质的多样性以及碳氮比、腐烂率等因素都可能对这个过程产生很重要的影响[45]。Rodale研究所的科学家们研究认为,如果在所有可耕种的土地上开展有机农作,则能够减少40%的CO2排放。
尽管目前的研究证实有机管理在土壤固碳方面存在很高潜力。然而,测量一定时期内碳存储具有一定的复杂性和不确定性,例如地区多样性,测量不确定性,过程不确定性,实际的突发性,以及减少渗漏和储存碳的适当定价等[53];同时,从长期看,通过土壤固碳减少大气温室气体是有限的,不可能无限制地提高土壤有机质的水平,到一定程度会达到一个平衡,视土壤和气候条件以及管理措施而定[54]。例如,Foereid等[42]对有机管理的土壤固碳进行了模拟,发现第1个50年的土壤有机碳含量增长很快(每年碳增长率为10~40g•m2),之后趋于平稳,100年后几乎达到饱和状态。尽管上述研究表明土壤固碳的潜能不是无限制的,但一定程度趋于平稳并达到饱和。也有研究表明,有机碳长久稳定的状态取决于土壤管理以及避免碳减少的措施,例如李玉娥等[55]研究发现退耕还草后土壤CO2排放通量明显减少;通过改进的管理措施,全球农业土壤的固碳能力能够达到21~51Gt碳,相当于2~3年大气的温室气体排放(参照2004年的排放量)[40]。因此,从长期看,相对于常规农作,有机管理方式在减少能源消耗和提高土壤固碳能力方面有一定的优势和潜力。
全球性船舶碳排放核查、管理将如期而至,未来越来越严密的碳排放管理体系以及市场减排措施,将在成本和技术上给航运和造船企业带来严峻挑战。
航运业是一个短期内靠商业需求驱动且竞争激烈的行业。但是,只有那些将运营效率与显著的企业社会责任相结合的企业,才能在这个愈加挑剔的市场中获得实实在在的长远商业利益。
航运业面临成本压力
业内人士指出,中国在船舶能效设计指数(EEDI)方面的达标情况并不乐观,有近50%的船舶需要在改造措施的辅助下,才能满足国际海事组织(IMO)提出的EEDI基准线。在当前碳交易尚未成型的情况下,达到EEDI是航运企业的主要致力方向。
尽管目前EEDI对航运企业运营成本的影响尚不具体,但按照欧盟限制燃料硫排放量的方案,此举或将使全球航运业的运输成本增加26亿~110亿欧元,幅度达20%~45%。目前,包括国际航运巨头马士基航运在内的许多航运企业,都是通过船舶大型化以及低速航行来减少边际的碳排放量,满足相应的国家碳排放标准。
DNV GL大中华区海事部战略发展总监吴巨圣向记者解释,在船舶大型化状态下,船舶所载货物增多,但消耗的燃料并没有增加,因此单位货物所消耗的燃料就减少,而二氧化碳排放量正比于燃料使用量,船舶运营的碳排放也就相应减少。此外,从广义来讲,燃料消耗的增加与速度的立方和功率输出成正比关系,降低航速也能明显降低碳排放,船舶在经济航速下,航运企业也可实现低碳管理。一般而言,航速降低4%,碳排放能降低13%。
此外,对于航运企业而言,降低船舶碳排放的营运措施还包括减小船体的粗糙度、加强日常管理维护等,据粗略估算,每年因船体粗糙度增加的额外燃油消耗为30%左右。加强对船舶的管理,使推进装置等船舶设备处于最佳工作状态,也可有效降低碳排放。据悉,2008―2009年,中海集运对原使用传统防污漆的10艘大型集装箱船进行改造,在使用新型防污漆后,船舶的平均节油率达到5%,每年可节约燃油1.15万吨。
而船舶碳排放的监测主要由航运企业及认证方来进行,不少先进的大型航运企业已在这方面迈出了步伐。
马士基航运是该领域的先行者,早在2013年年初,马士基航运便宣布于2012年提前实现此前设定的碳排放目标,即基于2007年的碳排放量数据,在2020年前将碳排放量减少25%。马士基航运进一步提出,将致力于在2020年前减少40%的碳排放量。马士基航运指出,该目标的实现,很大程度上得益于管理运作效率、航线网络、航线优化、减速航行与技术创新的完美结合。通过关注能源效率,马士基航运大大降低了运营成本,2012年节约16亿美元的燃油成本,使整体业绩成功扭亏为盈。
而未来欧盟二氧化碳排放监测、报告、核查(MRV)机制的运行也将对航运企业提出挑战。航运业务是国际运输行为,虽然欧盟MRV机制对欧盟成员国以外的船旗国主管机关并不具有强制性,但船舶若想在规则生效后挂靠欧盟港口,必须获得由指定第三方审核后的符合证明,这就迫使欧盟外的国家某种程度也需遵守这一机制。对于航运企业来说,为了适应MRV机制的减排要求,势必要加大对减排技术的投入,提高船舶能效,其营运成本在短期内也将大幅增加。
有消息称,赫伯罗特正准备成为全球首家能满足欧盟MRV机制要求并通过认证的航运企业。赫伯罗特与DNV GL合作开展一项验证项目,以证实其整个船队针对即将生效的MRV机制已做好准备,验证范围包括排放数据监控和报告的全过程,以及监控―报告软件的校验等。业内人士表示,这种验证能帮助航运企业确保对MRV机制的认证挑战做好准备,并从中发现可能存在的差距,采取相应的补救措施。
此外,未来参与碳交易或碳税的航运企业,首先要实现企业和船舶级别的碳排放满足MRV机制,因而构建一个规范的数据管理体系尤为重要。然而,除中国远洋和中海集运外的中国航运企业,如今甚至还摸不清自己碳排放的“家底”,在该项买卖中将处于不利境地。
造船业直面技术挑战
近年来, IMO制定实施了一系列贯彻节能减排、安全环保、质量要求的国际造船新规范、新标准,如船舶共同结构规范(CSR)、EEDI、涂层新标准(PSPC)、目标型船舶建造标准(GBS)和压载水管理公约(BMW)等。这些国际造船新规范、新标准对中国船舶(股票)工业提出了严峻的挑战。
EEDI作为IMO提出的衡量船舶能效水平的重要指标,简单来讲,是根据二氧化碳排放量和货运能力的比值来表示船舶的能效,其中航速、船舶装载量和为达到该航速需要的安装功率是主要参数,采用新节能技术是优化EEDI的一种措施。
减少碳排放的技术措施主要包括改进船舶设计、提高发动机效率、供应岸电、利用替代燃料等。船检专业人士表示,尽管中国作为发展中国家援引相关免除条款,可以将EEDI的适用期限推迟,但中国并未推迟执行。目前来看,中国造船企业在改进船舶设计满足EEDI要求方面应对较为出色,中国建造的新船均能达到EEDI基准线,并陆续有新船交付。
在上述专业人士看来,EEDI更多是船型设计和主机选型的问题,对造船企业影响并不是主要的,因为大多数造船企业没有自主设计能力。对5年之后EEDI碳排放量再降10%、10年后降30%的要求,相关船舶设计院、主机生产厂家需采取更多措施努力达标,如优化船型、开发新能源船型、开发少压载水船型、采用螺旋桨节能技术和采用节能涂层等。
对船舶减排技术要求提升,这将增加造船成本,可能会进一步加剧中国造船行业的低迷。同时中国造船业还面临与日韩的技术竞争,在EEDI下,不同类型的船舶会有不同的设计标准。此前,有报道指出,某国际航运企业抱怨某中国造船企业建造的散货船并未如预期节省燃油,致使其更新新型节能环保船的设想落空。而在中国造船企业接获订单较多的散货船领域,也有船东表示,日本造船企业建造的环保型散货船表现更为突出,每天最多能节省5吨燃料。
背景
2011年7月15日,国际海事组织CIMO海洋环境保护委员会第62次会议通过了“新船设计能效指数”和“船舶能效管理计划”EEDI两项标准。这是IMO历史上首次通过适用于所有国家船舶的,与减少温室气体排放相关的强制性能效标准。
2012年2月,就在26个国家代表齐聚莫斯科制定反对欧盟航空碳税的一揽子报复性方案,欧盟刚刚承诺将“有条件暂停”航空碳税法规部分内容的时候,欧盟财长会议却提出将在2012年6月份增加“航海碳税”,制定出全球航空和航海运输行业碳排放税的征收价格单。“航海碳税”的提出,令人感觉欧盟的反应似乎正在情绪化。
2012年3月2日,国际海事组织环境保护委员会第63次会议落幕。作为联合国主管海运事务的专门机构,国际海事组织这次会议的主要议题是讨论如何引入市场机制治理全球航海碳排放。但各方代表争执不下,依然没能达成统一意见。国际海事组织的计划是,争取在2015年之前,确立市场机制措施以控制航海业的碳排放。
2012年10月,在航空碳税遭遇阻力而“气急败坏”的欧盟称,将在2013年引入一项针对航运业的措施,用以监控、核查和报告航运业的温室气体排放。上述措施是建立未来可能的市场机制的第一步,这些市场机制包括将航运业纳入欧盟碳排放交易体系。声明还指出,如果在2013年1月1日之前,在航运业碳减排在IMO层面没有达成共识,那么欧盟将考虑立法,将航运业纳入欧洲碳排放交易体系,从而削减航运业碳排放。
“航海碳税”迈出第一步
欧盟委员会于2014年11月27日通过了一项旨在减少国际航运业碳排放的法案,这是首个针对航运业碳排放的监管法案。该法案要求船舶监测其碳排放指标,监控影响气候变化的污染物指标。虽然该法案内容并未明确要求加收“航海碳税”,但欧盟官员称该法案是走向“航海碳税”的第一步。
根据国际海事组织(IMO)数据,国际航运业每年的二氧化碳排放量约占全球总排放的3%。据估计,若没有进一步的监管出台,这一数字将在2050年蹿升至18%。
关键词:低碳经济;土地利用方式;长株潭地区
中图分类号:F290 文献标志码:A 文章编号:1673-291X(2014)22-0173-04
一、研究背景
(一)低碳经济与土地利用
2003年,英国政府的能源白皮书《我们能源的未来:创建低碳经济》之中正式提出了低碳经济这一概念[1]。目前比较流行的定义是英国环境专家鲁宾斯德的阐述:低碳经济是一种正在兴起的经济模式,其核心是在市场机制基础上,通过制度框架和政策措施的制定和创新,推动提高能效技术、节约能源技术、可再生能源技术和温室气体减排技术的开发和运用,促进整个社会经济朝向高能效、低能耗和低碳排放的模式转型[2]。
土地利用变化是全球大气CO2含量增加的重要原因,其影响仅次于化石燃料燃烧[3]。为了顺应低碳发展的要求,土地利用必须要向低碳经济型土地利用方式转变。自从低碳经济传入中国,中国学者和政府在低碳土地利用上也进行了大量研究,一方面诸多学者从宏观、中观和微观角度对低碳土地利用进行理论上的探索,另一方面政府对低碳土地利用也进行了一些实践,这两方面都取得了一定的成果[4~8]。但是目前国内针对城市群这一区域的低碳土地研究非常少,几乎是空白。
(二)研究区概况
长株潭地区地处湖南省东北部,下辖13个区、7个县,代管4个县级市,总面积28 088平方公里,总人口1 402万(2012年)。长株潭三市两两相距45km左右,呈“品”字型排布,是中国中南地区特有的城市群资源。
二、长株潭各县市区碳净排放现状
(四)净碳排放现状
根据公式1和公式2,首先计算出2012年的湖南省碳排放量为7 070.11万吨,标准碳排放系数为0.3845万吨碳/万吨标准煤,然后将该系数与各县市区的GDP和单位GDP能耗相乘,得到长株潭各县市区2012年的碳排放量(见表1)。
根据长株潭各县市区2012年林地、草地、耕地面积数据以及公式3,得到长株潭各县市区2012年碳吸收量。将长株潭各县市区2012年碳排放量与碳吸收量相减,就可以得到长株潭各县市区2012年碳净排放量(如表1所示)。
根据表1可知,长株潭地区各县市区2012年碳净排放量排在前五位的为天心区、雨花区、长沙县、岳塘区和雨湖区;排在最后五位的为天元区、韶山市、株洲县、炎陵县和茶陵县,其中炎陵县和茶陵县的碳净排放量均为负值,表明炎陵县和茶陵县在2012年间碳吸收量大于碳排放,其碳排放均被吸收并有富余。
三、长株潭城市群碳综合分区
通过对长株潭地区各县市区碳排放情况的分析,结合长株潭生态绿心规划区区域分划情况,对长株潭地区进行碳综合功能分区(见表2)。
四、低碳土地利用方式探析
长株潭地区作为城市化快速发展的中部城市,正处于经济建设的加速阶段,要发展低碳经济,必须以经济发展为前提,而不是一味地为了追求低碳,而抑制了经济的发展,因此,本文从减少“碳源”和增加“碳汇”两个方面入手,提出了生态循环型低碳土地利用方式、集约节能型低碳土地利用方式、绿心保育型固碳土地利用方式和森林碳汇型固碳土地利用方式,从而达到构建资源节约型、环境友好型社会的目的。
(一)生态循环型低碳土地利用方式
1.着眼点
长株潭地区是典型的农户制农业,农用地经营方式仍较为粗放,土地利用程度不高,农业劳动生产率与现代农业先进地区差距明显,滥用化学肥料及农药的行为普遍存在。
2.现状评价
农业生态系统的温室气体排放大约占人类活动温室气体排放的7%~20%,但另一方面,农业生态系统又是减少陆地生态系统碳排放的最大潜在因素。长株潭地区农用地较为粗放的经营方式和滥用化学肥料及农药的行为,一方面导致土壤板结、耕作质量变差,加速了土壤碳库的碳排放;另一方面造成对地表水、地下水的污染,破坏大自然生态链,致使地上植被退化,降低了植被固碳能力。
3.具体措施
充分利用得天独厚的水土光热资源,在继续保持和发挥长株潭地区在水稻、油料作物特有优势的基础上,通过提高科技的贡献率和比较效益,逐步优化农业内部用地结构和作物布局,种植适宜品种,发展特色高效低碳生态农业,提高土地的生产率和农业集约化水平,最终减少农业生态系统的碳排放。在农业集约化运作方面,可以考虑在保护生态环境前提下,努力实现农业生产方式由农户制转变为农场制。同时加速农业科技转化和推广,推动科技创新型农业发展。
(二)集约节能型低碳土地利用方式
1.着眼点
长株潭地区近几年建设用地总量呈增加态势,其中以商住用地、工业园区和交通用地增速尤为显著;城镇建设中多采取了外延式的扩展方式,其他类型的土地不断被转变成建设用地,用地的不经济造成该地区均建设用地水平偏高;建设用地增长呈现空间非均衡性。
2.现状评价
化石燃料燃烧是产生CO2排放的最大人为排放源,而能源消耗主要产生在土地利用类型中的建设用地上,因此建设用地被认为是土地利用中最主要的碳源。而盲目扩张、粗放占地的城乡建设模式是导致大量土地利用碳排放的重要原因。
3.具体措施
在工业园区用地上,严格土地监管,建立完善土地节约利用硬约束机制,提高项目准入门槛,明确新建项目单位土地的投资强度、建筑密度、容积率等指标,逐步减少直接出让生地。在交通用地上,应树立土地利用立体观,鼓励和发展多模式交通体系和绿色交通,大力发展公共交通、轨道交通和非机动车交通系统,推动新能源和新技术的研发和应用,降低交通系统燃油消耗和尾气排放,从而有效控制该类用地的碳排放。在城市建设中,对基础设施进行低碳化建设,重视对地面的非硬化铺设,减少硬化材料的使用,保护土地生态系统,以保持地面固碳通气透水的自然功能;减少地面硬化面积,开发新型建筑材料,保持土地碳汇功能、降低土地利用碳排放量。
(三)绿心保育型固碳土地利用方式
1.着眼点
长株潭地区资源丰富、景观生态具多样性,但作为湖南省经济发展的增长极,长株潭地区生态环境相对脆弱,水土流失、土地退化、植被减少以及湿地减少等环境问题严峻。
2.现状评价
生态环境的恶化,往往伴随着的是湿地、植被量的减少及土壤的荒化,这不仅会影响到长株潭地区社会经济的可持续发展,而且使碳库(植被、土壤)遭到破坏,导致大量的碳释放,使生态环境陷入恶性循环。
3.具体措施
