美章网 精品范文 能源动力和动力工程范文

能源动力和动力工程范文

前言:我们精心挑选了数篇优质能源动力和动力工程文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

能源动力和动力工程

第1篇

【关键词】热能;动力工程;能源

中图分类号:TK22 文献标识码:A 文章编号:1006-0278(2014)03-180-02

近年来,随着工业的快速发展,我国锅炉的种类也逐渐增多,但是在锅炉的制造和应用方面还存在不少的问题,主要是能源利用效率比较低的问题。因此,如果提高能源利用效率成为我国热能与动力工程研究的方向之一。在本文中,笔者结合自身工作实际,从我国现阶段热能与工程发展情况入手,分析了热力动力工程和能源的发展状况。

一、热力动力工程及其未来发展方向

(一)现阶段的热力动力工程研究情况

我国的热力动力工程专业是在上世纪五十年代形成的,而它的兴起则是在前苏联,这个专业下面还包括几十个小专业,主要与偶电厂热能、制冷、锅炉,以及空调空城、低温、内燃机等等。而在我国实行改革开放之后,尤其是进入新世纪之后,这些小专业逐渐压缩成为九个小专业,前不久有被合并成为一个专业。在我国的大多数高校开设了热能与动力工程专业。

热能与动力工程专业的研究内容包括两个方面,一个是热能,一个是动力,它是一门技术性和应用性均非常强的专业,涵盖的知识领域主要包括机械工程、工程热物理、热能动力工程。此外,还包括能量转换和有效利用的理论和技术等,制冷装置、动力工程、动力机械等也属于这一专业的知识领域。该专业的应用领域也比较广泛,可以说是我国科技发展的基础专业所在。随着我国社会主义市场经济体制的逐步晚上,社会需求的不断多样化,以及科学技术的应用发展,均称为其发展的挑战。

(二)热能与动力工程的发展方向

热能与动力工程的发展方向首先表现在动力控制工程的发展方向,其研究发展需要掌握动力测试技术、汽轮机原理、动力机械设计、热工自动控制,以及燃烧污染与环境、锅炉原理、传热传质数值计算等方面的知识;其次,在热力发电机与汽车工程发展方向上,则需要掌握内燃机原理、燃料和燃烧、热力发动机的排放、环境工程理论,以及内燃机电子控制、低温技术学等方面的知识。

此外,在水利水电工程发展方面还需要掌握水轮机原理、水力机组辅助设备、现代控制理论、电机学与发电厂电气设备等方面的知识。

二、工业炉的发展状况

在工业生产领域,工业炉的作用比较大,在推动工业生产方面发挥着独特的作用。工业炉是一种热能转化装置,通过燃烧来产生热量,然后用燃烧产生的热量来加工物料和工件。在工业生产当中,工业炉是比较重要的生产设备,当前,工业炉在工业生产的各个领域均有应用,而且品种比较多,有力推动了工业生产的发展。早在商周时期,我国已经制造出功能强大的锅炉,随着工业生产的发展,锅炉逐渐发展成为当前的工业炉。所以,锅炉可以说是工业炉的一种特殊形式。相关的统计结果显示,在我国的12个行业当中,工业炉装备在12万台以上,其中,机械制造行业的工业炉占到了总数的67%,而工业炉有可以分为燃烧炉和电炉。现阶段,多数行业使用的是工业炉。而这两种工业炉中,燃烧炉的使用范围最广,有力推动了我国工业生产的发展。

三、工业炉燃烧控制技术的应用

若想比较好地控制热能动力工程锅炉内的燃烧,控制炉内的温度,必须控制能量转化幅度。在过去,锅炉燃烧均是使用人力向锅炉内添加燃料,通过这种方式来保证锅炉的连续工作。但现阶段,不少企业已经采用了步进式锅炉自动控制技术来控制燃料的添加。在下文中,笔者介绍两种锅炉燃烧的控制方式。

(一)空比例连续控制系统

空比例林旭控制系统由气体分析装置、燃烧控制器等部件构成,通过检测热电偶来设定燃烧数据;利用计算机技术计算出燃烧的偏差值,保证输出结果的准确性,实现对锅炉燃烧的控制。不过相关的研究表明,通过这种方式控制燃烧,常常会会出现偏差,计算结果的准确性会大幅降低。

(二)双交叉限幅控制系统

双交叉限幅控制系统,主要由热电偶、烧嘴和流量阀等组成。但是从另一个角度来讲,即通过温度传感器,把需测量的温度转换成电信号,之后,在计算所需测量的温度是不是与预先设定的温度相同,从而实现对锅炉内燃料燃烧的有效控制。锅炉采用这种燃烧控制方式,主要有两个方面的好处,一是可以节省能源和部件,二是可以实现对锅炉内温度的精确控制。实践证明,这种控制技术的应用效果非常好,值得在热能动力工程中应用和推广。

除此之外,控制热能动力工程锅炉内的燃烧温度,还应结合工程的需要,合理选用燃料。众所周知,有些燃料的燃烧控制较容易,而有些燃料燃烧较剧烈,控制相比较难,这就要求在锅炉内填充燃料前,合理选择燃料,通过对比燃烧点、燃烧所持续的时间等确定使用哪种燃料。

四、仿真锅炉风机翼型叶片

在锅炉的内部,有着不少的叶片,这些叶片在燃料燃烧的过程中会通过自身的转动形成复杂的流畅,主要的特征便是非定长。因此,通过相关的实验来检测其性能有着比较大的困难。现阶段,也缺乏健全和完善的流体力学理论知识来解释其中发生的各种现场,比如流动分离现象、失速现象和喘振现象等。在这种情况下,就需要通过流动实验和数据模拟来探测机械内部的流动问题。

五、热力动力工程在能源发展方面

(一)能源方面存在的问题

当前,世界各主要经济体的经济复苏迹象逐渐明朗,随着世界经济的复苏和持续发展,能源供应紧张的局面将会加剧,世界各国将会更加重视本国的能源安全问题,在采取行之有效的能源战略同时,加快各种能源利用新技术和新工艺。而能源动力工业作为我国国民经济和国防建设的支柱性产业,在推动国家经济发展方面做出了突出的贡献。所以,必须提高能源利用效率,缓解能源紧张的局面。

而热电厂的风机,是一种可以产生能源的机械装置,通过轴旋转产生的气流,可产生大量的动能,在发电厂、工业生产和锅炉生产过程中具有广泛的应用。对于一些发电机组来说,随着电力需求的增加,电网的运行将会更加的安全和可靠,所以,这对于风机的应用也就提出了更高的要求。

(二)能源方面的发展前景

人类社会赖以发展的重要基础便是能源,能源在确保人类社会的可持续发展方面有着巨大的作用。在世界能源形势不容乐观的形势下,如果更加合理高效的利用能源,成为世界性的研究课题。当前,我国的能源利用主要以煤炭和电能为主,也就是在能源利用结构中,煤炭是核心,我国是以煤炭为主的能源利用结构。这种能源利用结构,一方面会对环境产生比较大的影响,造成生态环境和大气环境的严重破坏,一方面会消耗大量的能源,过度消耗煤炭资源,使我国的能源供应日益紧张。

在这样的形势下,在我国能源供应日益紧张的形势下,我国能源的主要发展方向是“新能源、核能、智能电网、常规能源、节能减排”。而热能与动力工程符合我国能源发展的大体方向,可为我国能源结构的合理优化做贡献。

第2篇

【关键词】热力动力工程;能源;锅炉仿真

热能动力工程专业的应用性增强,它主要是以机械工程学和跨热能动力工程作为理论基础,通过热能和机械能的转换,来产生动力。而锅炉正是能量转换的工具,只有在锅炉进行合理的设计,才可以达到一定的使用效果,最近几年,我国锅炉的种类逐渐增多,但在锅炉的制造和使用方面,还存在很多问题,这样导致能源的利用率较低,所以怎样才能提高能源的利用率是目前国家热能动力工程方面需要研究的问题。

1.我国当前动力工程的情况以及发展趋势

1.1我国当前动力工程的发展情况

我国热力动力工程专业形成于20世纪50年代,兴起于苏联,主要包括的学科有锅炉、电厂热能、内燃机、压缩机、制冷、低温、供热通风与空调工程等几十个小专业。而在我国,改革开放之后,我国由几十个小专业压缩为九个,随即不久,就从原来的几十个专业合并为一个专业,目前我国已有120多所高效舍友热能与动力工程专业。

对于热动主要研究的方面是热能与动力,是一种应用性强的专业,主要学习的基础知识有:机械工程、热能动力工程和工程热物理,还要学习能量转换以及有效利用的理论和技术,掌握制冷空调设备、制冷装置、动力机械与动力工程、流体机械等设计、制造和实验研究的基本技术。这个专业在很多领域上有着很广泛的应用,同时也是我国科技发展的基础方向。随着我国的经济发展,市场经济的建立,社会需求和经济分配状态以及科技发展的趋势等都成为我国现阶段的挑战,也是当前本专业在我国教育发展的主要方向,而且热动也是当前动力工程师的基本训练。

1.2我国当前动力工程的发展趋势

首先是在动力控制工程方向发展,主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。其次是在热力发动机及汽车工程方向上主要掌握内燃机原理、内燃机的结构、设计、测试、燃料和燃烧,还有热力发动机排放、环境工程概论以及内燃机电子控制、热力发动机传热和热负荷等方面的知识。在制冷低温工程和流体机械方向上,需要掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。除此之外,在水利水电工程方向上主要掌握掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

2.工业炉的发展

工业炉的作用是将燃料燃烧产生的热量,用来对物料和工件加热。工业炉是工业加热的关键设备,广泛应用于国民经济的各行各业,量大面广,品种多,影响极大。我国在很久以前就出现了很完善的炼铜炉,随着技术的发展,炼铜炉发展迅速。而发展到现在,据不完全统计,全国12个行业县以上企业,工业炉装备11万台以上,机械行业占7.5万台(占炉窑总数66%)。工业炉中燃料炉约6万台,占炉窑总数55%以上,电炉绝5万台。也就是说大部分地区都在使用工业炉,而燃烧炉又是工业炉中使用最多的,所以对于工业炉发展对于我国的工业发展有着很重要的作用。

3.关于炉内燃烧控制技术的运用

对于燃烧控制技术是当前步进炉发展的核心技术之一,而当前控制技术已逐渐由原来的手动控制转换为自动控制,而当前加热炉选用的自控方式主要有空燃比例连续控制系统以及双交叉限幅控制系统。

3.1空比例连续控制系统

该系统主要由烧嘴、燃烧控制器、空气/燃气比例阀、空气/燃气电动蝶阀、空气/燃气流量计、热电偶、气体分析装置、PLC等组成。工作原理是由热电偶或气体分析装置检测出来的数据传送到PLC,由此得到的偏差值按比例积分、微分运算分别对空气/燃气比例阀和空气/燃气电动蝶阀的开度进行调节,可以达到控制空气/燃气比例和炉内温度之目的。

3.2双交叉限幅控制系统

该系统主要由烧嘴、燃烧控制器、空气/燃气流量阀、空气/燃气流量计、热电偶等组成。工作原理是:通过一个温度传感器热电偶把测量的温度变成一个电信号,该信号表示测量点的实际温度。

4.仿真锅炉风机翼型叶片

对于锅炉的叶轮机械内部,流场复杂,有着非定长特征,所以在实验检测方面就会有很大的困难,而目前没有完善的流体力学理论解释诸如流动分离、失速和喘振等流动现象,需要流动实验和数值模拟了解机械内部流动本质。

5.热能工程技术在能源方面发展

5.1在能源方面出现的问题

对于当今世界,各个国家都很重视能源的问题,而能源动力工业又是我国国民经济与国防建设的重要基础和支柱产业,所以在国家各方面的发展上起到了很重要的作用。对于风机,是一种能源利用中产生的机械,它本身装有多个叶片,通过轴旋转推动气流,这种风机主要广泛应用在发电厂、锅炉和工业路遥的通风和引风,对矿井、隧道、冷却塔、车辆、船舶和很多大型的建筑物实现内部通风,同时实现排尘和进行冷却。对于在一些发电站里,随着机组的发展,电站需要向更安全、更可靠地方向发展才行,所以电站对风机也提出了更高的要求,解决掉一些安全问题,像锅炉经常出现烧坏电机、窜轴、叶轮飞车等事故,这种事故严重危害到设备的使用以及工作人员的生命安全,同时在经济方面也有大量的损失。

5.2在能源方面的发展前景

能源是人类社会赖以生存和经济可持续发展的重要物质基础,所以怎样让能源更合理的开发和使用就会很大程度上推进世界经济和人类社会的发展,而我国经济发展同样离不开能源,当前我国在能源发展方面主要以“新能源、核能、只能电网、常规能源、节能减排”为主要发展方向,而热能与动力工程专业正是符合国家的能源战略发展方向,通过结合很多门专业课程的学习,来培养能适应国家能源领域快速发展要求的高级研究应用型人才。

6.结语

本研究主要根据我国热能动力工程在锅炉方面的应用和发展做了一些研究,在锅炉的燃烧控制方面,在燃烧方式、风机的旋转问题以及资源利用率方面做出了一系列的分析和阐述,总结出热能动力工程无论在锅炉的发展或是其他方面都起着很重要的作用,通过结合和利用一些理论知识能够转换成实际的应用,将更利于热能动力工程的发展。

参考文献

第3篇

关键词:能源与动力工程 专业核心课程 建设

中图分类号:G64 文献标识码:A 文章编号:1003-9082(2015)04-0290-01

能源与动力是国民经济发展的基础,该专业发展的好坏程度直接关系到能源与动力方面的人才培养质量。在上个世纪50年代,我国能源与动力工程专业就开始形成,受当时社会政治经济及教育体制的影响,该专业发展水平层次不高,专业分割过细等问题突出,需要对其进行调整才能够适应当前我国社会经济的发展水平。本文接下来将对能源与动力工程专业核心课程体系做出具体的分析探讨。

一、能源与动力工程专业核心课程体系的发展现状

1.专业研究领域的扩展对人才知识结构提出了新要求

能源与动力工程这个专业名称是热能与动力工程专业在2012年调整之后更名的,2013年正式更名使用并招生。专业名称的改变反应其教育内容的变化,相对而言,其涵盖的内涵比热能与动力工程专业更宽广。能源与动力工程专业与化学及其环境工程专业的关系更加密切,而不仅仅局限在传统的能量转化与利用。当前,我国新能源和可再生能源得到了较大程度的开发利用,因此,形成了较大的生产研究领域,急需要这方面的高级专门人才投入到生产实践中。这样的能源使用现状,为高校能源与动力专业的毕业生提供了广阔的就业前景。然而,当前的专业培养计划中,并没有适当的课程内容来适应当前的发展需要,总学分不足,教学科目较少的问题需要引起足够重视。

2.人才的培养模式不适应社会的发展需要

能源与动力工程这个专业相对于变名之前的专业而言,涵盖的范围更加宽泛,不仅仅包括原来的热能工程及其动力机械,还包括热力发动机、制冷低温工程等。这种宽口径的人才培养模式使得高校所培养的人才具有广阔的知识储备,增加其就业面和职业的适应能力。当然,这种宽口径的培养模式也会出现一些不利的影响,例如:人才的培养不够专业,不能够满足企业对人才某一方面知识技能的需求。这种培养模式下的毕业生,即使到了工作岗位上,也还需要经过一段时间的实践学习及在职培训才能够满足用人单位的任职要求。