在现有长株潭城市群生态绿心规划区的基础上,各县市区都要规划自己的生态绿心区域。在生态绿心区域,实施土地用途管制,遏制地类的不合理转化。对于矿产资源开发地区,要坚持资源开发与环境保护相协调,注重开发区域的水土保持,防止其对土地资源造成进一步的破坏,加强对矿山资源开发中土地复垦的监管,建立健全矿山生态环境恢复保证金制度,强化矿区生态环境保护监督。
(四)森林碳汇型固碳土地利用方式
1.着眼点
长株潭地区虽然森林覆盖率并不低,但生态脆弱、人居环境改善缓慢的矛盾依然存在。森林以中以幼林为主,郁闭度不高,抗灾能力较差。森林林种较为单一,多样性较差,森林病虫害发生频繁。
2.现状评价
与工业减排相比,森林固碳投资少、代价低、综合效益大、更具经济可行性和现实操作性。而林地的破坏,将导致生物多样性丧失,影响到碳吸收器的运行,使生态碳失衡。同时,高生物量的森林转化为低生物量的草地、农田或建设用地后,大量的CO2将被释放到大气中。
3.具体措施
加大生态林业建设力度,积极发展森林碳汇产业,积极培育碳汇林。通过植树造林减缓温室效应、降低CO2排放,加强城市绿化面积的建设,利用植被吸收城市的CO2。将林业产业建设与村庄绿化、四旁植树、农家庭院绿化结合起来,实现村庄园林化、农家庭院绿化效益化、公路林荫化、河道风景化。另一方面完善区域森林补偿制度,鼓励和支持企业捐资造林增汇,志愿减排。要建立“森林碳汇”交易平台,通过建立长株潭地区各县市区的“森林碳汇”交易市场,从而推动以森林生态价值补偿为基础的“碳汇”项目的大力发展。
五、低碳土地利用方式选择
长株潭地区的三大碳综合功能区由于碳排放情况和经济发展情况不同,应当根据各功能区的定位选择相适宜的土地利用方式(见表3)。其中,主要碳源区由于碳排放量相对较大,宜从减少碳排放入手,以生态循环型低碳土地利用方式和集约节能型低碳土地利用方式为主导;重要碳汇区由于碳净排放量较低,碳吸收量较大,宜从增加碳汇入手,选择绿心保育型固碳土地利用方式和森林碳汇型固碳土地利用方式;而碳综合区则从两方面入手,采取“四位一体、因地制宜”的土地利用方式,根据实际情况,将四种土地利用方式相结合,发挥各自的长处。
一、研究背景
(一)低碳经济与土地利用
2003年,英国政府的能源白皮书《我们能源的未来:创建低碳经济》之中正式提出了低碳经济这一概念[1]。目前比较流行的定义是英国环境专家鲁宾斯德的阐述:低碳经济是一种正在兴起的经济模式,其核心是在市场机制基础上,通过制度框架和政策措施的制定和创新,推动提高能效技术、节约能源技术、可再生能源技术和温室气体减排技术的开发和运用,促进整个社会经济朝向高能效、低能耗和低碳排放的模式转型[2]。
土地利用变化是全球大气CO2含量增加的重要原因,其影响仅次于化石燃料燃烧[3]。为了顺应低碳发展的要求,土地利用必须要向低碳经济型土地利用方式转变。自从低碳经济传入中国,中国学者和政府在低碳土地利用上也进行了大量研究,一方面诸多学者从宏观、中观和微观角度对低碳土地利用进行理论上的探索,另一方面政府对低碳土地利用也进行了一些实践,这两方面都取得了一定的成果[4~8]。但是目前国内针对城市群这一区域的低碳土地研究非常少,几乎是空白。
(二)研究区概况
长株潭地区地处湖南省东北部,下辖13个区、7个县,代管4个县级市,总面积28 088平方公里,总人口1 402万(2012年)。长株潭三市两两相距45km左右,呈“品”字型排布,是中国中南地区特有的城市群资源。
二、长株潭各县市区碳净排放现状
(三)数据来源
所用数据主要是依据2013年湖南省统计年鉴、长沙市统计年鉴、株洲市统计年鉴、湘潭市统计年鉴,《长株潭城市群生态绿心地区总体规划2010―2030)》以及由长株潭各市统计局、国土资源局和林业局提供的数据和资料等。
(四)净碳排放现状
根据公式1和公式2,首先计算出2012年的湖南省碳排放量为7 070.11万吨,标准碳排放系数为0.3845万吨碳/万吨标准煤,然后将该系数与各县市区的GDP和单位GDP能耗相乘,得到长株潭各县市区2012年的碳排放量(见表1)。
根据长株潭各县市区2012年林地、草地、耕地面积数据以及公式3,得到长株潭各县市区2012年碳吸收量。将长株潭各县市区2012年碳排放量与碳吸收量相减,就可以得到长株潭各县市区2012年碳净排放量(如表1所示)。
根据表1可知,长株潭地区各县市区2012年碳净排放量排在前五位的为天心区、雨花区、长沙县、岳塘区和雨湖区;排在最后五位的为天元区、韶山市、株洲县、炎陵县和茶陵县,其中炎陵县和茶陵县的碳净排放量均为负值,表明炎陵县和茶陵县在2012年间碳吸收量大于碳排放,其碳排放均被吸收并有富余。
三、长株潭城市群碳综合分区
通过对长株潭地区各县市区碳排放情况的分析,结合长株潭生态绿心规划区区域分划情况,对长株潭地区进行碳综合功能分区(见表2)。
四、低碳土地利用方式探析
长株潭地区作为城市化快速发展的中部城市,正处于经济建设的加速阶段,要发展低碳经济,必须以经济发展为前提,而不是一味地为了追求低碳,而抑制了经济的发展,因此,本文从减少“碳源”和增加“碳汇”两个方面入手,提出了生态循环型低碳土地利用方式、集约节能型低碳土地利用方式、绿心保育型固碳土地利用方式和森林碳汇型固碳土地利用方式,从而达到构建资源节约型、环境友好型社会的目的。
(一)生态循环型低碳土地利用方式
1.着眼点
长株潭地区是典型的农户制农业,农用地经营方式仍较为粗放,土地利用程度不高,农业劳动生产率与现代农业先进地区差距明显,滥用化学肥料及农药的行为普遍存在。
2.现状评价
农业生态系统的温室气体排放大约占人类活动温室气体排放的7%~20%,但另一方面,农业生态系统又是减少陆地生态系统碳排放的最大潜在因素。长株潭地区农用地较为粗放的经营方式和滥用化学肥料及农药的行为,一方面导致土壤板结、耕作质量变差,加速了土壤碳库的碳排放;另一方面造成对地表水、地下水的污染,破坏大自然生态链,致使地上植被退化,降低了植被固碳能力。
3.具体措施
充分利用得天独厚的水土光热资源,在继续保持和发挥长株潭地区在水稻、油料作物特有优势的基础上,通过提高科技的贡献率和比较效益,逐步优化农业内部用地结构和作物布局,种植适宜品种,发展特色高效低碳生态农业,提高土地的生产率和农业集约化水平,最终减少农业生态系统的碳排放。在农业集约化运作方面,可以考虑在保护生态环境前提下,努力实现农业生产方式由农户制转变为农场制。同时加速农业科技转化和推广,推动科技创新型农业发展。
(二)集约节能型低碳土地利用方式
1.着眼点
长株潭地区近几年建设用地总量呈增加态势,其中以商住用地、工业园区和交通用地增速尤为显著;城镇建设中多采取了外延式的扩展方式,其他类型的土地不断被转变成建设用地,用地的不经济造成该地区均建设用地水平偏高;建设用地增长呈现空间非均衡性。
2.现状评价
化石燃料燃烧是产生CO2排放的最大人为排放源,而能源消耗主要产生在土地利用类型中的建设用地上,因此建设用地被认为是土地利用中最主要的碳源。而盲目扩张、粗放占地的城乡建设模式是导致大量土地利用碳排放的重要原因。
3.具体措施
在工业园区用地上,严格土地监管,建立完善土地节约利用硬约束机制,提高项目准入门槛,明确新建项目单位土地的投资强度、建筑密度、容积率等指标,逐步减少直接出让生地。在交通用地上,应树立土地利用立体观,鼓励和发展多模式交通体系和绿色交通,大力发展公共交通、轨道交通和非机动车交通系统,推动新能源和新技术的研发和应用,降低交通系统燃油消耗和尾气排放,从而有效控制该类用地的碳排放。在城市建设中,对基础设施进行低碳化建设,重视对地面的非硬化铺设,减少硬化材料的使用,保护土地生态系统,以保持地面固碳通气透水的自然功能;减少地面硬化面积,开发新型建筑材料,保持土地碳汇功能、降低土地利用碳排放量。
(三)绿心保育型固碳土地利用方式
1.着眼点
长株潭地区资源丰富、景观生态具多样性,但作为湖南省经济发展的增长极,长株潭地区生态环境相对脆弱,水土流失、土地退化、植被减少以及湿地减少等环境问题严峻。
2.现状评价
生态环境的恶化,往往伴随着的是湿地、植被量的减少及土壤的荒化,这不仅会影响到长株潭地区社会经济的可持续发展,而且使碳库(植被、土壤)遭到破坏,导致大量的碳释放,使生态环境陷入恶性循环。
3.具体措施
在现有长株潭城市群生态绿心规划区的基础上,各县市区都要规划自己的生态绿心区域。在生态绿心区域,实施土地用途管制,遏制地类的不合理转化。对于矿产资源开发地区,要坚持资源开发与环境保护相协调,注重开发区域的水土保持,防止其对土地资源造成进一步的破坏,加强对矿山资源开发中土地复垦的监管,建立健全矿山生态环境恢复保证金制度,强化矿区生态环境保护监督。
(四)森林碳汇型固碳土地利用方式
1.着眼点
长株潭地区虽然森林覆盖率并不低,但生态脆弱、人居环境改善缓慢的矛盾依然存在。森林以中以幼林为主,郁闭度不高,抗灾能力较差。森林林种较为单一,多样性较差,森林病虫害发生频繁。
2.现状评价
与工业减排相比,森林固碳投资少、代价低、综合效益大、更具经济可行性和现实操作性。而林地的破坏,将导致生物多样性丧失,影响到碳吸收器的运行,使生态碳失衡。同时,高生物量的森林转化为低生物量的草地、农田或建设用地后,大量的CO2将被释放到大气中。
3.具体措施
加大生态林业建设力度,积极发展森林碳汇产业,积极培育碳汇林。通过植树造林减缓温室效应、降低CO2排放,加强城市绿化面积的建设,利用植被吸收城市的CO2。将林业产业建设与村庄绿化、四旁植树、农家庭院绿化结合起来,实现村庄园林化、农家庭院绿化效益化、公路林荫化、河道风景化。另一方面完善区域森林补偿制度,鼓励和支持企业捐资造林增汇,志愿减排。要建立“森林碳汇”交易平台,通过建立长株潭地区各县市区的“森林碳汇”交易市场,从而推动以森林生态价值补偿为基础的“碳汇”项目的大力发展。
根据目前中国经济发展的阶段来看,通过林业措施发展低碳经济,不仅成本低、综合效益好,真实的吸收和减少了二氧化碳,而且不会像有些所谓低碳的工业项目,在设备生产过程中造成新的二氧化碳排放。因此林业是发展低碳经济不可缺或的重要领域。
一、森林是最大的储碳库和吸碳器
作为陆地生态系统的主体,森林通过光合作用吸收二氧化碳,放出氧气,并把大气中的二氧化碳固定在植被和土壤中。所以,森林具有碳汇功能。森林以其巨大的生物量储存了大量的碳。作为陆地生态系统中最大的碳库,森林被公认为最有效的生物固碳方式,同时又是最经济的吸碳器。与工业减排相比,森林固碳投资少、代价低、综合效益大、更具经济可行性和现实操作性。森林的碳汇功能和其他许多重要的生态功能一样,对维护全球生态安全和气候安全一直起着重要的杠杆作用。
二、森林锐减造成大量温室气体排放
毁林和森林退化以及灾害导致森林遭受破坏后,储存在森林生态系统中的碳被重新释放到大气中。联合国《2000年全球生态展望》指出,全球森林已从人类文明初期的约76亿hm2减少到38亿hm2,减少了50%,难以支撑人类文明的大厦,对全球气候变暖造成了严重影响。联合国粮农组织(FAO)的数据,2000~2005年,全球年均毁林面积为730万hm2。IPCC第四次评估报告指出,2004年,源自森林排放的温室气体约占全球温室气体排放总量的17.4%,仅次于能源和工业部门,位列第三。而且,目前全球森林减少的趋势仍在继续。围绕哥本哈根乃至今后的国际谈判,许多国家和国际组织都在积极倡导通过恢复和保护森林生态系统,以推动“减少毁林和退化林地造成的碳排放(REDD+)”等政策的制定,以控制温室气体排放,减缓气候变暖。
三、森林是适应气候变化的重要措施之一
森林是适应气候变化的重要措施,如大规模植树造林、治理荒漠化等,具有涵养水源、保持水土、防风固沙的作用;建设农田林网,起到了改善农业生产条件、提高粮食产量的作用;建设沿海防护林、恢复红树林生态系统,对抗御海洋灾害,保护沿海生态环境具有重要价值。而采用抗旱抗涝作物品种、加固海岸提防、减少森林火灾和病虫灾害、加快优良林木品种选育等,有助于提高森林本身适应气候变化的能力,森林适应气候变化能力的增强,反过来又会提高森林减缓气候变化的能力。超级秘书网
四、木制林产品与林业生物质能源具有固碳减排作用
关键词:碳排放 燃油 船舶 减排
据统计,2013年中国超过美国成为世界第一大货物贸易国,同时也向大气中排放了100亿吨二氧化碳,占全球总排放量近1/3,人均碳排量超过欧盟。在被许多国家诟病的同时,中国政府也在为减少碳排放不懈的努力。中国船级社的《内河船舶能效设计指数(EEDI)评估指南》中船舶能效的评估,即是以碳排放量作为批判船舶能效等级的依据。可以预测未来以碳排放为指标的船舶碳排放政策将会出台。如何减少碳排放,提高燃油利用率,正成为航运企业关注的焦点。
内河船舶柴油机燃油供给系统
内河船舶的主机供油系统大致可以分为三种方式。第一种方式是通过设置在燃油单元上的三通转换阀将轻重柴油输送到主机中,与大部分海船的供油模式相同。第二种方式是轻柴油不经过燃油单元,直接进入主机的进油总管,只有重柴油经过燃油单元再进入主机系统。第三种方式是船舶仅使用轻柴油,供油系统比较简单,是通过高置油箱,利用重力作用将燃油送入喷油泵。内河船舶中使用第三种方式的最多,因为内河船舶吨位普遍较小,其耗电量和蒸汽消耗量都很少,没有设置锅炉或加热系统,增设锅炉及加热系统不仅增加了设备管理负担而且增加了成本。
碳排放的计算
现代船舶的主柴油机及发电用柴油机所用燃料主要为柴油。为节省开支,船运企业通常使用重柴油作为主机的主要燃料,由于黏度大,在冬天或较寒冷的条件下,会使用锅炉等产生的蒸汽使重油产生足够的流动性。发电机一般使用轻柴油作为燃料。随着技术的进步及环保意识的增强,现在已有船舶使用LNG与柴油混合燃料的动力设备,但船舶上应用较少,以后可能会越来越多。不管是重柴油或是轻柴油,它们的含碳量都是固定的,与氧气燃烧产生二氧化碳。其产生的二氧化碳量与其消耗的燃料量成正比关系。所以,要计算碳排放量,只要通过燃油消耗量乘以一个比例系数即可得出,这个比例系数被称作二氧化碳排放因子。当然,存在燃油与氧气的不充分燃烧情况,我们暂且不考虑此因素。因此,认为燃料燃烧与燃烧过程无关,仅与燃料中碳的含量有关。根据上述定义,二氧化碳的排放因子可以通过下式表述:
二氧化碳排放因子=燃料含碳量×氧化率×44/12 (1)
其中燃料碳含量=燃料平均碳含量/燃料的平均发热量。下表为常见燃料碳含量的缺省值。
表1 常见燃料碳含量的缺省值
燃料类型 潜在排碳系数 氧化率 二氧化碳排放因子
汽油 18.9 98 18.5
柴油 20.2 98 19.8
燃料油 21 98 20.6
计算燃料氧化后转化为二氧化碳的方法有很多种,下面仅介绍一种有代表性的。该计算公式根据上述说明的,基于燃料的消耗量和二氧化碳的排放因子得出:
二氧化碳排放量=∑(燃料消耗量×二氧化碳排放因子) (2)
其中燃料消耗量中的燃料可以是柴油、汽油或其它燃料(如液化石油气);二氧化碳排放因子与燃料含碳量和氧化率有关。
由(1)、(2)两式综合可以得出燃料燃烧时碳排放量的计算公式:
二氧化碳排放量=(44×燃油消耗量×燃油含碳量×碳的氧化率)/12
目前船舶上大多使用柴油,即重柴油或是轻柴油,下面只论述柴油的二氧化碳排放量。燃油的含碳量近似认为与市场所售的燃油种类有关。由于船舶到港或驶离码头等情况时,柴油机会变负荷,加上柴油机的老化和燃油黏度的变化,都会使柴油机的喷油泵雾化效果变差,反应到公式中即是碳的氧化率变化。在理论计算中,一般认为燃油中的碳全部转化为二氧化碳,即碳的氧化率取1。所以,理论计算得出二氧化碳排放量的值通常都会比实际测得的值稍大,此类理论计算与实际测得值相比稍大的结果在相关资料中也可以看出。
内河船舶减排优化方案
1、影响碳排放的因素
通过上述讨论,船舶的碳排放只与燃油的消耗量有关。出于节约成本和环保的考虑,内河船舶要减少二氧化碳的排放,就要减少船舶的油耗。内河船舶油耗增加的因素主要有:
1.1浅水效应
当船舶在浅水区时,船体受到阻力增加,使船舶能耗增加,在同样航速下比在深水航道要燃烧更多的燃料。设船舶在直流航道深水区受到的阻力为R,船舶在浅水航道受的阻力为RS,则有如下关系:RS=KS・R 。其中KS为船舶阻力换算系数,其表达式为:
式中h为航道水深;T为船舶吃水;V为船舶实际航速。
1.2狭窄航道
船舶行驶在狭窄航道中时,船舶的两弦距岸距离变短,船体与水流之间的摩擦随之增加。另外狭窄航道容易产生拥水现象,进而增加船舶的额外阻力。设船舶在深水航道中受到阻力为R,相同航速下狭窄水道船舶受到的阻力为:RN=KN・R,式中RN为狭窄航道阻力,KN为阻力换算系数。KN表达式为:
式中为船舶方形系数;n为航道过水断面系数(航道过水断面与船舶横向中剖面入水面积之比)。
1.3弯曲航道
当船舶驶过弯曲的航道时,如果偏至航道一侧会产生岸推、岸吸现象,船舶会受到额外的阻力。该附加阻力的大小与船舶在航道中的位置和速度有关,公式为:Rb=Kb・R
式中Rb为船舶在弯曲的航道中受到的阻力;Kb为阻力换算系数(Kb>1,Kb与弯道半径和V2有关);R为船舶在深水航道中受到的阻力。
2、碳排放的减排措施
通过上述,得知船舶二氧化碳的排放不仅与柴油机的燃烧效率、选用的燃料有关,还与船舶的使用有关,如船舶在狭窄水道、浅水效应、弯道引起船舶阻力增加均会增加船舶的油耗,进而增加二氧化碳的排放。
弯曲航道引起的阻力增加,不仅与船速有关,还与弯道半径有关。船舶在驶过弯道时,除了降低速度外,还应采取以下措施降低阻力:
2.1顺流过弯
船舶顺流通过弯曲航道时,应使船舶保持在航道的中线位置上,根据弯道的弯势及水流速度,以较低的航速和较小的舵角平缓转向,尽量保持船舶迹线与水流方向一致。
2.2顶流过弯
在船舶顶流过弯道的时候,船舶应靠近凹岸一侧航行,根据水流速度的大小,调整合适的舵角,顺着凹岸侧转弯的弯势连续平滑转向,尽可能的让船首尾的连线与水流方向一致。
总结
一、碳关税产生的背景
碳关税是指如果某一国生产的产品不能达到进口国在节能和减排方面设定的标准,就将被征收特别关税。这个概念最早由法国前总统希拉克提出,用意是希望欧盟国家应针对未遵守《京都协定书》的国家征收特别的进口碳关税,否则在欧盟碳排放交易机制运行后,欧盟国家所生产的商品将遭受不公平竞争,特别是其境内的钢铁业及高耗能产业。碳关税目前在世界上并没有征收范例,但是欧洲的法国、瑞典、丹麦、意大利,以及加拿大的不列颠和魁北克在本国范围内已开征与碳关税类似性质的碳税。2009年6月美国众议院通过的《美国清洁能源安全法案》条款中规定,从2020年起将对进口产品开始实施碳关税,对进口的排放密集型产品,如铝、钢铁、水泥和一些化工产品,征收特别的二氧化碳排放关税。美国是国际上第一个对碳关税进行立法的国家。碳关税问题是在世界经济发展面临全球变暖和能源危机这两大压力的背景下产生的。
(一)温室气体和全球变暖
随着人类社会经济的发展,人类活动大幅度提高了地球大气中温室气体的浓度,其中燃烧石油、煤等传统化石能源释放的二氧化碳是温室气体排放的最主要来源,而大气中二氧化碳浓度的增加是造成地球气候变暖的主要根源。国际能源机构的一项调查结果表明,美国、中国、俄罗斯和日本的二氧化碳排放量几乎占全球总量的一半。国际能源机构最近的《2009世界能源主要统计》资料数据显示, 2008年一年中国在能源消费部门排放的二氧化碳量为61.47亿吨,这一数据比美国的56.12亿吨多5.35亿, 中国成为世界最大的二氧化碳排放国,但中国人均二氧化碳排放量约为 4.7 吨/年,仅为美国人均排放量(19.1吨/年)的24%。减少温室气体的排放,控制全球变暖,保护人类生存发展的地球已是本世纪最大的挑战。为保护人类唯一的地球,保护全球气候环境,减少二氧化碳的排放,发展低碳经济,实现可持续发展已是世界各国共同的目标。
(二)能源危机
随着经济的发展,全球对石油、煤等传统能源的需求迅速增长,迅速增长的需求和有限的能源供给之间的矛盾逐步加深。地球上石油、煤等传统化石能源的蕴藏量是有限的,目前容易开采和利用的储量已经不多,剩余储量的开发难度将越来越大,到一定限度就会失去继续开采的价值。人类对能源的需求是无限的,在当前世界能源消费以石油为主导的情况下,经济发展依赖传统的不可再生能源,人类如果不作出重大努力去利用和开发各种新的能源资源,那么在不久的将来人类将会面临资源枯竭、环境破坏等严重问题,人类的长远生存发展将面临重大挑战。目前能代替石油的其它能源资源并能够大规模利用的还较少,太阳能、风能等可再生能源虽然用之不竭,但由于技术的限制,还未到产业化大规模应用阶段。21世纪,在传统能源资源可能枯竭带来的危机面前,人类社会的发展正面临着能源危机的严重挑战。
在面临气候变暖和能源危机这两大挑战面前,世界经济社会发展对能源的需求不能仅限于传统能源。发展低碳经济、开发新能源,开辟新型经济发展模式已是当前世界各国的共识。在这一认识下,可以预见,全球经济发展即将进入一个新的时代――低碳时代。发展低碳经济,一方面是寻找太阳能、风能等可再生能源来代替传统不可再生能源,另一方面是在当前条件下尽量限制传统能源的使用,提高传统能源的利用效率,减少二氧化碳的排放。在限制传统能源的使用上,从提高碳排放产品的生产成本角度,具体措施是对传统能源的使用者开征类似于资源税性质的税目,即碳税,以促使企业提高能源利用率或减少能源的使用;从提高碳排放产品的贸易成本角度,具体措施是对进口的在其国内未被征收过碳税的产品开征碳关税。这样从逻辑上看通过碳关税的方式加大未开征碳税的国家出口产品的成本,一方面为本国被征收过碳税的产品创造一个公平的贸易环境,另一方面促使它国对其国内碳产品尽快开征碳税,从而间接地提高含碳产品的成本,促进其对传统能源的使用效率,减少碳排放。碳关税正是在人类面临气候和能源两大挑战下,通过提高碳产品的成本来促使碳排放的减少这样的逻辑路线下产生的。从这一角度,发达国家提出的准备对进口的国外碳产品征收碳关税,对保护全球气候环境和节约传统能源的使用,有其合理的、积极的一面。
但由于世界各国经济发展的不平衡,特别是发达国家和发展中国家所处的经济发展阶段不同、国际贸易产品结构的不同、利用能源技术水平的高低,所面临的二氧化碳排放压力也不同,简单地在贸易环节对进口产品征收碳关税将对世界自由贸易环境产生严重的影响,这也是美国通过征收碳关税立法后,引起广大发展中国家强烈反应的原因之一。
二、碳关税的实质:新式绿色贸易壁垒
在WTO 的框架下,关税、许可证和配额等传统贸易壁垒的使用受到限制, 技术性贸易壁垒、绿色贸易壁垒、劳工标准、电子垃圾回收法案等新型非关税壁垒日益成为各国对本国产业实行贸易保护的重要手段。其中,绿色贸易壁垒指国际贸易中一些国家为了维护自己的经济利益,以保护生态资源、生物多样性、环境和人类健康为由,凭借自身先进的环保技术,设置一系列苛刻的高于国际公认或绝大多数国家不能接受的环保法规和标准,对外国商品进口采取准入限制或禁止措施。近年来,绿色贸易壁垒被各个国家采用的频率越来越高,成为继反倾销措施以后的又一重要的贸易措施。其主要原因在于,贸易和环境问题的复杂性和敏感性致使各国在与贸易有关的环境标准方面难以达成一致意见,导致现行国际贸易规则和协定不完善、缺乏有效约束力,为各国“以环境保护之名,实施绿色贸易壁垒” 提供了合法的借口。它以其名义上的合理性、形式上的合法性、保护内容的广泛性、保护方式的隐蔽性、较强的技术性等特点受到发达国家的青睐。
碳关税披着“减少二氧化碳排放,保护环境” 的美丽外衣,其实质是新式绿色贸易壁垒。发达国家提出碳关税的主要目的很明显:
一是提高本国竞争力,维护发达国家在全球经济中的霸权地位,削弱中国、印度、巴西等发展中大国的制造业出口竞争力。受金融危机重创,美国政府希望以绿色产业带动美国经济复苏,继续引领世界经济发展方向。提出严格的碳排放标准,对拥有世界先进减排技术的美国和欧洲、日本等发达国家具有明显优势,有利于其在全球新一轮竞争中,在节能环保领域和新能源领域抢占新兴产业和新兴技术的制高点,遏制新兴国家的崛起。
二是通过征收碳关税,维护其国家经济利益。征收碳关税不仅可以获得高额财政收入,减少贸易赤字,同时,美国通过对碳排放较高产品征收关税,将使该类产品进口量减少,导致该类产品国际市场价格降低,美国将能以更低价格进口,获得更大贸易利益。
三是转嫁环境治理责任和成本。美国至今没有签署《京都议定书》。美国通过向发展中国家进行产业转移,转嫁环境污染较高产业应承担的减排成本,同时通过提高减排标准迫使发展中国家向其购买先进减排技术,使发展中国家承担了减排成本和费用。
四是碳关税的征收有利于美国等发达国家在全球气候变化谈判中处于有利地位。目前,针对2013 年后全球减排目标和减排机制正在进行国际谈判,将决定后京都时代的全球主导权。征收碳关税不仅将改变美国过去在全球减排方面的消极做法和国际形象,增强其国际谈判筹码,而且很可能会以“碳关税”为由要求中国等发达国家对外承诺减排量。
三、如何应对碳关税对我国外贸可能造成的影响
目前,机电、化工、钢材等高碳工业制成品在我国出口中占一半以上比重,且欧美国家是我国主要出口市场。如果中国在美国“碳关税”政策实施前未作出减排的承诺,中国对美国出口的高能耗产品将成为“碳关税”的课税对象,这必将加大这些产品的成本,减少其在美国市场的销量和份额。更让人担忧的是,美国征收碳关税后, 欧盟和日本会很快仿效。我国对欧盟、美国和日本三个市场的出口额占总出口额的比例达65.82%,若欧美日都推行碳关税,我国出口产品将会在三个重要市场受到重挫,外需面临“雪上加霜”的困境。为此,我们必须未雨绸缪,从多方面采取措施,以应对碳关税可能对我国外贸产生的严重影响。
第一,积极利用WTO有关条款,坚决反对美国等发达国家利用碳关税实行贸易保护主义措施。碳关税违背了WTO中最惠国待遇和非歧视性的基本原则。有经济学家认为,WTO或许是中国反制“碳关税”的机制。不过,这一问题仍然十分复杂。这里还必须指出的是,我们持这种态度并不是针对碳关税本身,而是针对美国等发达国家借碳关税之名行贸易保护之实。我们应当坚持《京都议定书》中“共同而有区别的责任”之原则,坚决反对美国等发达国家大肆违反WTO原则施行贸易保护措施的行为。
第二,积极开展“环境外交”,参与制定国际碳排放量参照标准。我国既是贸易大国也是环境大国,在世界环境与发展事务中占有举足轻重的地位,应当通过外交手段为国内企业开展绿色贸易创造良好的外部环境,特别是突破碳关税形成的绿色壁垒。政府应加强同国际社会就碳关税问题的讨论和谈判,积极参与国际环境公约和国际多边协定中碳关税的讨论和谈判,成为规则的参加者、制定者。目前,国际上并没有一个统一的碳排放量参照标准,这给某些企图通过“绿色壁垒”进行贸易保护的进口国以可乘之机,他们会按照利于己方的标准向对方征收碳关税。因此,尽快制定合理的国际碳排放量参照标准势在必行。我国应当积极推动和参与制定国际碳排放量参照标准的国际谈判、协商,争取主动权,发挥良好的发展中大国的协调作用。我国在对外贸易中,亦可以利用WTO相关协议,设置正当的绿色壁垒,以保护人民、动植物的生命和健康及生态环境。
第三,大力推动经济结构调整和产业结构升级,加大低碳产业的发展。美国碳关税政策可能在一定程度上会对我国经济发展和对外贸易制造压力,但其真正实施要到2020年。当前,气候变化问题已成为全球首脑及各国最为关注的焦点问题之一,转变资源能源结构和消费方式,减少温室气体排放,促进低碳经济发展已成为不可动摇的国际大趋势。因此,我国应顺应国际潮流,以“碳关税”为契机,大力推进经济结构调整和产业结构升级,加速转变我国长期以来沿袭的以高能源消耗和高碳排放为代价的经济和对外贸易增长方式,加大低碳产业的发展。如:积极发展“绿色市场”。“绿色产品”在未来将主导世界主要工业市场。我国应在借鉴发达国家成功经验的基础上,不断从发达国家引进先进的环保技术,增加环保方面的资金投入,不断开发“绿色产品”,积极发展符合环保要求的“绿色产业”,为我国的外贸出口开拓更为广阔的国际“绿色市场”。鼓励企业进行绿色技术创新。政府与企业应形成共识,采取有力手段,增加科技投入,加强技术创新,发展绿色技术,提高产品质量,开发和生产优质的绿色产品,以冲破国际绿色壁垒,扩大在国际市场的贸易空间。以环境补贴扩大环保产品出口。环境补贴又称“绿色补贴”,即对环保产品提供专项的补贴、低息贷款等优惠措施,以保护和促进本国环保产品的出口。绿色贸易要求进口的环保产品应具有绿色标志,而申请绿色标志需要较高额的申请费用,设立政府补贴可以解决企业资金不足的问题。严格执行法规提高“绿色门槛”。在引进外资中,杜绝把污染严重的企业和产品迁移到中国;严格禁止碳密集产品的进口;把环境作为社会成本纳入核算体系,强化环境保护。对严重污染环境、损害人体健康的项目和产品, 一律不予批准,严格禁止高污染、高耗能和浪费土地的项目进入,限制单纯买卖资源的项目进入。
第四,以应对“碳关税”为契机,加速开征国内资源环境税。根据美国法案,其“碳关税”主要针对高碳排放的进口产品,或称能源密集型产品。届时,像钢铁、焦炭、金属冶炼加工制品等输美产品可能面临美方的高额进口关税。长期以来,我国对外贸易在给国外提供了大量廉价产品的同时,把大量污染留在了国内,廉价产品背后的重要原因之一是这些产品价值中没有包含足够的资源环境成本,其结果往往是,我国出口产品还反而成为众矢之的。扭转这种局面的重要途径就在于,一方面,通过国内宏观调控政策,减少和限制“两高一资”产品出口,对钢铁、焦炭、电解铝等能源密集型产品以及我国重要战略性资源产品继续征收高额出口关税,同时大力促进高新产业和服务业的对外贸易,鼓励企业“走出去”,拓展海外投资,这将有助于规避国外开征“碳关税”对我国企业的不利影响;另一方面,加快开征国内资源环境税,对“两高一资”和高碳排放产品加征资源环境税,把外国想征收的税费先由国内征收,税收资金可用于国内资源环境保护和污染减排。
第五,积极开发利用新能源,推动以再生能源为核心的能源革命。国际金融危机后时代,再生能源发展必将成为世界经济发展的主要潮流。我国可以抓住这一契机,率先制定并实施面向未来的占据发展先机的产业振兴计划,加大政府财政投入,大力开发风能、太阳能和核能等新型能源,鼓励新能源的利用,不仅为我国进一步实施可持续发展战略创造条件,同时也为维护人类的共同家园,保护人类的共同利益作出应有的贡献。
参考文献:
[1]孙晓霓,《论新型绿色贸易壁“垒碳关税”》,商场现代化,2009年9月(中旬刊)总第587期.