3.专业核心课程体系的构建不利于学生个性化的培养

大学期间是人生观、世界观和职业观形成的关键时期,对以后的职业发展具有重要作用。在同一个专业里,有些人喜欢动力机械,有些人喜欢制冷空调,还有些人喜欢发电等,这就导致毕业生以后的职业选择出现差异性。当前素质教育的号召下,要求学生个性发展,在各个专业的培养方案及其课程体系的建设上,要给学生自主选择和发挥的空间,让学生根据自己的兴趣方向来选修自己的课程,从事今后的职业。但是在目前的课程体系中,能源与动力工程专业的学生,四年所学内容基本一致,教学内容不存在明显差别,统一的培养模式很难造就出个性化发展的学生。

4.缺乏有力的实践课程

实践环节的课程设计仍然是当今高校人才培养模式中的通病,离创新性人才的培养还具有很大的一个差异。纵观各校能源与动力工程专业的课程体系,发现其实践环节的设计与理论知识相脱离,不利于实践教育效果的达成。另一方面,实践内容安排不合理,缺乏及时、有效的更新,与国外高水平的高校课程体系相比,教学实践内容明显陈旧,不利于人才质量的提升。

二、建设科学合理的专业核心课程体系

1.增加专业核心课程的设置,建立健全人才培养模式

变名之后的能源与动力工程专业,所涵盖的内涵更加广泛,因此需要拓展课程研究领域,在掌握能源与动力工程专业发展趋势的基础上来设置核心专业课程。在满足人才培养总目标的前提下,完善补充专业培养结构,优化核心教学内容,使高校所培养出来的人才能够满足适应今后社会经济发展的需要,人才的知识结构能够增强毕业生的就业竞争力。

2.明确专业方向,区分专业性

为了避免宽而不专等方面的问题,需要在整个能源与动力专业大类的范围中来统一基础性课程,区分好专业核心课程。统一基础性课程是为了防止学生专业面狭窄等问题的出现,通过专业基础课程的设置和通识课程的讲授,使得学生能够根据不同的专业方向来进行专业核心课程的学习。设置大量的专业选修课程,强化专业实践环节的设置,避免该专业的学生出现“宽口径”和“零距离”的发展矛盾。

3.设置多样化的课程体系,不断满足学生个性发展需要

高校课程制定者要设立柔性的专业课程体系,建立起多元化的课程结构来不断的满足该专业学生的个性发展要求。学生按照自己的兴趣爱好来选择自己的专业学习模块,进而从事自己选择的职业类型。一般情况下,课程体系包括研究型和应用型两种,研究型课程注重基础性知识的学习,为以后的考研学习打下坚实的基础,应用型课程注重实践教学环节的设置,主要培养学生的就业创新性能力。这样的课程体系,可以从多方面满足不同学生的发展需要。

4.优化专业教学内容,促使理论与实践的结合

理论与实践知识的学习不可此消彼长,需要在强化实践教学环节的同时保障理论知识的学习。在总学习不变的前提下,要合理分配理论实践课程,可以通过其他公共课程的压缩来保障专业核心课程的比重。在对学生进行课程设计的同时,可以将理论知识的教学贯穿在实践环节之中。根据最新的就业形势来调整教学大纲,编写教材,尽量将最前沿的研究成果融入到日常教学成果中。

三、总结语

总而言之,课程体系的构建和课程内容的优化是一项长期的过程,需要高等教育领域的研究专家和教育教学工作者共同努力。能源与动力工程专业核心课程体系的建设,需要在社会经济发展,人才需求变更的基础上进行调整。在考虑本校实际专业特色的基础上,合理配置专业核心课程的师资队伍,改革教学方法,更新教学内容,注重教学实践环节的增强,最终朝着提高人才培养质量的方向前进。

参考文献

[1]邱洁;关于能源与动力工程专业课程体系改革的思考[J];课程教育研究;2013(9).

[2]余万,陈从平,徐翔,赵美云;能源与动力工程专业核心课程体系建设的研究[J];教改教法;2014(2).

[3]衣秋杰,杨前明,孔祥强,李志敏;热能与动力工程专业主干课程立体教学体系建设初探[J];中国会议;2006(4).

第4篇

可见,战略性新兴新能源产业的发展离不开新能源科学与工程等专业,而且,新能源产业的发展同样离不开能源与动力工程专业的参与。同时,战略性新兴新能源产业的发展,为能源与动力工程专业的建设带来挑战与机遇,因此,需要加强能源与动力工程专业建设,满足新能源及常规能源发展对人才的需求。

能源动力类专业是战略性新兴的新能源相关产业及新能源科学与工程等专业的发展基础

战略性新兴产业如新能源学科与工程等专业的发展需要以传统优势学科为其基础。传统产业的基础和发展现状将影响战略性新兴产业的形成与发展,战略性新兴产业的发展也将从传统产业的发展中获取帮助。能源动力类专业涉及的多是传统产业,而新能源科学与工程专业所涉及的是战略性新兴产业,因此,能源动力类专业的发展直接影响到新能源及其新能源科学与工程专业的发展。新能源科学与工程专业涉及的学科领域广泛且属交叉学科,涉及物理学、能源与动力工程、电子科学与技术、自动控制、材料科学、机械工程、化学等多个基础学科。新能源科学与工程专业是一个典型的多学科交叉专业并强烈地依托于能源与动力工程等工程技术的发展。基础学科是催生和促进新的学科领域特别是交叉学科、新兴学科发展的源泉。战略性新兴新能源产业及新能源科学与工程专业的发展离不开孕育其出生的能源动力类专业,能源动力类专业作为其发展的基础与源泉,并为新能源科学与工程专业的发展提供强大的理论基础。

国内外高校的新能源科学与工程专业的课程设置与能源与动力工程专业的设置有共同之处,如均以流体力学、工程热力学、传热学等作为专业基础课。国内已开设的新能源科学与工程专业的人才培养课程体系可知,大部分培养方案体现了能源动力类专业的学科基础(包括流体力学、工程热力学、传热学等),这些均与教育部新修订的《普通高等学校本科专业目录(2010)》中,将新能源科学与工程专业设为能源动力类特设专业的要求是一致的。北京工业大学新能源科学与工程专业的实践教学方面,主要依托热能与动力工程北京市实验教学示范中心的实践教学平台,并借助重点实验室的科研优势和动力工程及工程热物理学科优势,进行新能源科学与工程专业的创新性实验项目研究。

综上所述可知,国内大多数高校的新能源科学与工程专业多是建立在原来的能源动力类专业基础之上的,能源动力类专业是战略性新兴的新能源相关产业及新能源科学与工程等专业的发展基础,因此,需要深入探讨能源与动力工程专业的人才建设。

战略性新兴的新能源产业发展对能源动力类专业人才培养的需求

自2010年7月教育部下文开办新能源科学与工程专业的建设已有4年时间,该专业的发展取得了很大的进步,该专业主要是学生通过学习各种类新能源的特点、利用方式和方法以及新能源应用的现状、未来发展的趋势,学习动力工程及工程热物理学科宽厚理论基础,系统掌握新能源与可再生能源转换利用过程中所涉及到的能源动力、化工、环境、材料、生物等专业知识,培养具备热学、力学、电学、机械、自动控制、能源科学、系统工程等宽厚理论基础,受到新能源转换与利用以及新能源利用技术与设备的全面训练,具备能源科学及工程知识与现代信息技术,具有良好的团队合作精神和国际视野,具有较强工程实践与创新能力的专门人才。