[2]黄晓峰,《中国如何应对“碳关税”的挑战》,消费导刊,2009,12.
自2005年《京都议定书》正式生效以来,减少碳排放已经成为应对气候变化领域的重要议题。而碳泄漏问题又是目前碳减排体系中的核心问题。国内外学者对这一问题给予了大量关注。本文回顾了以往研究,从碳泄漏的概念及测算、碳泄漏的产业影响三个方面对以往研究进行了总结。目前针对碳泄漏影响及解决措施的研究依然集中于发达国家视角,对发展中国家应对碳泄漏的研究还需进一步深入。
1.碳泄漏的概念及测算
1.1碳泄漏的概念及产生机制
随着以《京都议定书》为标志的气候变化政策国际体系的建立,欧盟国家等发达国家先后制定了减少碳排放的政策。这些政策涵盖了政治、经济、环境等诸多方面。目前,“共同但有区别的责任”已经成为《京都议定书》缔约国的共识,不同国家或地区在减排义务、环境政策以及制度安排上的均存在差异。这些差异是否会对气候变化政策的效果产生消极影响成为学界研究的重点。
碳泄漏,是指在单边气候政策下,减排国家的气候政策会导致没有减排承诺国家碳排放量的增加的效应(Manne A,Richels R.G.(2000),Onno Kuik(2001))。目前来看,这一概念得到了国内外学者的广泛认可,被大量研究所应用。
综合已有研究可知,地区间气候政策差异造成的碳排放价格差是碳泄漏产生的根本原因,经济结构、贸易模式、关税水平、资本流动性以及技术扩散等都会对碳泄漏产生影响(Steffen Kallbekken,Line S.Flottorp,Nathan Rive 2007)。
碳泄漏在传导机制上可以分为贸易和投资两条途径。具体来看可以分为以下三点:
碳排放价格差异通过化石燃料贸易传导机制产生碳泄漏。由于《京都议定书》限制了附件B国家的碳排放,化石燃料在不同国家间会产生价格差异,导致附件B国家的化石燃料消费下降,碳排放下降;非附件B国家的化石燃料消费增加,碳排放上升,产生直接的碳泄漏。如Gerlagh and Kuik (2007)指出,化石燃料价格的下降会引起非减排国家对能源产品需求的增加。
碳排放价格差异通过碳密集型产品贸易的传导机制产生碳泄漏。由于碳排放价格会影响碳密集型产品的价格,减排政策必然会导致发达国家在产品贸易结构上产生变化,导致具有较低排放成本国家中间产品需求上升,从而在这些国家引起碳泄漏。Glen and Edgar (2008)将此种碳排放称为“弱碳泄漏”(weak carbon leakage)。EIHot (2010)认为国际贸易使得未征收碳税国家的碳密集产业竞争力增强、出口增加进而碳排放增加。
通过碳密集型产业转移引起的碳泄漏。附件B国家的温室气体减排措施,带来的成本差异会导致能源密集型产业的转移,显著增加东道国的碳排放量,从而造成碳泄漏。如Mustafa H.Babiker(2005)认为,OECD国家的温室气体减排措施,会显著增加离岸能源密集型产品的生产。
1.2 计算碳泄漏率的模型研究
随着对评估碳泄漏风险的研究进一步深入,国外很多学者发现很多碳密集性产业确实面临碳泄漏风险,因此,学术界开始思考能否找到一个具体的数值来计算碳泄漏风险,于是碳泄漏率这个指标就产生了。
Alessandro Antimiani,Valeria Costantini,Chiara Martini,Luca Salvatici,Maria Cristina Tommasino(2013)使用的碳泄漏率为由减排国家的国内减排措施所导致的非减排国际的二氧化碳的排放量的增加。即为由减排国家所获得的二氧化碳含量的减少的体积的绝对值的所占的百分比。采用GREEN模型之后,得出的碳泄漏率为5%,而G-Cubed模型得出的碳泄漏率为8%,GTEM模型得出的碳泄漏率为9%,Gemini-E3模型得出的碳泄漏率为11%,WorldScan模型得出的碳泄漏率为14%,MS-MRT模型得出的碳泄漏率为26%,MERGE4模型得出的碳泄漏率为34%。Babiker与Jacoby使用了EPPACGTAP模型之后,发现全球碳泄漏率为6%。
Onno Kuik,Marjan Hofkes(2009)指出,碳泄漏率被定义为:世界其他国家或地区的由国内碳减排措施所引起的,或者年均二氧化碳排放量的增量占欧盟年均二氧化碳减排量的百分比。该文献在通过模型计算碳泄漏率方面涉及的较少。
Terry Barker,Sudhir Junankar,Hector Pollitt,Philip Summerton(2007)认为,碳泄漏率的计算公式为采取减轻碳排放措施的国家或地区以外的地方的CO2排放的增加量除以这些国家和地区的CO2排放的减少量。作者通过使用静态可计算一般均衡模型之后,得出碳泄漏率在5-20%范围内;然而在使用动态M3ME模型之后,得出碳泄漏率的水平很低,甚至为负。
Steffen Kallbekken,Line S.Flottorp,Nathan Rive(2007)引用前人研究认为碳泄漏率在5%-20%之间,一些研究认为碳泄漏率甚至超过100%。
根据1996年的IPCC(政府间气候变化专门委员会)第二次评估报告(SAR)显示,OECD(经济合作与发展组织)行为的世界模型所计算的碳泄漏率变动范围很大,接近0-70%。而TAR(第三次评估报告)(IPCC,2001)显示,碳泄漏率的范围缩小为5-20%。
Paltsev (2001)基于1995年的数据,用GTAP-EG模型(静态全球均衡模型)分析1997年京都议定书的影响。他宣称碳泄漏率是10.5%,根据聚集,贸易弹性和资金流动性的不同的假设,碳泄漏率的波动范围是5-15%,
综合以上的研究,大致可以发现这些文献的一些研究特征。不同学者采用的模型不同,得出的碳泄漏率不同。CGE模型和GTAP模型以及它的扩展模型的使用程度相对更多一些。碳泄漏率对于模型的设定是很敏感的,稍微改变一个条件,得出的结论可能就相差很大。
2.碳泄漏对中国碳密集产业的影响
赵玉焕、范静文和易瑾超(2011)经过对中欧贸易指标的分析后发现,碳泄漏进一步强化了我国粗放式的贸易增长方式和“碳密集型产品生产大国”的角色,这对于我国应对环境和资源的负荷、转变经济增长方式、提升国际分工的地位和竞争力以及应对国际气候谈判与减排压力都是极为不利的。张学贵,何海燕(2013)运用ADF平稳性检验、Johansen协整检验、多元回归分析等方法检验了碳泄漏对碳密集型产业进出口贸易额的影响,研究发现碳泄漏进一步强化了我国粗放式的贸易增长方式和“碳密集型产品生产大国”的角色。
从上述文献可以看出碳泄漏对中国碳密集型产业的贸易效应产生了负面影响,这对于我国应对环境和资源的负荷、转变经济增长方式、提升国际分工的地位和竞争力以及应对国际气候谈判与减排压力都是极为不利的。(作者单位:北京工商大学)
参考文献:
[1].Stephanie Monjon and Philippe.A border adjustment for the EU ETS reconciling WTO rules and capacity to tackle carbon leakage[J].Climate Policy Volume 11,Issue 5,2011
[2]Alessandro Antimiani,Valeria Costantini,Chiara Martini,Luca Salvatici,Maria Cristina Tommasino.Assessing alternative solutions to carbon leakage[J].Energy Economics Volume 36,March 2013,PP 299C311
[3]Alain Bernarda & Marc Vielle.Assessment of European Union transition scenarios with a special focus on the issue of carbon leakage[J].Energy Economics Volume 31,Supplement 2,December 2009,PP S274CS284
[4]Terry Barker,Sudhir Junankar,Hector Pollitt,Philip Summerton.Carbon leakage from unilateral Environmental Tax Reforms in Europe 1995C2005[J].Energy Policy Volume 35,Issue 12,December 2007,Pages 6281C6292
[5]Corrado Di Maria & Edwin van derWerf.Carbon leakage revisited unilateral climate policy with directed technical change[J].Environmental and Resource Economics February 2008,Volume 39,Issue 2,pp 55-74
[6]Shiva Sikdar and Harvey Lapan.Carbon leakage the role of sequential policy setting[J].IOWA STATE UNIVERSITY Working Paper No.10004 February 2010
[7]Thomas Eichner & Rüdiger Pethig.Carbon leakage,The green paradox,and Prefect future markets[J].International Economic Review Volume 52,Issue 3,pages 767C805,August 2011
[8]Steffen Kallbekken,Line S.Flottorp,Nathan Rive.CDM baseline approaches and carbon leakage[J].Energy Policy Volume 35,Issue 8,August 2007,Pages 4154C4163
会议通过的联合宣言包含一系列可供选择的反制措施,各国可根据自己的具体情况选择采用,其中包括:利用法律禁止本国航空公司参与碳排放交易体系、修改与欧盟国家的开放协议、暂停或改变有关扩大商业飞行权利的谈判等,藉此向欧盟施压,要求欧盟停止单边征收碳税,重新以国际多边主义的原则来解决问题。
《莫斯科宣言》的压力的确使欧盟在航空碳税问题上的态度稍见软化,同意有条件暂停航空碳税法规的部分内容,并愿意在半年至一年内与所有伙伴以谈判方式,在国际民航组织框架内进行磋商,就征收航空碳税修改此前推出的规定。
然而,在航空碳税的讨论暂现曙光之际,欧盟委员会刚又提出在本年6月份增加所谓“航海碳税”,并制定征收全球航空和航海运输行业碳排放的税额表。欧盟此举显然是用航海类碳排放税来弥补在航空类碳税方面的让步,增加谈判过程中的筹码。然而当前海运业同样因全球经济不稳定而陷入低谷,很多企业仍面对亏损,欧盟在此时开征碳税,除为未来的碳排放征税谈判带来新问题外,亦必然进一步增加航运企业的负担。
无论是航空类还是航海类碳排放,欧盟无视国际社会意见,一意孤行征收碳排放税项,表面理据是积极应对全球气候变化,保护人类的资源和环境。但实际上,以如此急进而欠缺充份讨论的方式勉强推行,很难不令人怀疑这是欧洲为了夺取全球应对气候变化领域的话语权,抢占绿色产业发展制高点而采取的措施;继而扩大欧洲在全球低碳技术的出口能力,特别是新兴航空材料、环保能源技术等,同时依靠各国引进欧盟的绿色技术来培育未来新的经济增长点。
同时,征收航空碳税也是欧盟新的税收来源,是获得公共财政收入、缓解欧盟各国财政问题的一个新途径。欧盟的单边化航空或航海排放交易体系方案如果顺利实施,将会为欧盟未来在钢铁、电力、炼油、水泥、玻璃、造纸等其他行业中推广实施其他全球性行业减排方案铺平道路,对中国相关产业发展可能带来的影响和冲击不能不重视,这些冲击甚至还可能沿着产业链将增加的成本转移到货物贸易领域,令国内商贸领域的企业需要承担更多的成本费用,导致企业利润空间进一步收窄,生存压力加大。
但是,欧盟单方面的行动,违反了《京都议定书》中“共同但有区别的责任”的原则,更不符合通过国际合作应对气候问题的大势。
当然,通过国际多边机制协商解决碳税问题,在联合国气候变化谈判、国际民航组织、国际航运组织等框架下引导制定并实施全球统一解决方案,才是避免因碳排放法规引发贸易争端的最佳途径。
然而,在欧盟单边主义模式的僵局下,除了谈判外,我国的应对策略还应包括:一、推广使用低碳排放的新燃料,从而减少二氧化碳排放,降低价格,增加供应;二、重新规划国际航班和海运航线,力求准确估计航运需求,减少多余航程,合理规避碳关税;三、增加空域容量,减少碳排放量,升级运输设备,提升空港及港口的运营,节省管理成本;四、加快建立我国碳排放税或碳排放交易“限额-交易”制度;五、加快服务贸易领域节能减排自主研发。中国的企业也应该开始思考:身处低碳能源和低碳产业发展迅速的潮流中,如何在低碳技术开发和产业培育方面扮演先行者的角色。
关键词:
出口商品碳排放量;碳排放强度;宁波;减排
中图分类号:F2
文献标识码:A
文章编号:1672-3198(2012)07-0070-03
碳关税是指对进口的排放密集型产品、高耗能产品征收特别的二氧化碳排放关税。近年来,各国以保护环境为由,力主对高耗能进口商品征收“碳关税”。限制碳排放正成为发达国家新的“绿色壁垒”。2009年6月26日,美国众议院通过气候法案,规定从2020年起开始实施“碳关税”,对包括中国在内的不实施碳减排限额国家进口的排放密集型产品征收特别的二氧化碳排放关税。法国则提出将对那些在环保立法方面不及欧盟严格的国家的进口产品征收巨额碳关税。
随着国际环境问题的日益严峻,WTO在环境和贸易问题的立场上也发生了微妙的变化,征收碳关税即将成为一种趋势。而从我国对外贸易结构来看,出口产品以劳动密集型和能源密集型产品为主,高耗能和高碳排放的商品占了主导地位。而提出开征碳关税的欧美等发达国家又是我国的主要市场,因此,我国的对外贸易即将面临碳关税壁垒的压力。在此情形下,有必要对出口商品的碳排放量进行研究,制订相应的减排措施,以降低出口成本,这无论在理论上,还是在实践上都具有重要意义。
基于这个目的,本文以全国外贸百强列第七位的宁波为数据样本,测算该地区主要出口商品的碳排放量,并分析如何减少出口商品的二氧化碳排放量的对策措施。
1 宁波主要出口商品碳排放量计算结果及分析
碳排放主要与能源消耗相关,是化石能源燃烧的副产品。根据世界资源研究所的标准,碳排放量主要指煤炭、石油、天然气等能源消耗所排放的二氧化碳当量。目前我国并未对碳排放量进行监测,因此很多数据均通过对能源消耗而计算得来。
本文采用美国橡树岭国家实验室(ORNL)提出的方法计算出口商品的化石燃料(主要指煤炭、石油、天然气等能源)燃烧释放的CO2量。
燃煤的碳释放量=耗煤量×0.982×0.73257
上式中:0.982为有效氧化分数;0.73257为每吨标准煤的含碳量。
在获得相同热能情况下,燃油的碳释放量=燃油折算成的标准煤当量×0.982×0.73257×0.813(燃油释放CO2量/燃煤释放CO2量);
在获得相同热能情况下,燃气的碳释放量=燃气折算成的标准煤当量×0.982×0.73257×0.561(天然气释放CO2量/燃煤释放CO2量)。
在采用上述方法计算碳排放量过程中,仍存在一些技术上的问题,针对以上问题,本文作了如下处理:
针对宁波对外出口商品数据,笔者撷取了出口量前20位商品(前20位商品占总出口产品的比例高达50.4%),本文数据中,能源消费量、历年全市及各县(市)、区规模以上工业企业总产值源自宁波统计年鉴2006-2011年的数据,出口商品数据源自宁波外经贸局。出口商品所属行业的划分则根据质检总局对国民经济行业分类与代码来进行统计。
要计算宁波主要出口商品的碳排放量,可先将宁波主要出口商品进行分行业归类,然后,根据ORNL的方法对分行业的化石燃料燃烧释放二氧化碳量进行计算,以上结果得到各行业的二氧化碳排放总量,与各行业工业产值的比值就是行业碳排放强度(碳排放强度是指单位国内生产总值的二氧化碳排放量),与每个行业占行业出口生产总值的比例相乘,就可以得到各行业出口的二氧化碳排放量所占比例。
(1)2006-2010年宁波工业分行业碳排放强度的计算及结果分析。
碳排放这一指标主要是用来衡量一国经济同碳排放量之间的关系,如果一国在经济增长的同时,每单位国民生产总值所带来的二氧化碳排放量在下降,即碳排放强度在下降,那么说明该国就实现了一个低碳的发展模式。宁波主要出口商品分行业二氧化碳排放总量(见表1),与其工业产值的比值就是其碳排放强度(见表2)。
从表2可以看出,宁波各个行业碳排放强度呈现不断下降趋势。其中,2010年纺织服装与鞋帽制造业、纺织业、塑料制品业、电气机械及器材制造业、交通运输设备制造业的碳排放强度仅为2006年的百分之五十左右,有色金属冶炼及压延加工业和金属制品业仅为2006年的百分之三十,通信设备、计算机及其他电子设备制造业甚至达到了2006年的百分之二十。这与我国近几年来控制高耗能、高排放行业过快增长并提高相关产品的排放标准政策有关,比如2006年起,我国就提高了服装业污水的排放标准以及对企业清洁生产水平的审核;各种装备制造业也纷纷制定了行业的绿色标准。但也有部份行业碳排放强度五年来并未下降,如黑色金属冶炼及压延加工业、家具制造业、文教体育用品制造业、皮革、毛皮、羽毛(绒)及其制品业等。其中家具制造业的碳排放强度下降幅度小是因为国家对家具制造业及文教体育用品制造业等的排放标准实施较晚,自2011年起,这几个行业的主要污染物排放标准才有所提高;而黑色金属冶炼及压延加工业属于资源性产品的开采和压延,碳排放强度大于1,多年来没有下降,说明宁波对资源的开采过程中,对能源效率和结构问题关注不够,没在在资源开采的技术上有所突破,未能切实降低碳排放强度。
(2)主要出口商品分行业碳排放量所占比例计算及结果分析。
宁波主要出口商品分行业的二氧化碳排放总量,与每个行业占行业出口生产总值的比例(见表3)相乘,就可以推出各行业出口的二氧化碳排放量所占比例(见表4)。
根据表4,可以看出纺织业、纺织服装与鞋帽制造业、黑色金属压延制造业、造纸这四大行业所占比例最高,这四大行业对应的出口商品为:纺织纱线与织物及制品、服装及衣着附件、钢材、纸及纸板(未切成形的)。2006年到2010年,这几个行业二氧化碳排放占总碳排放量的比例高达40%,这与其行业的特性是密切相关的。以碳排放量比例排位第一的纺织业为例,纺织业位列国家“十一五”统计的10个高耗能工业部门的第一位,作为纺织工业重要部分的化纤行业则高度依赖石油资源,而且化纤行业还面临着高能耗、重污染的问题;就排位第二的纺织服装业而言,服装从原材料的制作到其自身的生产、运输、使用以及废弃后的处理,在其生命周期内的每一个环节均会排放出一定的二氧化碳以及消耗大量的能源;排位第三的黑色金属压延制造业所占出口比例并不高,在出口前二十种主要商品中排名末位,但因其在生产过程中,需要消耗大量的原煤、原油、汽油、煤油、柴油、燃料油、液化石油气,折合而成的标准煤高出其他行业好几倍,因此碳排放量高居不下;排位第四的造纸业是国家七大“三高”产业之一,资源、能源消耗高,需消耗大量的原煤、汽油、柴油、燃料油,污染严重,能耗效率低下。
2 结论与启示
本文根据宁波主要出口商品所属行业的能源消费量、工业产值和出口比例,计算出主要出口商品分行业的碳排放强度及碳排放量所占比例,结果发现:
从整体规模上看,二氧化碳排放规模并无下降的趋势。部份行业如交通运输设备制造业碳排放强度虽有一定程度的下降,但由于出口量的攀升,出口中的二氧化碳排放规模没有太大变化。而部份行业如纺织业、交通运输、文教体育用品制造业、专用设备制造业、皮革/毛皮/羽毛(绒)及其制品业、造纸及纸制品业的二氧化碳排放规模及碳排放强度均呈现平稳变化的态势。从出口商品结构来看,资源密集型的黑色金属压延制造业碳排放强度及出口规模多年来没有下降,二氧化碳排放量所占比例较高;劳动密集型的纺织业碳排放强度虽有所下降,但由于其出口规模略有所扩大,耗费能源没有明显下降,因此使得二氧化碳排放量所占比例一直为21%多,没有明显的下降趋势;技术密集型的电气机械及器材制造业或通信设备、计算机及其他电子设备制造业等本身碳排放强度较低,二氧化碳排放量较小,其碳排放量在出口行业中所占比例较低,对宁波出口商品整体减排所起的作用并不明显。
可以预见,随着全球减排意识的普及,碳关税未来将成为影响宁波出口商品的新绿色贸易壁垒。此外,我国的“十二五”规划提出到2020年,单位GDP二氧化碳排放(即碳排放强度)需比2005年下降40%-45%的目标,并将指标分解到各省市,纳入各省市的发展规划并作为约束性目标的要求。总体上来讲,“低碳”贸易势在必行,我们应及早制定相应的出口减排措施,增强出口产品的竞争力。
以宁波为例,需筛选出碳排放量高的行业进行重点减排,根据对表4主要出口商品分行业碳排放量所占比例的分析,当前宁波需对纺织业、纺织服装与鞋帽制造业、黑色金属压延制造业、造纸这四大重点碳排放行业进行减排。
首先是纺织业及纺织服装业。这两个行业出口比例与碳排放量所占比例均排前两位。在此可将宁波的纺织、服装业与同是我国纺织服装制造业最发达的深圳作比较。根据深圳统计年鉴的数据,深圳2009年、2010年服装业的碳排放强度分别为0.13、0.11,低于宁波。究其原因,深圳很早就对服装业进行转型升级,从低端的加工组装制造环节,不断地向价值链的两端(研发、设计、销售)升级,打造出了多个自主品牌,这样可以达到合理分配资源、降低成本的目的。另外,深圳服装企业致力技术创新以降低碳排放。如深圳的利华成衣集团花费百万资金改造纺织设备,改进工艺,推动了低碳纺织品的生产,如此循环利用节省下来的资金达280万元,远高出花费的资金。而宁波服装虽然出口量巨大,却仍以贴牌加工为主,自主品牌出口的交货值只占出口额的1%。贴牌加工模式实质上是生产发达国家外包的高能耗、高污染产品,这种对资源高强度、高密集化的使用将会大大提高纺织服装企业的出口成本,增加出口商品的碳排放量。
针对这二行业采取的措施如下:第一,从服装的面料入手,纺织及服装业所用面料主要是化学纤维,化学纤维的碳排放量极大,可尽量使用丝绸、棉麻等天然纤维等面料进行生产,并鼓励环保型、低能耗面料等新型面料的开发;第二,对纺织业的产品及设备进行技术创新。采用提高加工效率、降低消耗、节约染化料、改善生态环境的新工艺,生产批量小、个性化、附加值高的产品,提高出口产品的附加值。开发新型工艺设备和改造落后高能耗设备,当前纺织设备的热效率低,消耗能源量大,改造之后,不但可以增强产品出口的优势,还能节省能源与原料的消耗,以适应国外市场更高的进入标准;第三,加快产业升级和制度创新。将宁波纺织服装业从“贴牌生产”向原创设计、自创品牌、创立名牌转变,逐步调整升级为高设计含量、高附加值的创意型产业。第四,注重配套环节的节能减排。除了在生产过程中关注原料、工艺及设备,还要考虑其他环节如运输历程中的环境污染问题,即推行服装低能耗、低排放运输方式,在包装、运输、装卸、仓储等环节,充分考虑环境污染问题,使运输资源得到最大限度的优化。
其次,黑色金属压延制造业。针对这一行业的措施措施如下:一方面,注重技改投入,加快新产品研发,产品的开发以品种质量、节能降耗、环境保护为重点,研究能够增加载重量、节能,并减少二氧化碳排放量的轻型高强度钢材。钢材品种的改造提升有助于推进产品优化升级,增强钢材出口的优势;另一方面,钢铁产业为高能耗、高污染行业,出口的钢材碳排放量高,需调控钢铁制造产业规模,禁止盲目扩大产能,支持以提升质量、节省能源、改善工艺等为目的而扩建的钢铁项目,所有投资项目必须以淘汰落后产能为前提,以技术改造、产品升级为由;加强减排核查,加强对企业执行产品质量标准、能耗限额标准的监督检查,按期淘汰有关政策明确需淘汰的设备。
最后,造纸业。针对造纸业的措施如下:一方面,选择可再生木材原料。木材和纸产品是可再生和可循环使用的产品,使用林木原材料可以扩大生物质能源的使用,减少对化石燃料的依赖,减少二氧化碳的排放。着重发展新型生物经济和循环经济,采用全新技术对农业剩余物进行综合利用以制浆造纸。努力发展木浆、废纸浆等纤维原料,减少节能环保难度较大的草类原料比重;另一方面,选择可再生的燃料。在造纸的过程中,化石的燃烧会产生大量的二氧化碳,而农村、林地的剩余木材、加工剩余木材、产品废材及循环利用材以及制浆造纸业等所产生的废弃物等产品是可循环的生物质能源。可循环原料及燃料的使用可大大降低隐含在造纸业当中的碳排放量。
以上是针对碳排放量占出口比例较大的一些重点行业提出的减排措施。要想降低宁波出口商品的碳排放量,还可以鼓励有条件的出口企业申请相关产品的碳标签,即核算出商品从原料采购、运输、生产到销售过程中产生的温室气体排放量(碳足迹),用数据标示出来,以标签的形式告知消费者,从而影响消费决定,引导消费者选择较低碳足迹的环境友好产品,最终提高出口产品的竞争力,走低碳环保、可持续发展之路。对企业来说,引入碳标签,量化碳排放指标,并计算每个生产零部件、每个生产过程的碳排放数据,生产成本肯定会上升,但从长远来看,产品的低碳化实际上是成本的降低,利润的增加和国际市场占有率的上升。
另外,优化出口商品结构对降低出口商品的碳排放也有一定的作用。如技术密集型的电气机械及器材制造业或通信设备、计算机及其他电子设备制造业等本身碳排放强度较低,二氧化碳排放量较小,大力发展技术密集型的行业,增加其出口的比重,努力降低劳动密集型及资源密集型等占碳排放量比例较大的产品出口比重,是降低碳排放,避开碳关税的有效途径。
总之,只有顺应低碳经济发展模式,不断提升科技创新能力,抢先一步实现出口商品的低碳化,才能更好地应对国外低碳贸易壁垒,对外贸易才能在低碳时代获得更大的发展空间。
参考文献
[1]王海鹏,对外贸易与我国碳排放关系的研究[J].国际贸易问题,2010,(7).