经过近几年的发展,新能源科学与工程专业的人才培养目标及课程体系的设置取得了很大的进步,但是,从新能源科学与工程专业的人才培养目标以及课程设置体系设置的分析,可以看出,其侧重于将风能、太阳能、地热、生物质能、核电能等各种“新能源”如何高效的转换为“中间能源”,如将将太阳能转化为热能,生物质转换为生物油,将风能转化为机械能,将潮汐能转换为势能等“中间能源”。但是,新能源要高效地为我们所利用,还需要将这些“中间能源”合理高效转换为可以利用的“二次能源”如电能以及可以直接应用的生物油等,这些“中间能源”的高效转换需要有能源与动力工程专业的参与才能够高效完成“中间能源”向“二次能源”的转换。

因此,在大力发展新能源相关产业及新能源科学与工程专业的同时,对能源与动力工程专业的发展提出了新的挑战与机遇,需要针对新能源科学与工程专业设置的不足之处,针对各种“中间能源”的特点及转换特点,制定出合理的能源动力类专业的人才培养方案,使其与新能源科学与工程等新能源相关专业形成互补,共同完成从“新能源”向“中间能源”再到“二次能源”的高效转换,将新能源的利用率发挥到极致。

基于战略性新兴的新能源产业发展背景下的能源动力类专业人才培养的探讨

国内开设有能源动力类专业的高校有100余所,通过查阅并归纳国内各个高校能源动力类专业的人才培养目标:着力培养拥有扎实的动力工程及工程热物理学科宽厚基础理论与专业知识,并具有较高的人文社会科学和管理学的知识,系统掌握热力科学、控制技术和计算机应用技术、能源高效转换、清洁利用及其自动控制与运行的专业知识、基本技能及学科发展动态,具有较强的工程意识、工程素质、工程实践能力、自我获取知识的能力、创新素质、创业精神、社会交往能力、组织管理能力和国际视野的高素质人才。

根据战略性新兴产业之新能源发展的要求以及新能源科学与工程专业人才培养的特点,结合能源与动力工程专业的人才培养目标以及当今能源动力类专业自身发展的需求,提出了能源与动力工程专业人才培养的一些建议。

针对新能源产业的发展,调整能源与动力工程专业的人才培养课程体系

针对新能源产业的发展特点,以及新能源的能源转化特点,适当调整人才培养目标及课程体系使之满足新能源后续利用对人才的需求。如太阳能的热利用过程中,可设置高效吸收、储存及释放太阳能(热能)的相关课程,以及高效利用其储能材料释放的热能的动力机械的相关课程,完成从“新能源”(太阳能)到“中间能源”(储能材料所储存的热能)再到“二次能源”(如电能)的高效转换;可以添加高效热解生物质转换为高品质的生物油(“中间能源”)的课程,以及开设特定课程来讲解如何将生物油(“中间能源”)转换为可以直接高效利用的“二次能源”或直接将生物油“中间能源”高效利用的课程等等。

构建多层次、不同规格的人才培养体系

能源动力类专业(学科)的人才培养需要分为博士、硕士、本科及专科,满足不同层的人才需求。同时,不同性质的高校在本科层次的人才培养目的是不同的,如研究型大学主要培养学术型以及研究与应用人才、教学研究型大学培养学术和应用型人才为主、教学型大学培养应用型人才为主以及高等职业院校培养应用型学生为主。

加强职业教育与培训,发展继续教育,构建终身教育体系

虽然高校有多层次、不同规格的人才培养方式,可以针对不同层次的人才需求制定相应的人才培养目标并培养出合格的人才,但是,当今科技发展日新月异,知识发展迅猛,技术更新频繁,如果企业引进的人才仅仅靠在学校所学的知识是不能满足企业的快速发展的。总书记在十六大的政治报告中指出:要“加强职业教育与培训,发展继续教育,构建终身教育体系”。因此,需要为已经毕业的能源动力类专业人才制定继续教育培训计划,构建终身教育体系,使能源动力类人才时刻具备最新知识与技能,满足企业发展的需求。

采取的措施可以是要根据不同岗位的人员,帮助其制定终身的自我学习与培训计划,使其获得并完善各种知识与技能;与高校联合制定长期的培训计划,如每年对企业的人才进行专业相关新知识的培训或是按照企业的要求进行专业知识培训;邀请能源动力类的研究院所专家定期举行学术讲座,传播能源动力类的最新技术发展,起到抛砖引玉的作用;可以与行业协会共同举办相关知识的讲习班,使热能工程师掌握相关最新的专业技术;要求企业员工进行培训考证,使他们在考证过程中学习到相关知识,同时也使其保持强烈的学习愿望;出国进行短期培训学习,学习国外最新的能源动力类知识;采取要求每位员自己工定期举办讲座,将其学习、工作或查阅中所获得的知识进行相互交流,使大家能便捷地学习到更多的知识。

建立跨产业、跨领域、跨学科合作的人才培养模式

对能源动力类专业进行教育资源的整合,在培养常规的能源动力类人才基础之上与新能源相关产业合作培养跨产业人才,并与能源动力类之外的领域如化学工程及材料学科合作培养生物质能高效利用与新能源材料相关的专业技术人才。

建立高校与企业、研究院所及国外高校学联合的人才培养模式

高校与企业联合人才的培养主要是让企业里面的既懂理论专业知识和具有丰富实践工程经验的工程师担任本科人才培养(毕业设计)的第二导师,让本科生在毕业设计阶段可以得到实际工程知识的训练,学习到如何将理论知识与实践工程联合起来解决实际工程问题的能力,学习如何将知识转换为生产力。其次,可以让企业参与硕士及博士人才的培养,由于硕士人才与博士人才培养目标不同,因此,对于硕士人才的培养主要是让学生参与企业的技术改革,解决较高难度的实际课题为主。博士人才的培养可以部分参照博士后流动站对其博士后工作人员的要求进行培养,参与企业的产品研发的研究工作。聘请国内能源动力类研究院所的知名专家院士来校进行学术交流,让学生有机会与这些学术泰斗面对面交流,学习他们的思维方式,以及他们所带来本领域的最新专业知识信息。可以聘请国外高校知名教授专家来国内短期讲课,让学生了解国外本领域的最新发展及相关知识。

注重能源动力类人才出国留学培养

选送优秀的学生在完成国内的课程以后,到国外动力类著名高校继续学习先进的能源动力类知识,使人才的培养具有国际水准,这些学生在国外完成本科、硕士或博士的学业之后回国工作,这样就可以为我国能源动力类的建设起到推波助澜的作用,加快我国能源动力类产业及新能源产业的快速发展。

能源动力类人才的后续培养

从高校毕业的博士、硕士、本科及专科具备一定理论知识,但是,这些人才要在企业做出成果,离不开企业的“二次培养”,就是按照不同层次人才的特点安排在不同的工作岗位进行专业技能、技术以及研发的后续培养锻炼,在此过程中培养出能够将知识转化为实际生产力的各个环节上的不同层次的人才,培养出如科技创新的领军人才、科学研究与技术开发人才、高技能的技术创新人才以及实际科技成果的转化人才等。

按照CDIO模式及卓越工程师模式培养能源动力类人才

第5篇

当前各国家关注及面对的首要问题,就是环境和能源动力问题,而且,我国国家经济发展以及人们生活水平的主要物质保障就是能源动力工程,是我国实现四个现代化的前提。加之社会经济的不断深入,电气化机械化自动化的水平逐渐加强,对能源的需求越来越多。总体来说,国家生产总值和能源消耗量是成正比的。能源亦动能产品生产得越多,能源就需要得更多,从而带动社会经济的发展,实现民众生活水平的提高和国家的富裕。并且,在世界上我国属于煤炭生产消费大国,其主要能源动力供给就是煤炭。因此,污染我国大气的主要因素即未能充分燃烧的煤炭,再加上我国不可再生资源的开采程度及年限有限。所以,在能源动力及环境保护双重任务下,我国还面临着能源利用不充分,匮乏优质能源,及开发力度不足等问题。随着我国依赖国际能源的程度不断提高,能源安全迎来了新的挑战,须知,一个国家经济发展的动力命脉是能源。因能源问题导致的国家战争,而带来的领土问题更是数不胜数。因此,能源动力工程关系着国家安全、人们实际生活这两方面。众所周知,我国是人口大国总人口数占世界人口的五分之一,要落实解决民众生活问题,就必须加强农业发展力度,而农业发展就必须生产,其生产过程利用的电气化、机械化、水利化和化学化设备需要更多的能源支撑。那么,农业生产要提量还需投入大量能源,也可以说棉花、粮食的增产皆是能源换来的。并且,能源为日常生活换来了更多用品,如:纤维材质的衣服、建筑材质、调节温度及家用电气和照明设备等,都需要能源来支撑,由此可见,没有能源就什么也做不了。此外,国家国防中的各种武器设备使用也需要能源,比如坦克飞机、战舰潜艇等,一旦匮乏能源,就保障不了国家的安全,其经济建设自然难以平稳发展。所以,能源动力工程直接关系着国民经济和人们日常生活,要发展社会提高人们生活,确保人们生活物质和精神两项文明的双丰收,以及实现我国四个现代化,能源将占据这重要的地位,对提高国民经济及民众生活水平和确保国家安全有着巨大现实意义。

2当前能源动力工程的发展方向

2.1能源动力工程思路方向

基于当前国情,要加大传统能源开发利用程度。众所周知,我国现实国情即能源资源少利用效率不足,因此,还需要专业人士对如何提高传统能源开发利用效率程度加以研究,也是我国今后能源动力工程研究工作的重中之重;同时,要重视新型可再生能源的开发。石油煤炭等不可再生能源,其开采受程度和年限制约,由此可见,未来能源市场主战场将转向可再生能源的开发利用,且不能因匮乏资源而放慢经济发展的脚步,所以专业人士千万不能止步不前,要注重新型可再生能源的开发,从而确保我国工业能长期持久的发展;第三,实践理论要并行。由于不同于其他专业,能源开发利用将直接作用国家经济发展与环境保护,可转化为直观的工业产品和经济成果,所以专业人士在校学习时,就要做到理论实践并行,既要专研书本知识,又要进行科学探究和工业时间,促使得出实际结合理论的科技理论成果,从而促进能源的发展经济的腾飞。

2.2能源动力工程环保方向

环境污染不仅威胁着人类的生活,更制约了经济建设社会发展,若没有良好生活环境及可长期利用的能源,那么社会将止步不前,人类也会失去确保发展生存的基础。为实现我国四个现代化,和中国特色社会主义国家的建设,最首要关注的问题便是环境与能源,遏制为发展而先污染后治理现象;同时,要加强环境管理力度,但凡改建扩建新建、建设经济开发区等,都必须遵循环境评价标准,坚持使用环保建设设备及建筑工程主体共同施工设计投产制度;再次,经济发展方式要积极改进,要淘汰陈旧设备选用先进的机械设备,严格禁止污染严重能源消耗多的产品生产;最后,环保资金的投入力度要大,健全完善环保法制制度,严格按国家规定排放标准执行,确保环境保护是在法制下进行。

2.3煤炭清洁技术的利用

(1)净化处理燃烧前煤炭,其流程为:清洗选取煤炭,将煤炭中的灰分等杂质清除减去,洗选处理效率务必要达95%以上;民用煤炭加工,将粉煤与低品位煤炭用机械设备制成相应形状的煤炭产品。(2)净化处理燃烧后煤炭,以湿式或干式脱硫法,确保使用率达到90%左右;以静电除尘方式处理大型电厂燃烧后煤炭,保证除尘率在90%左右。

3结语

第6篇

关键词:能源动力;专业特色;人才培养

作者简介:李嘉薇(1979-),女,安徽萧县人,中国矿业大学电力工程学院,讲师。(江苏 徐州 221116)

基金项目:本文系江苏省“青蓝工程”项目、国家自然科学基金项目(项目编号:50504014)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)22-0073-02

随着改革开放的推进,我国国民经济体制发生很大的变化,社会对人才的培养提出了新的要求。为适应这种要求,1993年7月国家教委颁布的普通高等学校本科专业目录,将之前能源动力类几十个小专业压缩为9个专业。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。2003年,随着能源动力科学技术的飞速发展和新问题的提出,浙江大学率先将热能与动力工程专业改造成能源与环境系统工程专业。2004年,清华大学将热能与动力工程专业改造成能源动力系统及自动化专业。西安交通大学也将热能与动力工程专业改成能源与动力工程专业。

为适应时展要求,经过教育改革,本专业人才培养口径大大拓宽,学生基本知识面得到拓展,对市场需求的适应性大大加强。目前设置本专业的重点高校51所,普通本科63所,三本及民办本科15所,但因专业定位、地域分布、历史传承和社会和国家需求等具体情况不同,本专业形成了各高校间课程设置、专业重点各有特色和培养模式多样化的态势。[1,2]

一、各高校能源动力类专业特色

1.华北电力大学

动力工程和工程热物理是华北电力大学的优势学科,主要侧重于发电侧的研究。[3]开展的研究方向主要有:节能理论技术及热经济学;新能源和新能量转换方式;节能技术;脱硫脱氮技术;燃料电池;大机组设备安全性及可靠性评估;大机组调峰特性及寿命管理;机电一体化;流体机械;大型汽轮发电机组轴系振动;电站锅炉燃烧技术与仿真;纳米及表面技术;设备状态监测与设备维修等。

2.西安交通大学

西安交通大学的动力工程专业是一个宽口径大类专业,其专业地位与综合实力不仅在全国处于领先地位,而且在国际上也具有较高声誉。在2007年国家一级学科评估中,西安交通大学“动力工程及工程热物理”一级学科最终评分位列全国第一,同时被认定为首批一级学科国家重点学科。培养具备扎实的热工理论基础和能源动力工程知识、计算机应用及开发能力,并且能够从事常规能源及新能源开发、能源的转换与利用、电力自动化生产、内燃机动力系统以及汽车工程、流体机械、制冷低温工程等研究、设计及管理的复合型人才是西安交通大学的动力工程专业主要培养目标。

3.浙江大学

该校本专业称为能源与环境系统工程,分两个专业方向:能源与环境工程及自动化、制冷与人工环境。能源与环境工程及自动化方向依托热能工程、热工与动力系统研究所,建有能源清洁利用国家重点实验室、国家水煤浆工程中心燃烧技术研究所,是我国能源高效和清洁利用、能源环境控制工程等领域的重要研究和人才培养基地之一。制冷与人工环境方向依托浙江大学制冷与低温研究所,是我国高等院校中最早创办的制冷与低温专业之一,是国家重点学科,在全国学科评估中连续多年名列前三名,为我国制冷、低温、空调、低温生物等领域培养了大批的高级专门人才。另外单独设有新能源科学与工程专业,学生主要学习新能源、能源低碳利用、新能源利用过程中节能减排的基本理论和技术,涵盖内容包括太阳能、风能、生物质能以及低碳能源利用等方面。

4.东南大学

该专业包含电厂热能动力及其自动化、建筑环境与设备工程、新能源与新发电技术三个专业方向。电厂热能动力及其自动化方向着重培养集现代信息技术和热能动力工程知识为一体的高级工程技术人才和管理人才。制冷与低温技术方向培养学生系统地掌握现代制冷与低温技术领域内的基础理论和专业知识、计算机应用技能。新能源与新发电技术方向是教育部批准设立的战略性新兴产业相关本科专业方向。培养学生掌握新能源与新发电技术方面的基础理论和专业应用知识,使学生具有开发利用核能、太阳能、生物质能、风能等新型绿色能源和可再生能源方面研究、规划、设计、监测、管理和运行等综合能力,为国家新能源利用领域输送急需的高级工程技术和管理人才。