关键词:低碳经济;税收政策;税收优惠
中图分类号:F124.5文献标识码:A 文章编号:1003-3890(2010)11-0066-04
在全球气候变暖的背景下,以低能耗、低污染为基础的“低碳经济”成为全球热点。世界各国特别是西方发达国家为抢占先机和产业制高点,大力推进以高效能、低排放为核心的低碳革命,着力发展低碳技术,并对产业、能源、技术、贸易等政策进行重大调整。税收政策作为政府宏观调控的重要手段,在促进低碳经济发展方面扮演着十分重要的角色,西方各国立足本国国情制定了相应的政策措施,在减少碳排放,促进节能产业和新能源及可再生能源的研发、利用等方面成效明显。面对中国自然资源相对缺乏的基本国情,以及全球发展低碳经济的潮流和趋势,借鉴国外成功经验,对于促进中国低碳经济发展具有十分重要的意义。
一、国外促进低碳经济发展的主要税收政策
(一)欧盟
欧盟把向低碳经济转型战略与保持经济增长结合起来,在应对气候变化与实行节能减排方面是发达国家的典范。
1. 实施相关税制。瑞典、荷兰和丹麦等北欧国家率先从20世纪90年代初期导入“地球变暖对策税”,在1999年德国、英国、意大利等经济规模较大的欧洲国家开始导入相关税制;欧洲主要国家从20世纪90年代末开始导入碳税,根据二氧化碳的排放量对商品和服务进行课税(见表1)。2007年6月,荷兰财政部又专门针对二氧化碳排放量每公里超过200克和240克的柴油与汽油发动机汽车,每公里多排放1克二氧化碳征收80欧元~90欧元的附加税[1]。此外,开征生态税引导生产者的行为,促进生产商采用先进的工艺和技术,进而达到改进消费模式和调整产业结构的目的。如德国,除风能、太阳能等可再生能源外,其他能源如汽油、电能、矿物等都要收取生态税,间接产品也不例外。
2. 税收优惠。欧盟最早实施减税和退税的优惠措施,鼓励节能、替代性能源及可再生能源的利用。如奥地利对环保领域投资免资本税,空气污染控制设备减所得税、公司税、固定资产税;挪威对旨在降低废气排放量的投资免投资税;葡萄牙对利用太阳能、地热、其他形式的能源、利用垃圾生产能源的工具或机器的增值税减5%。此外,实施设备投资加速折旧,如法国对空气净化器的电动车(船)、节能设备加速折旧;瑞士对节能、新发热设备、太阳能设备加速折旧等等。
(二)美国
美国作为最大的发达国家和碳排放量最多的国家,把实行“绿色”财政刺激措施作为向低碳化转型的重要战略。奥巴马政府在2009年2月17日正式通过了“美国再生、再投资法”,大约580亿美元投入到环境与能源领域,其中直接税式支出171美元[2],占29.48%(见表2)。
1. 实施相关税制。美国的生态税收制度为促进低碳经济发展起到了重要作用。如实施汽油税,鼓励广大消费者使用节能型汽车,减少汽车废弃物的排放;有关资料显示,虽然美国汽车使用量大增,但其二氧化碳的排放量却比20世纪70年代减少了99%,空气中的一氧化碳减少了97%[3];开征能源开采税抑制资源过度开采,据估计,可减少约10%~15%的石油开采量[4]。此外,在抑制二氧化碳的排放方面,美国虽然还没有开征真正意义上的碳税,但美国科罗拉多州的博尔德市对电力生产征收的“碳税”,旧金山海湾地区八个县的企业需要根据其温室气体的排放缴纳碳费,为将来开征碳税打下了良好的基础。
2. 税收优惠。美国采取各种税收优惠政策从碳减排、可再生能源、节能、鼓励出口等方面促进低碳经济的发展。(1)鼓励碳减排的优惠。如新型煤炭技术项目投资抵免和煤气化投资抵免等。(2)对鼓励可再生能源的税收优惠,主要是对可再生能源的投资、生产和利用给予税收优惠抵免,如对可再生能源的投资实行三年的免税措施,对小型风力发电设备投资抵免,利用可再生能源发电每千瓦时可获1.5%税收抵免;对太阳能和地热能设备投资额的10%可获得税收抵免。提高住宅能效利用的设备抵免。(3)鼓励替代能源开发利用的优惠,如生物柴油和可再生柴油抵免,延长和调整替代能源抵免,机动车能源转换装置抵免。(4)提高能源效率的优惠,如商用节能建筑抵免,新节能住宅抵免等,提高住宅能效利用的设备抵免。(5)鼓励节能的税收优惠,如对购买符合条件(节能环保型)机动车允许在计征州税和联邦消费税时提高扣除额,延长最低选择税的减免等;扩大对家庭节能投资的减税额度(每户上限1 500美元)。(6)鼓励出口的税收优惠。为确保美国产业的国际竞争力,对能源消耗量大且生产的商品在全球范围内交易的产业部门,提供“退款”或“退税”的制度,以弥补实施排放权交易制度所带来的成本,从而确保美国制造商与国外企业竞争时不会陷入不利的地位。
(三)日本
日本是一个能源资源缺乏的国家,由政府主导促进节能投资与新能源开发,实现太阳光发电、燃料电池、蓄电池以及环保车的低成本化和低碳化。
1. 实施相关税制。日本为了治理环境,减少污染,节约能源消费,建立了世界上最庞杂的运输税收体系。在国税层次有石油消耗税、道路使用税、液化气税、机动车辆吨位税、车辆产品税以及二氧化碳税。此外,根据“排放责任者负担的原则”修改与汽车相关的税制,将现行的以排气量和重量为课税依据改为以二氧化碳排放量为课税依据。在促进混合有生物质燃料的汽油的普及方面,导入生物质燃料的促进税制。
2. 税收优惠。(1)为实现住宅和办公大楼的低碳化,修改住宅贷款减税条例,对节能型住宅实行税制上的优惠;实施“办公大楼领跑者计划”的制度,对导入高效率机器设备和系统的实行税制上的奖励。(2)为促进交通运输领域的低碳化,在税制上明确奖励购买和使用低碳汽车,对汽车拥有者(车主)在更换购买新车时购买低碳汽车者要在税制上提供优惠。(3)为促进可再生能源的开发与普及,在税制方面优惠清洁电力证书制度,并加强对智能电网的投资和建设支援。(4)为提高能效,对改进能源利用效率的措施除一般折旧或税收抵免外,还可按取得成本的30%提取特别折旧。
二、国外促进低碳经济发展税收政策的主要特点
(一)运用税收政策促进低碳经济发展是世界各国的普遍做法,但税收政策的侧重点和政策取向存在差异
在税收政策方面,欧盟国家为抑制二氧化碳的排放,碳税已包含在统一征收的消费税中,并取得了较好的效果。特别是芬兰、瑞典、英国、德国、卢森堡和法国,实行碳税政策取得了较好的效果,实现了各自的减排目标。日本在2009年的税制改革中,考虑对碳定价的重要性,实施针对二氧化碳课税的环境税。而美国暂未开征碳税,美国主要采用汽油税鼓励消费者使用节能汽车。OECD国家通过开征能源开采税抑制资源开采活动,德国通过采取“燃油税”附加的方式征收生态税,使近几年二氧化碳的排放减少2%~3%,而且单位油耗下降10%[1]。此外,欧盟注重限制高碳排放,而美国、日本侧重于促节能、新能源以及可再生能源的开发利用,节能产品的使用、消费等。
(二)以研发、生产、销售、使用、服务过程的“低碳化”为核心,正面激励和逆向约束政策兼施
通过征税政策限制实施者的行为,而通过税式支出政策来鼓励实施者的行为,两者从正反两方面引导并扶持低碳经济的发展。
1. 正面激励的税收政策。主要通过减税、免税、退税、特别折旧、投资作为成本抵扣等税收优惠政策来鼓励低碳化。如电力公司向居民安装节能设备的费用可以免税,企业购置政府指定的节能设备,并在一年内使用,可按设备购置费的7%从应缴所得税中扣除,并可在普通折旧的基础上按购置费的30%提取特别折旧,等等。此外,还实行碳税返还政策。一部分碳税用于奖励那些提高能源利用效率的企业,另外一部分收入用于奖励那些对于解决就业有贡献的企业和弥补个税。
2. 逆向约束的税收政策。主要依靠提高碳排放的成本,开征某些税种,提高某些税率等措施给纳税人施加压力,以减少二氧化碳排放,降低环境污染,促进节能投资,提高企业能效,减少高能耗消费。首先,广泛征收碳税①,抑制二氧化碳的排放量,可达到排放量越少负担额越少的效果;据测算,1990~2000年,欧盟的温室气体排放量减少3.5%[5]。其次,开征能源税②。据估计,企业征收能源税和碳税对减少能源消费的贡献为10%[6]。再次,对来自发展中国家的进口商品实施碳关税,防止本国或本地区的企业逃避严格的二氧化碳排放管制而把生产制造等经营活动转移到发展中国家。
(三)灵活运用各种税收优惠措施,直接调控与间接引导相结合
减免税是世界各国普遍采用的促进低碳经济发展的税收优惠措施,主要体现在对个人所得税、公司所得税、营业税、增值税等方面。此外,重视运用设备投资加速折旧、税收抵免、退税等手段鼓励节能、替代性能源和可再生能源的利用。美国在节能、使用或生产可再生能源、替代能源方面较多地运用税收抵免和加速折旧手段,日本也强调使用税制上的优惠、加速折旧、税收抵免等手段,均起到了较好的效果。
三、促进中国低碳经济发展的税收政策建议
中国作为全球最大的发展中国家,二氧化碳的排放量仅次于美国,位居第二。能源消耗量与同样人均能源占有量较低的日本相比,能耗水平比日本高出24%。钢、水泥、合成氨等产品的能耗水平均比世界先进水平高出20%以上[7]。在全球气候变暖,能源日趋紧张和中国建设两型社会的背景下,如何抓住经济发展的契机,以科学发展观为指导,走可持续发展之路,抢占低碳经济发展的先机,是摆在中国政府面前的大事。应充分借鉴西方各国的先进经验,结合中国节能减排的目标导向及现实要求,综合考虑环境、社会、经济效益之间的关系,坚持直接支持与间接引导相结合,全方位促进与重点支持相结合,正面激励与逆向约束相结合的原则,完善各项税收政策。
(一)建立健全绿色税收体系,改革相关税收制度
从短期看,面对紧迫的节能减排任务,以及较为不利的国际外部环境,为减少税制变动对经济主体的影响,可以通过整合现行税制中具有促进节能、碳减排、新能源及可再生能源研发、利用的税种,调整其税制要素,对其进行绿色化改造(见表3)。从长远看,借鉴西方发达国家的经验,对消耗不可再生能源和高二氧化碳排放的产品,在综合考虑经济发展状况、能源结构战略调整的基础上择机设立一些新的税种,如碳税、碳关税、环境保护税、能源消耗税,等等。
(二)完善税收优惠政策,加大税收调节力度
从税收优惠内容来看,优惠面较窄。如没有对使用新型(或可再生)能源如天然气、乙醇、氢电池、太阳能和使用其他环保能源的车辆实行税收优惠政策,对企业节能、保护环境的税收优惠条件过于严格等,不利于低碳经济的发展。在税收优惠方式上,目前与低碳经济发展相关的税收优惠政策主要采用税收减免方法,对投资抵免、税收豁免、再投资退税、加速折旧、延期纳税、盈亏相抵等其他手段基本没有采用。应综合加大税收优惠的宽度和力度,在同一税种内合理设计和配置,在不同税种之间统筹运用,体现税收优惠政策激励功能的主题效率,引导低碳投资、生产、消费以及技术推广,保护企业核心竞争力,促进新技术和新能源的发展。如对企业安排减排设备给予免税措施,对相关固定资产实行加速折旧,对可再生能源的开发、普及以及技术研究给予投资减免、再投资退税等方面的优惠政策鼓励。
(三)整合、协调相关政策,加强制度创新,提高税收政策效果
低碳经济与经济、社会、能源、环境的密切相关性,决定了发展低碳经济的相关政策不是孤立的,而是经济、社会、能源与环境保护政策的统一与协调。因此,需要采取强有力的法规标准和经济措施,协调统筹相关政策,建立完善的政策体系。首先,处理好财政支出与税收优惠的关系。除了财政直接支持节能减排项目研发和技改外,应充分发挥财政补贴的作用,对符合低碳经济发展导向的节能改造、节能技术研发、节能消费,以及可再生能源的研发等,不管是生产者、销售者还是消费者,予以适当的补贴。其次,配合使用碳排放交易制度和碳定价政策。通过对高排放的高碳经济(如煤炭、钢铁、有色金属等)实行排放许可权交易制度,并将排放权交易体系的建立与相关能源税收特别是燃油税的制定统筹考虑,控制二氧化碳的排放量。再次,考虑设立碳基金。由于中国开展碳税的条件尚未成熟,在还没有开征碳税之前,基金的主要收入来源为碳排放交易费。开征碳交易税后,碳税资金成为基金的主要收入来源。支出主要用于提高能源效率、研发节能新技术、寻找新的替代能源、实施植树造林等方面。
四、结束语
发展低碳经济对于每个国家既是机遇又是挑战,如何发展低碳经济已成为一个焦点话题。发展低碳经济成本之高是世界公认的。对于中国这样的发展中大国,不可盲目推行纯低碳环保主义的发展战略,更要坚持有所为,有所不为的原则,以实现经济的增长和可持续发展。
注释:
①根据二氧化碳的排放量进行课税。税率根据燃料的含碳量来确定,总体税率差异也较大,如瑞典为38.8美元/吨二氧化碳,芬兰为7.0美元/吨二氧化碳,荷兰为2.5美元/吨二氧化碳。
②按能源热值计征,税率约为7欧元/GJ(丹麦),采暖征收10%的能源税。
参考文献:
[1]张新.我国节能减排税收支持的改革策略与实施途径[J].南京审计学院学报,2009,(4).
[2]蔡林海.低碳经济大格局[M].北京:经济科学出版社,2009:5-6.
[3]汪曾涛.碳税征收的国际比较与经验借鉴[J].理论探索,2009,(4).
[4]计金标.荷兰、美国、瑞典的生态税收[J].中国税务,1997,(3).
[5]张克中,杨福来.碳税的国际实践与启示[J].税务研究,2009,(4).
[6]宋效中,姜铭.节能税收政策的国际经验及对我国的启示[J].经济纵横,2007,(1).
[7]苏明.关于运用财税政策支持节能事业发展的思路[J].学习论坛,2009,(6).