5.华中科技大学

该专业着重培养集能源与动力工程知识与现代信息技术为一体的高级专门技术人才和管理人才。毕业生在电力系统、制冷低温系统、空调调节、汽车、船舶、电子信息、冶金、流体机械、铁路、医药、化工等部门从事能源动力工程及自动化和相关方面的教学、研究、设计、开发、营销和管理等工作。以能源、环境、动力为工程背景,以热流体科学为基础,兼顾装备制造、过程控制和信息技术,体现出集热、机、电为一体的培养特色。

二、能源动力类专业的发展趋势

现今,能源及环境问题是世界各国所面临的重大的社会问题。我国现有能源利用效率很低,尤其是在能源综合高效利用以及环境保护方面,与发达国家存在着较大的差距。在对环境要求越来越高的大形势下,实施能源的可持续发展战略,必将对能源发展提出更高的要求。[4]长期以来,在能源发展方面,我国一直走的是粗放型的增长方式,日益加剧了能源发展与保护环境、资源之间的矛盾。能源动力行业发展趋势如下。

1.发展新能源和可再生能源

我国能源发展的布局主要有两个重点:一是节能减排,二是发展新能源和可再生能源。相对来说,节能减排技术较为成熟,而在发展新能源和可再生能源这方面,很多技术、政策以及市场尚都处于研究摸索阶段,不够成熟。所以在人才培养方面,高校应加强研究生的培养与教育,在管理型人才、高端研究型人才(如政策和战略研究、项目管理、国际合作等方面)的培养与输送上多做工作。[3]

2.专业发展与环境的密切相关性

只有对能源动力生产过程中的环境问题进行完善控制和处理,才能保证人类的生存和经济的可持续发展。如今环境问题已经成为能源动力技术研究中的重要组成部分,在专业课程的教学中必须有所体现。正是基于该原因,浙江大学将原来的热能与动力工程专业改名为现在的能源与环境系统工程专业。

3.不同学科间的高度交叉性

能源动力学科的专业基础课程和专业技术课程涉及到众多学科领域的知识,如力学、热学、自动控制及计算机、机械制造、化学等学科。为适应21世纪我国能源学科发展的需要,在各专业课程的设置中,应当适当安排有关学科的知识。

4.核电的大力发展

核能工程专业取得了长足的发展。在20世纪70-80年代,国家在核能发电上投资的新建项目少之又少,使得我国各高校招收不到足够的学生。随着国家开始大力发展核电,情况发生了巨大的变化,以至于需要核能专业毕业生的数目超过了可分配毕业生的人数。

5.绿色能源意识的培养

节能是我国能源发展战略的重要组成部分,关于节能的知识不仅能源动力学科的学生应当掌握,也是几乎所有工科学生应当掌握的内容。这就要求高校不仅要做好本学科专业人才的培养,而且也要承担起向所有工程专业的学生进行节能技术教学的任务。教师要注重对学生进行“节能减排”思想的灌输和熏陶,潜移默化地培养学生的节能素养和新能源观念。[5]

三、结束语

为适应国家经济、科技、社会发展对高素质人才的需求,各高校的能源动力类专业根据自己办学定位和发展目标、自身优势,形成了各自的专业特色。通过优化专业结构,提高人才培养质量,办出专业水平和特色,为国家培养更多能源与动力领域的优秀人才。

参考文献:

[1]战洪仁.热能与动力工程专业人才培养模式及课程体系探讨[J].化工高等教育,2008,(1):19-21.

[2]李俊瑞,王艳,田禾.基于社会需求的能源动力专业人才培养探索与实践[J].中国电力教育,2011,(33):22.

[3]非言.中国绿色力量“摇篮”——访华北电力大学可再生能源学院徐进良院长[J].太阳能,2011,(14):23

第7篇

关键词:课程群;能源动力类专业;课程建设;卓越工程师计划

中图分类号:G642.3 ; ; ; ; ;文献标识码:A ; ; ; ; ;文章编号:1007-0079(2014)17-0079-03

近年来,关于高校课程建设与改革的话题受到持续关注,因为“课程”是大学整个教学活动的基础和核心,同时高校的课程建设也是一个相当复杂的系统工程,如课程内容的选择与界定、课程之间的合理组合等,都会直接受到培养目标、教育目的、教育观以及认识论等因素制约。此外,高校课程的结构是否合理、教学内容是否适当,反过来又会影响到高校人才培养质量和水平的高低。“课程群”的概念正是在这样的背景下被提出来的,它既是世界范围内科学和教育的发展之需,也是我国高等教育改革的现实要求。

一、课程群及课程群建设的发展现状

关于“课程群”是什么,教育界有着不同的看法,概括起来主要有四种。第一种认为“课程群”是由在内容上紧密相承、相互渗透、互补性较强的几门同系列课程组合而成的有机整体,各自配有相应的课程大纲,并按照大课程框架组织课程建设,以获得课程体系的整体优化,是具有学科优势的课程。第二种认为“课程群”是某一学科内多门课程的集合,通过学科来划分群与群间的界限。第三种认为“课程群”是指多门彼此互相独立但是又密切联系的课程,课程群建设的目的是为使各门课程能协调发展、齐头并进,追求整体效益,以达到最佳的效果。第四种认为“课程群”是由承担不同的任务,在课程内容上各有不同特点,但为完成同一个教育目标而形成的多个子课程组成的有机系统。

目前,一般高校倾向于第一种观点,因为它首先是将“课程群”看成是相互联系,相互渗透的有机整体,其次认为“课程群”是一个具有整体优化效果并且有一定学科优势的课程群体。总体来说,“课程群”是本学科或与之相近的学科的几门联系紧密的课程间进行有机的整合,以达到预定的教学目标和适应社会发展的需要为标准,建设出的使整体效果最大化的课程群体,是一种与单门课程相对应的课程建设方式。因此,“课程群建设”实际上就是根据高校人才培养目标及培养模式的要求,研究分析课程与课程体系间在逻辑和结构上的相互关系,通过破除课程间的壁垒,优化整个课程体系,进一步融合和更新教学内容、教学方法等的过程。随着高校专业课课程门类与学时数的压缩,“课程群”的建设显得尤为必要,它顺应了网络时代教育和人才培养的发展趋势。

“课程群建设”是近年来高等院校课程建设实践中出现的一项新的课程开发思路,其基本思想是把内容联系紧密、内在逻辑性强、属同―个培养能力范畴的同一类课程作为―个课程群组进行建设,打破课程内容原有的归属性,从学生培养目标与层次把握课程内容的分配、实施、保障和技能的实现。

我国高校以多门课程组合的方式进行课程建设, 至今已有近二十年的历史。北京理工大学1990年开始,在课程建设中应以教学计划的整体优化为目标的方针指导下,首先提出要注重“课群”(课程群的早期称谓)的研究与建设。随后,一批高校相继开展了一系列虽名称相同或相似但差异较大的课程群建设和改革实践。[1-4]

二、课程群相对于“独立课程”的优势比较分析

相对于“独立式”的课程观,“课程群”在教学设计上独具特色和优势。主要体现在以下三个方面:第一,“课程群建设”与学科建设相结合,充分发挥相关学科建设力量强、基础好的优势,将学科建设与课程群建设有机结合。一些高校还把科研能力强、学术水平高的教师集中到教学一线具体参加课程群的建设工作,以“教学团队”的形式进行攻关,锻炼了高校教师教学和科研的整体协作能力。第二,以系统科学为指导,注重整体效果,将内在联系紧密的相关课程纳入“课程群”中统筹考虑,注重相互间的有机结合与互相促进,达到了整体优化的目的,同时提高了课程建设的效率和效益。第三,区别于过去的“独立式课程”,“课程群”把理论教学与相关实践环节通盘考虑,不仅对理论教学开展系统研究,对实践教学环节也进行了相应的改革,实现了全方位、多途径提高教学效果。[5,6]

三、课程群与课程体系的对比分析

国内有关学者高校课程群及课程体系进行了比较,研究指出:高校课程体系的建设主要是针对课程结构、所占比例、模块设置等进行宏观指导,明确课程的教材、大纲以及教学计划等,虽然能够较好地促进教学质量的提高、达到国家的教育目的、高校的人才培养目标, 对于指导课程建设的原则、方法、目标具有重要意义, 但是难以实现不同学校的办学特色、专业建设与特色课程建设。近些年来实施的重点课程建设主要是针对某一门课程的教学内容、体系结构、教学方法、评价方法等来开展的,体现在对某门课程的“点”――教学大纲、教学计划、内容结构等的建设,有力地保障了课程教学目标的实现,但高校的人才培养目标不是由一门课程就能实现的,各门课程在学生的知识传授、能力培养中只占一小部分。此外,由于每一门课程都强调其系统性和完整性,在教学实践过程中容易产生内容多与课时少的矛盾。

“课程群建设”属于中、宏观层面意义上的课程建设,主要针对某一受教育群体,将相关的课程进行整合,删减其中重复和过时内容,增加提高人才培养素质和提高竞争力的新内容,以提高教学效率及教学质量;通过对原课程群的进一步整合,可产生新的课程群,具有更新的人才培养目标,实现课程建设的规模效益,具有很强的可操作性及实用性。

通过对比分析可知,课程体系建设以整个人才培养计划中的课程体系为对象,其主要工作是调整各课程模块的比例。课程群建设则是以课程群为对象,对课程群内的有关课程教学内容进行有机融合,是对课程的重新设计,并将课程群的宏观设计与课程教学实践有效地结合起来,以提高整体教学效果。[7,8]

四、优秀课程群的建设方法及启示

课程群内相关课程的选择与设置,是当前课程群建设中的关注焦点和建设难点,同时也存在诸多争议。从专业教学角度看,目前课程群主要有两种界定方法:一是“以专业方向划分的专业课程模块组成的课程群”,对于该种模式,国内高校已有相关专业达成了共识,并已在学生专业知识、创新能力及综合素质培养等方面发挥了重要作用;另一种是综合考虑多学科的交叉与融合,培养宽口径人才,即“依托学科组建的课程群”,这种模式有助于增强学科实力,提高学科的建设水平。

对于优秀课程群的建设,方法是关键。建设过程中,要充分发挥课程群的特点与优势,一要注重群内课程内容的整合与新知识的更新。在充分融合孤立课程的内容、挖掘相关学科和领域最新知识的基础上,将相关学科的最新研究成果融入教学和科学研究过程,优化教学资源,注重学生的能力与素质培养。二是要分清群内课程建设的主次。从专业人才培养目标出发,根据专业知识在人才素质培养中的不同要求,可紧密依托专业办学特色和创新人才培养目标,在课程群内以专业主干课程为突破,抓住主要矛盾,分主次进行建设,避免因精力的均分而影响课程群的整体建设效果的提高。三是要充分考虑课程群内课程的关联性及在支撑专业人才培养上的协同作用,应在课程群建设实践中注重群内课程要彼此依托、相互促进、共同提高。这样的课程群组织建设,有利于群内教师间的交流沟通、课程与课程间的交叉融合,可及时反馈教学信息与教学效果,建立起有效的专业教学调控与响应机制,同时也可以通过对课程群规范的过程管理和质量评估,进一步促进群内课程教学质量的共同提高。[9]

五、卓越工程师培养背景下“热能与动力工程”专业的课程建设与发展

截止2010年,我国开设工科专业的本科院校有1003所,占本科院校总数的90%,高等工程教育的本科在校生达371万,研究生47万。[10,11]而目前工科专业毕业生还存在诸多问题,主要有:缺乏工程实践能力和工程创新意识、专业面狭窄、动手能力差、综合素质低下、所学知识陈旧等。[11]提高工科专业人才培养质量,对实现国家走新型工业化道路,建设创新型国家和建设人力资源强国三大战略有着十分重要的意义。

“卓越工程师教育培养计划”是高等教育针对《国家中长期教育改革和发展规划纲要(2010-2020年)》实施的重大改革项目,是提高我国高等工程教育质量、促进我国由工程教育大国迈向工程教育强国的战略举措。传统的课程体系、教学内容和教学环节已经不能适应“卓越计划”对工程人才培养的要求,必须通过重新设计课程体系、更新教学内容和重新组织教学活动来实现卓越工程师的培养。教育部日前的教高[2011]1号《教育部关于实施卓越工程师教育培养计划的若干意见》文中明确要求:大力改革课程体系和教学形式。依据本校卓越计划培养标准,遵循工程的集成与创新特征,以强化工程实践能力、工程设计能力与工程创新能力为核心,重构课程体系和教学内容。

能源动力广泛应用于各行各业,是国民经济的基础产业,也是国家科技发展的重要基础方向之一,关系到国家的根本利益和经济社会的健康持续发展。

我国能源动力类的热能与动力工程专业形成于20世纪50年代。由于受当时的历史条件限制,专业分割很细,形成了以工业产品生产引导高等学校能源动力类专业人才培养目标的基本格局,也在一定程度上适应于我国当时的经济社会发展。随着改革开放及经济社会发展,社会对能源动力类专业人才的培养提出了新的要求。为了适应社会的要求,能源动力类专业历经多次教育部的多次调整,已由原来的几十个小专业,逐步合并为一个大专业热能与动力工程专业。2003年,随着能源动力科学技术的飞速发展和能源动力领域新问题的提出,浙江大学率先将“热能与动力工程专业”改造成“能源与环境系统工程专业”,得到广大青年学子和社会各界的认同;2004年,清华大学将“热能与动力工程专业”改造成“能源动力系统及自动化专业”。国内还有一些高校也陆续地根据专业办学特色,进行了热能与动力工程专业名称的调整。在教育部新颁布的《普通高等学校本科专业目录(2012年)》中已将能源动力类专业统一整合为能源与动力工程专业。

经过一系列的专业教育改革,本专业的人才培养口径大大拓宽,体现在学生的基本知识面得到拓展,对市场需求的适应性大大加强,就业市场更为广阔。但是因各高校的专业定位、地域分布、历史继承及国家和社会需求等的不同,形成了开设本专业的高校间课程设置、专业重点及特色、培养模式多样化的态势。

由教育部启动的“卓越工程师培养计划”,旨在为我国各行各业培养优秀工程师的后备军。它要求高校转变办学理念、调整人才培养目标定位以及改革人才培养模式等。国内开设了热能与动力工程专业(现能源与动力工程专业)的相关高校,也相继加入热能与动力工程专业的“卓越工程师培养计划”行列。相关高校结合自身专业重点和办学特色,在专业课程建设及课程群建设方面进行了一些有意的探索和实践,主要体现在:面向学生综合素质的培养,开展了“能源清洁利用技术”课程群建设;[12]针对专业方向的培养特点,构建了“热能与动力工程”大专业多方向课程体系;[13]进行了热能与动力工程专业课程设计教学改革的探索与实践;[14]进行了基于精品课程建设为平台的汽轮机系列课程改革与实践;[15]进行了高职高专热能动力装置专业课程体系的改革与创新[16]等工作。这些课程改革与研究实践,尚未涉及到能源动力类专业卓越工程师培养的课程群建设,相关研究需要开展。

六、结论

第一,作为一种新形式的课程建设模式,当前开展的课程群建设不同于单门课程改革以及课程体系建设,既适应高校教学改革和人才培养的要求,也反映了课程教学改革的新趋势。

第二,热能与动力工程专业按照传统的以产品为导向的课程设置和体系建设,不太适合当前卓越工程师培养目标及要求,特别是存在一些课程的教学大纲和教材内容明显老化,课程内容呈现较多重复,导致培养出来的学生存在知识面狭窄、知识内容陈旧、动手及实践能力不强等弊端,制约了能源动力类专业卓越人才的培养。

第三,在已开展的能源动力类专业的课程建设与改革中,尚未在卓越工程师培养视角下组织实施能源与动力工程新专业的专业核心课程群的建设与改革。需要结合新专业的调整以及专业卓越人才培养要求,修订新专业人才培养计划,改革现有课程体系及结构,研究并构建适合新形势下能源动力类专业卓越人才培养要求的课程群。

参考文献:

[1]李慧仙.论高校课程群建设[J].江苏高教,2006,(6):73-75.