The Tax Policy of Foreign Countries Promoting the Low-carbon Economy
Development and its Enlightenment
He Pingjun
(College of Economics, Hunan Agricultural University, Changsha 410128, China)
(一)碳排放权制度和碳税制度的理论基础与争议情况
碳排放权制度将排放温室气体确定为一种量化权利,通过权利总量控制、初始分配与转让交易推动温室气体减排;碳税制度根据化石能源的碳含量或者二氧化碳排放量征税,以降低化石能源消耗,减少二氧化碳排放。二者的理论渊源,可分别追溯至科斯定理与庇古定理。环境经济学理论认为,经济活动的负外部性是环境问题的重要成因,即经济活动对环境造成负面影响,而这种负面影响又没有体现在产品或服务的市场价格之中,致使市场机制无法解决环境污染问题造成“市场失灵”[4]。如何将负外部性内部化,存在科斯思想与庇古思想的路径之争。科斯思想是通过交易方式解决经济活动负外部性的策略。科斯认为,将负外部性的活动权利化,使其明晰与可交易,市场可对这种权利作出恰当配置,从而解决负外部性问题[5]。基于科斯思想,碳排放权制度的作用机理得以展现:首先确定一定时期与地域内允许排放的温室气体总量,然后将其分割为若干份配额,分配给相关企业。配额代表量化的温室气体排放权利,若企业实际排放的温室气体量少于其配额所允许排放的量,多余的配额可出售;若企业实际排放温室气体量超出其配额,则必须购买相应配额冲抵超排部分。通过总量控制形成的减排压力和排放交易形成的利益诱导,可有效刺激企业实施温室气体减排[6]。1997年,《京都议定书》确立“排放权交易”“清洁发展机制”“联合履行”3种灵活履约机制,碳排放权交易作为一种温室气体减排手段首次在国际法层面得到认同①。欧盟2003年通过第2003/87/EC号指令决定设立碳排放权交易体系,作为实现减排承诺的主要方式。庇古思想通过税收方式解决经济活动负外部性。企业在生产过程中排放温室气体导致气候变化,恶果由全社会共同承受。若政府根据温室气体排放量或与之相关的化石能源碳含量征税,使气候变化方面的社会成本由作为污染者的企业负担,企业基于降低自身成本的经济利益考量,将采取有效措施控制温室气体排放;同时,所征税金可用于支持节能减排技术的研发与应用,抑制负外部性,激励正外部性,实现环境保护[7]。1990年,芬兰在世界范围内率先立法征收碳税,随后瑞典、荷兰、挪威、丹麦等国效仿[8]。有意见认为碳排放权制度与碳税制度是相互替代关系,在温室气体减排领域,只能二选一。在美国,有学者主张采用碳税减排[9],另有学者的观点相反[10]。立法者犹疑不决,在第110届国会,就有Lieberman-Warner法案(S.2191)、Waxman法案(H.R.1590)等数个立法草案要求设立碳排放权制度,Stark-McDermott法案(H.R.2069)、Larson法案(H.R.3416)则要求采用碳税制度[11]。中国学界在此问题上的观点亦是针锋相对,碳排放权制度与碳税制度各有学者支持[12]。也有意见认为碳排放权制度与碳税制度可在温室气体减排领域协同适用。持这一意见的学者内部,有不同的观点:对同一排放源,碳排放权制度和碳税制度可重叠适用,二者并行不悖①;碳排放权制度和碳税制度各有作用空间,不同类型的排放源应受不同制度规制[13]。中国作为世界上最大的温室气体排放国,面临减排重任,认真对待碳排放权制度与碳税制度的关系论争具有重要意义。
(二)碳排放权制度与碳税制度的应然关系
从1990年芬兰引入碳税至今已20余年,从2005年欧盟开始实施碳排放权交易至今也已9年。结合理论与实践,在经济激励型制度内部,碳排放权制度与碳税制度不是相互替代关系,二者可在温室气体减排领域协同适用;但碳排放权制度与碳税制度各有其适用范围,二者不宜针对同一排放源重叠适用。原因在于碳排放权制度与碳税制度各有其优劣,优势互补,可最大程度地发挥减排的激励效果。
1.对大型温室气体排放源采用碳排放权制度
第一,碳排放权制度能够更有效地实现温室气体减排目标。碳排放权制度与碳税制度的作用原理相异,前者是通过总量控制确保减排目标实现,再由市场决定碳排放的价格,后者则是通过碳税税率确定碳排放的价格,再由市场决定减排效果如何。碳税如欲产生理想的环境效果,其税率之高必须足以使企业采取温室气体减排行动,同时又不致过分影响经济发展。在实践中,由于受信息不对称等因素制约,政府事先很难恰当地确定碳税税率,碳税的减排成效具有不确定性。征收碳税虽然可以取得减排效果,但减排成效不能充分实现。如丹麦原本计划通过征收碳税在1990年碳排放水平的基准上减排21%,实际却增长6.3%[8];挪威1991年开始征收碳税并将之作为减排的主要手段,但1990年至1999年碳排放量不降反增19%[14]。碳排放权制度因实行温室气体排放总量控制,减排效果事先确定。如实施碳排放权交易的欧盟2009年在1990年排放水平上实现减排17.4%,在2008年的排放水平上减排7.1%[15]。《联合国气候变化框架公约》强调要把大气中的温室气体浓度稳定在一个安全的水平,这一目标意味着到2050年世界碳排放量须比目前降低至少50%[16]。显然,碳排放权交易制度更有助于目标的实现。
第二,碳排放权制度有助于降低减排的社会总成本。企业之间的减排成本具有差异性,如生产技术集约的企业通过技术改良进行减排的空间较小,相对生产技术粗放的企业其减排成本较高。在碳排放权制度下,减排成本高的企业可通过购买碳排放权的方式实现由减排成本低的企业替代其进行减排,从而使减排的社会总成本最小化。美国曾以排放权交易的方式推行二氧化硫减排,结果不仅超额完成减排目标,而且相对命令控制型手段,每年节省成本至少10亿美元[17]。碳税因为无法交易,不具有降低社会减排总成本作用。
第三,碳排放权制度更有利于实现温室气体减排的国际合作。气候变化是全球问题。《联合国气候变化框架公约》将控制温室气体排放确立为共同责任。碳排放权制度可为各国协作实施减排提供可靠的制度平台,欧盟碳排放权交易体系即为区域内各国合作进行温室气体减排的范例。征收碳税涉及各国国家,难以进行合作。
第四,碳排放权制度能够获得更广泛的社会认同。碳税制度建立在企业承受不利益之上,企业被动缴纳碳税而不能直接从中受益,对征收碳税难免有所抵触。在碳排放权制度下,企业如能超额减排,多余的配额可以出售谋利。在碳排放权制度实施之初,往往实行权利免费取得,企业减排成本较低。相较于碳税,企业更青睐碳排放权制度。从民众角度而言,增加新的税种普遍受到抵制,征收碳税亦不例外。碳税的征收将增加能源生产成本,能源生产商通过涨价方式将新增成本转嫁至消费者,最终由民众为征收碳税“埋单”。实行碳排放权制度所导致的生产成本增加最终也由民众负担,但没有税收之名,来自民众反对声小,政治阻力相应也较小。越来越多的国家计划或已经引入碳排放权制度,实施碳税制度的国家也积极向碳排放权制度靠拢。韩国计划2015年引入碳排放权交易制度[18],挪威在2008年时将未受碳税规制的行业纳入了欧盟碳排放权交易体系[7],澳大利亚计划在2015年将碳税制度转换为碳排放权制度[19]。既然碳排放权制度和碳税制度适用于大型温室气体排放源减排不存在理论上的障碍,能否对大型温室气体排放源重叠适用此两种制度?2012年《气候变化应对法》(征求意见稿)第12条规定有碳排放权制度,要求企事业单位获取碳排放配额,排放温室气体不得超过配额数量,节余的配额可以上市交易;第13条规定国家实行征收碳税制度。起草者对二者关系的认识,体现在第13条第3款:“超过核定豁免排放配额排放且不能通过企业内部减增挂钩、市场交易手段取得不足的排放配额的企事业单位,除了依法缴纳碳税外,还应当就不足的排放配额向当地发展与改革部门缴纳温室气体排放配额费。”根据该款规定,同一企业若超额排放,不仅要缴纳碳税,还要缴纳温室气体排放配额费。换言之,同一企业不仅受到碳税制度的规制,还受到碳排放权制度的规制,碳排放权制度与碳税制度可针对同一排放源重叠适用。此种处理方式值得商榷。首先,从实践情况看,对某一碳排放企业单独适用碳排放权制度,只要制度本身设计合理,就足以产生良好的减排效果,无须碳排放权制度与碳税制度双管齐下,重叠适用的必要性不足,可谓“无益”。其次,在重叠适用的情况下,企业若选择从市场中购买碳排放权达到排放要求,还须另行承担缴纳碳税的成本;若选择通过改进生产技术减排,则不仅不需要从市场中购买碳排放权,还可以减少缴纳碳税的数额。如此一来,企业宁愿花费更多的成本改进生产技术减排,也不愿从市场中购买碳排放权,造成碳排放权需求的萎缩。缺乏需求,活跃的碳排放权市场不可能建立,碳排放权制度减少社会减排总成本的功能也无从谈起。从历史实践看,为解决因二氧化硫排放导致的酸雨问题,财政部、原国家环保总局曾实施《排污权有偿使用和排污交易试点实施方案》,在电力行业试行排放权制度,试图通过二氧化硫排放权交易的方式实现减排。试点未取得预期效果,原因之一是电力企业购买排放权后仍不能豁免缴纳排污费(类似于碳税),企业宁愿治理污染也不愿从市场中购买排放权,实际上形成了排放权“零需求”局面。电力企业普遍惜售排放权,又几乎形成了排放权“零供给”局面[13]。
此外,在重叠适用的情况下,企业既要为碳税付费,又要为碳排放配额付费,增加了经济成本,对经济发展冲击未免过大。综观各国立法例,没有对同一排放源重叠适用碳排放权制度与碳税制度的先例。采用碳排放权制度的欧盟虽允许各成员国采用碳税措施,但明确规定碳税只适用于碳排放权交易未能覆盖的设施①;征收碳税的挪威加入欧盟碳排放权交易体系,参与交易的只是碳税所没有覆盖的行业。中国企业承担碳税与碳排放权双重成本,减损中国产品在国际贸易中的价格优势,可谓“有害”。总之,对大型温室气体排放源应适用碳排放权制度减排,且不宜碳排放权制度与碳税制度重叠适用。即使从便于操作等角度考虑对大型排放源暂时采用碳税制度减排,也应在条件成熟时逐步转换为碳排放权制度,并且在转换完成后不再继续对大型排放源征收碳税。
2.对中小型温室气体排放源适用碳税制度
相对于碳税制度,碳排放权制度具有明显优势,但也存在局限,主要是机制设计复杂,运作成本较高碳排放权制度的运行过程可分为碳排放权总量控制、初始分配和转让交易3个环节,每一环节的成本均不低廉。美国以排放权交易的方式成功实现二氧化硫减排,其经验之一就在于要求所有受管制实体安装污染物排放连续监测系统,确保能够真实记录企业的排放数据[20]。对企业温室气体排放的监测、报告和核证,须耗费人力、财力和物力。因为碳排放权交易运作成本高昂,为确保制度效率,在确定碳排放权制度的覆盖范围时只能“抓大放小”,即只将温室气体排放量大的大型企业纳入管制范围。如欧盟第2003/87/EC号指令设定参与碳排放权交易的门槛条件,要求纳入交易范围的燃烧装置功率在20MW以上,造纸工厂的日产能超过20吨②,等等。对于碳排放权制度所不能覆盖的中小型排放源,若不对其碳排放加以任何管制,一方面可能造成企业之间不公平,违背平等原则;另一方面众多中小型排放源碳排放积少成多,不能确保取得减排①§25740ofCaliforniaPublicResourcesCode(2011)。效果。碳税根据排放源的化石能源消耗量或二氧化碳排放量征收,并借助既有税收征管体系施行,机制运作简单、成本相对低廉。因此,对碳排放权制度所不能涵盖的中小型排放源,可通过征收碳税使之承担碳排放成本。例如,为数众多的机动车是二氧化碳的重要排放来源,但因其性质所限难以纳入碳排放权交易。实践中,欧盟成员国西班牙和卢森堡于2009年开始征收机动车碳税[21]。
二、碳排放权制度、碳税制度与低碳标准制度之关系
(一)低碳标准制度的理论与实践
低碳标准是在综合考虑科学、经济、技术、社会、生态等因素的基础上,经由法定程序确定并以技术要求与量值规定为主要内容,以减少温室气体排放为主要目的的环境标准,是技术性的环境法律规范。国家通过制定与实施低碳标准,对管制对象在生产、生活中的碳排放提出量化限制或技术要求,并以法律责任保障这些量化限制或技术要求得到遵守,从而产生碳减排效果。这一过程的实质,是科予管制对象减排的法律义务,以义务主体履行法律义务的方式达到法律调整目标。低碳标准如欲取得实效,法律责任的合理设置不可或缺。在传统环境治理中,环境标准所属的命令控制型手段曾长期居于主导地位。即使在碳排放权与碳税等经济激励型制度兴起之后,低碳标准仍不丧失其意义,因为相对于碳税制度中存在合理确定税率、碳排放权制度中存在合理进行总量控制等复杂疑难问题,低碳标准有更多简便易行之处。实践中,欧盟与美国在温室气体减排方面都采用有低碳标准,如欧盟要求轻型机动车生产企业出产的小客车在2015年前达到行驶每千米排放不超过135gCO2的标准(135gCO2/km),到2020年进一步降低至行驶每千米不超过95g(95gCO2/km)[22];美国加利福尼亚州为实现2050年在1990年碳排放水平上减排80%的目标,设定了可再生能源比例标准(renewableportfoliostandard),要求到2020年受管制设施利用替代能源量占其能源总量的33%①。
(二)碳排放权制度与低碳标准制度的应然关系
碳排放权制度与低碳标准制度各有其适用范围,对于同一排放源,不能同时适用。
1.在无法适用碳排放权制度
减排的领域,可适用低碳标准制度。温室气体减排可从多个领域着手,而碳排放权制度因机制设计复杂,适用范围有限。碳排放权制度要求精确统计排放源的碳排放量,在某些领域这一要求的实现或者不可能或者不经济。例如,数量庞大的居民建筑消耗能源是大量温室气体排放的最终来源,若对建筑朝向、太阳辐射、建筑材料等因素进行综合考虑,设计出低能耗建筑,无疑有助于减少温室气体排放。这一目标,通过碳排放权交易显然难以实现,通过要求居民建筑的设计和建造必须符合一定节能标准的方式则易于达到。低碳标准的适用领域广泛,对碳排放权制度无法覆盖的领域,可通过低碳标准制度减排。2012年《气候变化应对法》(征求意见稿)第42条规定交通工具应当符合温度控制标准、节能标准、燃油标准和温室气体减排标准;第43条规定城镇新建住宅应当符合国家和地方新建建筑节能标准。
2.在适用碳排放权制度
减排的领域,不应再适用低碳标准制度。根据碳排放权交易实现减排的作用原理,在实施碳排放权制度时,企业可基于成本收益的考量,自主决定是通过自行减排的方式还是从市场中购买碳排放权的方式达到排放要求,自主决定是采取此种措施减排还是彼种措施减排。易言之,碳排放权制度不要求所有企业一律减排,企业具有自主选择的灵活性,可以采用此种方式减排也可采用彼种方式减排,只要企业的碳排放总量不超出其配额拥有量即可。碳排放权制度所具有的降低社会减排总成本的功能,正是建立在企业可根据自身实际情况自由选择低成本的措施达到碳排放要求的基础之上。在低碳标准制度下,所有企业不论减排成本高低,一律被强制要求达到某种碳排放标准,或者符合某种技术要求,企业没有自主选择决定的空间。对某企业适用低碳标准制度,该企业就不能自由选择减排与否与减排方式,从而有碍碳排放权制度发挥作用。由此可见,碳排放权制度的柔性与低碳标准制度的刚性具有内在的冲突,对同一排放源二者不能同时适用,否则低碳标准制度将会给碳排放权制度的实施造成羁绊。这一点已经为中国与美国曾经开展的二氧化硫排放权交易实践所证明。中国《两控区酸雨和二氧化硫污染防治设施“十五”计划》要求137个老火电厂全部完成脱硫设施建设[13]。强制要求电力企业安装脱硫设施减排,与排放权制度下企业可自行决定不减排而从市场购买排放权达到排放要求以及可自主选择减排方式的机理明显相悖。在制度设计上未尊重排放权制度,又怎能期待其在实践中发挥作用?美国以排放权交易的方式取得二氧化硫减排成功,就在于尊重了电力企业对减排与否与减排方式的选择权,没有以命令控制型措施干扰排放权交易制度的灵活性和成本效率性[23]。2012年《气候变化应对法》(征求意见稿)对碳排放权制度与低碳标准制度关系的处理,集中体现在总则部分第13条第1款:“国家对能源开采和利用实行总量控制制度。企事业单位利用能源不得低于国家或者地方规定的低碳标准,排放温室气体不得超过规定的配额。”根据规定,企事业单位同时适用低碳标准与碳排放权制度。如此规定之下,碳排放权交易难以顺畅运行,其实施效果亦难保障。《气候变化应对法》应合理界定碳排放权制度与低碳标准制度各自的作用范围。一旦决定对某一行业采用碳排放权制度减排,就应当尊重碳排放权制度的作用机理,让低碳标准制度退出该领域。
(三)碳税制度与低碳标准制度的应然关系
碳排放权制度与低碳标准制度不能针对同一排放源重叠适用,不影响碳税制度与低碳标准制度重叠适用。碳税制度的作用机理与碳排放权制度相异,其实施不要求赋予企业选择权,因此与低碳标准制度不相冲突。如果确有必要,碳税制度与低碳标准制度可针对同一排放源重叠适用。如对机动车按照单位里程的二氧化碳排放量征收碳税,并不妨碍对该机动车适用碳排放标准。碳税通过经济诱导的方式促使公众减少对机动车的使用,有助于降低温室气体排放量;碳排放标准对机动车的温室气体排放效率进行最低程度地控制,亦有助于温室气体减排,二者并行不悖。实践中,欧盟对轻型机动车制定碳排放标准,部分成员国如西班牙、卢森堡、葡萄牙等同时又对机动车征收碳税。2012年《气候变化应对法》(征求意见稿)第69条规定“凡是购买或者消费煤炭、石油、天然气、酒精等燃料或者电力的,都应当缴纳碳税”,结合第42条对交通工具适用低碳标准等其他规定可推知,起草者认同碳税制度与低碳标准制度可对同一排放源重叠适用。碳税与低碳标准可重叠适用,不意味着应当重叠适用。对某一排放源是否二者重叠适用,需视具体情况斟酌。
三、结语
关键词:生物固碳,低碳发展;源头;过程;终端;碳交易
收稿日期:20130425
基金项目:教育部新世纪优秀人才资助项目(编号:NCET-11-1031);国家自然科学基金项目(编号:21076117)资助
作者简介:田原宇(1969—),男,陕西武功人,教授,博士生导师,主要从事低碳能源化工工艺设备一体化方面的教学与研发工作。中图分类号:TQ03 文献标识码:A
文章编号:16749944(2013)07015603
1 引言
以减排CO2为标志的绿色、低碳发展,正成为全球性的浪潮。这是因为CO2等温室气体的大量排放,造成的气候变化已成为全球最大的环境问题之一。面对日益恶化的气候现象,它的负面影响更受关注,大力推进经济社会发展与生态环境保护双赢的低碳经济是积极应对气候变化的战略举措。在国际环境和我国内在需要的综合作用下,我国正走向低碳发展的时代。
中国是世界第一大煤炭消费国和第二大能源消费国,2008年CO2排放量已达到60亿t,超过美国而成为世界第一的CO2排放国。根据现在中国的经济发展速度,未来几年内CO2排放量仍将以3%的速度逐年递增。中国已经制定了2020年单位GDPCO2排放量比2005年减少40%~45%的目标。在中国,发展中不平衡、不协调、不可持续的问题相当突出,摆在首位的就是经济增长的资源环境约束强化。作为一个负责任的大国,在降低CO2排放强度的同时,千方百计地减少CO2的排放总量,有助于降低资源环境的约束。另外中国还面临粮食安全和18亿亩耕地红线以及城镇化、工业化的土地需求,能源安全、结构和效率,城乡收入差距加大和以工哺农体系不完善的三农问题,节能降耗与环境保护等诸多问题。
针对上述难题,笔者提出了减碳和固碳结合、以生物固碳为主的低碳化原则,构建以源头和过程碳减排、终端生物固碳并建立国内碳市场实现工农结合的低碳发展模式。
2 从源头避免高碳排放
在现代工业生产过程中绝大多数产品的原料都有多种来源,同时也对应着多种不同的匹配性工艺过程。不同的原料和工艺过程对应不同的CO2排放,针对具体的应用对象开发和选择适宜的原料和工艺,能够从源头上避免产生不必要的CO2排放。这是目前CO2减排最有效的途径,主要通过国家政策和税收、产业结构调整和升级,以及合理的能源定价机制和能源产品价格来引导实现[1]。
以燃煤发电为例,选择低灰精煤和合理的过剩空气系数就能有效降低烟气量,减少无效热量外排,从而提高煤的利用率、减少CO2的排放。同样采用循环流化床燃烧发电、RGCC和多联产发电、超临界发电等均能达到上述目的。
以合成甲烷工艺为例,选择褐煤和长焰煤采用燃气型的鲁奇炉气化和循环流化床分级热解气化要比合成型的气流床气化生产的合成气甲烷含量高(约10%左右)、氧耗低;合成甲烷时产生较难利用的低温热源减少10%以上。从整个合成甲烷工艺核算,前者煤的利用率高、能耗和氧耗低,同样规模的合成甲烷,自然就减少了CO2的排放。对于循环流化床分级热解气化,固态排渣相对换热容易,水封用水量较低,加之循环流化床分级热解气化相对鲁奇炉气化合成气不含煤焦油,不会产生含酚废水,因此循环流化床分级热解气化合成甲烷的工艺过程能耗更低,更有利于避免高碳排放。
另外煤化工发展含氧化合物燃料和多联产工艺、民用燃料采用天然气、大力发展核能、水电、风能和生物能、化工行业大力实施循环经济、发展纯电动汽车等均能实现从源头避免高碳排放。
3 过程减少碳排放
在经济活动过程中,开采、生产、使用和终端产品消费等各个阶段都需要能耗,都存在能源使用效率。我国目前万元GDP能耗水平与发达国家有较大差距,物理能耗水平约比国际先进水平高20%~30%左右。例如2007年,我国每千瓦时供电耗煤比国际先进水平高44g标煤,每吨钢能耗水平比国际先进水平高58kg标煤,每吨水泥综合能耗水平比国际先进水平高31kg标煤,分别高出14%、10%和24%。另外生产的产品利用率偏低,又变相地增加了能耗。通过优化设计,使用高效节能的工艺设备、高效适宜的催化剂和合理使用优质产品均能实现节约能耗,减少终端产品的使用量。减少终端产品的使用量就是相应减少了产品生产量,避免生产这部分产品产生的能耗。节能降耗自然就减少了CO2的排放,这是目前CO2减排最容易实现、成本最低并且具有较大收益的途径[2],在国家政策强制下均能通过企业自身调整和改造来实现。
对于现代煤化工的龙头——大型煤气化来说,空分是投资和能耗均占气化工艺50%左右的必不可少的过程,其产品主要是液氧,副产的液氮只需使用部分产量,其余的均被低效利用或排放。如果采用深冷分离为主的梯级分离工艺,大部分氮气组成在低压端就作为产品气外送,无需经过空气压缩机高能耗加压,最终产品主要是液氧和部分液氮,工艺所需的高压氧气通过泵液体低能耗加压即可满足。这样大大降低了空气压缩机的处理量和能耗,从而达到降低气化工艺投资和能耗的目的。
利用化石能源花费巨大的能耗和成本生产的氮肥,由于我国化肥产品落后、使用工艺不当和不合理施肥,利用率仅有30%左右,不到发达国家的一半,不仅造成了浪费,而且造成了严重的面源污染。如将现有的化肥改造为缓控增效肥料,并采用相应的耕作模式,就可提高作物产量和品质以及化肥使用效率,从而减少了肥料的消费量和生产这部分肥料的所产生CO2排放。
化工行业合理选择高效催化剂以及分离、反应、换热和泵送高效节能设备,采用调频技术等可以大幅度降低能耗。蒸馏是化学加工工业中首选的均相体系分离技术,也是目前总能耗最大的化工分离过程。如将梯形垂直长条帽罩与规整填料有机结合的NS倾斜长条立体复合并流塔板用于改造F1浮阀塔板,阀孔动能因子高达34,开孔率高达40%以上(国内外目前塔板最大开孔率仅为20%左右),提高处理能力2倍以上(目前国内外最高提高70%)、降液管通过能力3倍以上,降低板压降30%以上,同时提高板效率30%以上,操作弹性为4倍,解决了塔器大型化塔内件结构和安装难题,这在国内外尚属首例[3]。
各行各业节能降耗技术和产品枚不胜举,这是目前我国实现CO2减排的最有效途径,仅需要相关部门和协会优化集成,加大推广力度。
4 终端的固定与储存
经济活动只要消耗资源和能源,必然会产生碳排放,没有绝对的零碳排放过程。由于化石能源使用量剧增,自然界碳循环每年出现约257亿tCO2的过剩,逐年累计引发了日益变化无常的全球气候问题。目前国内外相关企业和学者为了应对全球气候变化,普遍关注、研发和实施CO2的捕集与封存,这是迫不得已和最终解决CO2减排的方法,也是实施起来成本过高,并且技术不成熟,存在诸多的风险和次生灾害。
实际上,解决人为排放的CO2过剩,除了被动地减少CO2产生量,更为积极的措施是加快碳利用,增加CO2消耗量,主动减少CO2的过剩,从而在碳循环中实现碳平衡。这是突破碳减排对经济发展影响,实现工农业同时快速发展的积极有效途径。这既是个技术问题,也需要建立国内碳市场,通过合理的碳交易,对企业间、行业间和地区间CO2排放的不平衡,找到一个较好的解决办法。
目前尽管中国GDP已超过日本成为第二,但人均很低,仍处于发展中,经济还不完善,生活还不富裕,然而中国已成为世界第一大CO2排放国,并逐年递增。发展经济与减排成为我国两难的选择,加之存在国家能源安全、粮食安全、耕地与城镇化和工业化、以工哺农、三农问题和环境保护等战略性难题,被动采取减少CO2产生量的捕集与封存措施,将会对我国经济的发展和上述诸多难题的解决带来限制和障碍。
针对我国的国情和发展的现状,结合国际碳减排的机制,不同CO2浓度的工业排放可采用不同的减排与固碳措施。现阶段,对于工矿企业主要排放源的低浓度CO2,可以采取低成本的异地生物固碳减排措施,加快碳循环和碳固定。这样不仅可以实现CO2实际排放量的减排,同时可以改良土壤增加有效耕地面积,大量增加粮食和生物质能,从而在逐步提高人民生活水平的前提下,低成本大力发展低碳经济,同时兼顾解决国家能源安全、粮食安全、耕地与城镇化、以工哺农、三农问题、淡水资源不足和环境保护等战略性难题,满足我国今后较长时间的减排要求,提高我国应对全球气候变化的实际能力和国际地位。
对于如煤化工和石灰等行业排放的高浓度CO2(90%以上),采用捕集技术回收,通过制造干冰、用作合成尿素、水杨酸、环碳酸酯和聚碳酸酯等的原料以及CO2驱采油、农业大棚CO2气肥等,都是成本和能耗较低、减排和经济效益较好的方法。
对于数量多、分布广的如发电和中小锅炉等排放的低浓度CO2(小于16%),工矿企业现阶段无需采用集中固碳处理,可以利用国内碳交易实现异地化低成本固碳。根据我国目前的土地分布、土壤组成、农业现状和生物能源地发展,以及工农业发展不平衡和剪刀差等具体情况,对于低浓度CO2烟气,工矿企业可按照CO2排放量,将用于集中固碳处理的投资和操作费用,拿出来反哺农林业。政府或相关机构把这部分资金集中起来,用于改造中低产田,提高粮食单产、品质和生物质产量;改良非耕地、盐碱滩涂、沙漠化和重金属污染等退化土壤,利用现代农业技术种植适宜的速生能源植物和农作物,发展碳汇林和牧草或改造退化草原,充分利用太阳能,加快碳循环,增加CO2消耗量,主动减少CO2的过剩,从而实现循环平衡。同时又大幅度提高有效耕地面积和生物质能源产量,热解生产生物原油,增加了农民的收入,降低了企业CO2减排的成本,从而实现工业、农业、政府和社会的多赢。这个方法可以简单概括为一条工艺路线:企业出资形成碳汇基金——投资农林业——改良土壤、增强碳汇能力——增加粮食和生物质产量——通过工业热解生产生物质原油——多方受益。
将生物质转化为能源燃料时,无需考虑生物质作为食品时所需顾及的转基因和有毒有害微量物质问题,转基因物种在产量提高、种植地域和污染土壤修复中均能产生巨大的经济、环保和社会效益。生物质快速热解液化技术是最好的碳利用出路和产品,从而加快了碳循环,实现了碳循环平衡[6]。
另外,利用生物质不到7d的快速腐化生产腐植酸,作为有机肥提高土壤的腐殖质,有利于提高土壤肥力和保肥保水性,进而提高农作物产量。将我国绝大多数土壤腐殖质含量不足1%提到2%左右,这也将是一个千亿吨级的土壤安全储碳方式。
2013年7月 绿 色 科 技 第7期5 结语
(1)针对具体的应用对象和原料提出了开发和选择适宜的原料和工艺,从源头上避免产生CO2排放的措施,是目前CO2减排最有效的途径。
(2)提出在能源开采、生产、使用和终端产品消费全过程中节能降耗,从过程减少CO2排放的措施,是目前CO2减排最容易实现、成本最低并且具有较大收益的途径。
(3)针对不同浓度CO2废气采用不同的适宜捕集、利用和固定措施,提出了我国现阶段工矿企业通过国内碳交易,利用异地生物固碳的低成本减排措施,在确保经济增长、逐步提高人民生活水平的前提下,工农业合作,合理利用CO2,发展低碳经济,兼顾解决国家能源安全、粮食安全、保护耕地与城镇化、以工哺农、三农问题、淡水资源不足和环境保护等战略性难题,实现工业、农业、政府和社会的多赢,能够满足我国今后较长时间的减排任务,从而提高我国应对全球气候变化的国际地位。
参考文献:
[1] 田原宇,乔英云.高碳能源低碳化途径的探讨[M].武汉:美国科研出版社,2010.
[2] 谢克昌.重视高碳能源低碳化[J].中国人大,2009(18).
[3] 乔英云,田原宇,谢克昌.NS倾斜长条立体复合塔板在工业中的应用[J],石油化工设备,2009,38(3):78~80.
[4] Qiao Yingyun,Tian Yuanyu1,Xu Jingfang,et al.The effect of the structure parameter to NS efficient composite trays(Ⅰ) the effect of aperture and openning fraction on NS efficient composite trays[J].China Petroleum Processing and Petrochemical Technology,2009,3(1):26~31.