[2]孙存昌.论高校课程群“四级体系”建构[J].大学教育科学,

2008,(5):46-48.

[3]王嘉才, 杨式毅,霍雅玲,等.课群及其质量检查评估指标体系的研究[J].高等工程教育研究,1999,(S1):71-73.

[4]赵朝会.浅谈课程群建设[J].中国科教创新导刊,2008,(14):17-18.

[5]龙春阳.课程群建设:高校课程教学改革的路径选择[J].现代教育科学,2010,(2):139-141.

[6]曹滨,王莹.后现代高校课程群建设思路及原则研究[J].中国校外教育,2009,(2):37.

[7]郭必裕.课程群建设与课程体系建设的对比分析[J].现代教育科学,2005,(4):114-116.

[8]郭必裕.对高校课程群建设中课程内容融合与分解的探讨[J].现代教育科学,2005,(2):66-68.

[9]钱云.关于质量工程背景下优秀课程群建设的思考[J].现代教育科学,2008,(6):144-145.

[10]张兄武.创新视野下的“卓越工程师教育培养计划”[J].苏州科技学院学报(社会科学版),2011,28(4):80-83.

[11]林健.高校工程人才培养的定位研究[A].第二期全国高校工程类创新型人才培养工作专题研讨会[C].2010.

[12]李志敏.面向素质培养的“能源清洁利用技术”课程群建设[J].中国电力教育,2011,196(9):191-192.

[13]宋文武,符杰,李庆刚,等.关于构建“热能与动力工程”大专业多方向课程体系的思考[J].高等教育研究,2011,28(4):44-48,71.

[14]王运民,李录平,明勇.汽轮机系列课程教学改革的研究与实践[J].中国电力教育,2011,(3):174-175.

[15]姚寿广,路诗奎,陆金明,等.热能与动力工程专业课程设计教学改革的探索与实践[J].华东船舶工业学院学报(社会科学版),2003,

第8篇

【关键词】能源动力;人才培养;改革

能源是国民经济的命脉,是国家可持续发展的重要物质基础和根本保证。能源与动力工程类专业正是致力于培养能从事能源开发与利用的技术与管理人才。目前,全国有200余所高校开设了能动相关本科专业,其中大部分已经建设较为成熟,部分985和211高校的能动专业在国内已具备一定的影响力且具备鲜明特色[1]。而三峡大学的能动专业于2011年才开始立项建设,并同年开始招生。作为地方高校新开设的能动专业,在人才培养方面必须适应社会和行业需求,符合我校 “高素质、强能力、应用型”的人才培养的目标,因而,在专业建设伊始,就不能完全照搬其他高校能动专业人才培养模式,需要结合实际情况,大胆改革和创新,才能在国内同类专业中快速占领一席之地,并以高起点快速稳健发展。

1 国内外研究现状

欧洲和美国的大学将能动类专业设置在机械工程系中,且不以专业来单列,而只是机械类的一个方向,称为热流科学(Thermal and Fluid Science)或能量系统(Energy system),而核工程与核技术则一般单独设立,或者设在化工系中,例如美国麻省理工学院、佛罗里达大学等,机械工程的教学与研究范围覆盖了目前国内本科生专业目录中的机械类、能源动力类的范围,这样就大大扩展了能动专业的学科基础和专业领域,以此来适应“应用型”人才培养的需求,使学生获得坚实的专业理论和宽广的专业知识。

我国能源动力类专业形成于20世纪50年代[2],当时在苏联教育体制的影响下的分为10个三级专业,经1993、1998、2012年三次修订最终合并为1个专业:能源与动力工程,使得专业覆盖面被大幅度拓展,要求本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。要实现以上人才培养目标,关键在于如何紧跟行业需求并结合高校自身情况,制定科学的人才培养方案并认真执行。然而,经前期大量调研结果表明,目前国内高校尤其是地方院校在能动专业人才培养上存在以下特点或不足:

(1)专业划分过细,口径太窄。大部分高校在能动专业中设置了多个专业方向,如水力发电、火力发电、清洁燃烧、供暖、制冷等,并将专业课分方向模块进行教学,这极大地限制了学生的选择空间,不利于学生专业知识拓展,使学生在择业时被固定在某个方向上,缺乏竞争力。

(2)人才定位不尽合理。经前期广泛调研发现,随着我国现阶段加快能源建设的力度,国内目前需要更多的是能源动力行业运行、维护与管理方面的技术人才[3],对于高端人才如设计研究类人才虽然稀缺,但由于能动专业实践性强的特性,一般难以由高校直接培养此类人才,即高端技术人才亦需要从工程实践中磨砺而出。所以作为地方院校,尤其新开设能动专业的地方高校,不能一味照搬985、211高校以及部分经过几十年专业建设已经具备自己鲜明特色和专业实力的高校的人才培养模式,必须紧跟行业需求,以培养应用型人才为主线,并充分利用和发挥高校自身的特色和优势。

2 三峡大学能动专业人才培养模式改革

三峡大学的能动专业于2010年底才开始立项建设,并于当年从我校2010级机械设计制造及其自动化专业中分流出53位学生按照能源与动力专业人才进行培养,2011年开始以能源与动力工程专业独立招生,故截至目前实际上已有一届学生毕业(2010级),且2015年度即将毕业的学生目前绝大部分已经签订了就业协议。近五年来,学校在专业本专业建设过程中积极探索,对兄弟高校及能动相关的企事业单位进行了广泛调研,并紧密结合我校能动专业“新开设、新起点”的现实情况,培养和提炼自己的专业特色,并对本专业的人才定位和培养进行了以下改革:

(1)在人才培养与定位方面,以培养“高素质、强能力、应用型”人才为指导,制定了专业人才培养方案,着重提炼专业所覆盖知识体系的共性,拓宽专业口径、增厚专业基础、突出方向共性、弱化专业方向、提升就业能力,扩大就业口径。具体为:1)以流体机械动力学为基础,设置适用于水力发电、热力发电、风力发电中能量转换动力装备的动力学相关系列必修基础课程,突出水力发电专业课,并辅以风力发电等专业课程;2)以热-力转换原理为基础,设置适用于火力发电、生物质能发电、核电等热动力学、热交换、热传输相关的系列必修基础课程,专业课设置方面突出火电、核电,辅以生物质能相关课程。即将动力工程专业分为流体机械和热力机械两个方向,但在培养过程中,大大拓宽了专业基础必修课的范围,增加学生后续就业时行业选择的范围。

(2)在实验/时间教学方面,以厚基础、宽口径、应用型人才培养为指导,建设和整合实验、实践教学条件。取消零散的课程实验/实践,开设系列综合实验/实践课程,使实验/实践教学具有层次性、连贯性、交叉性、系统性和良好的可操作性。避免以课程为单位开设实验时的连续性差、重复度高、综合性不强、效果差的缺点,同时在一定程度上降低建设成本。此外,学校还积极开发校外实践基地,挖掘学校所在地区及周边区域广泛的能源动力行业/企业资源,作为本专业有效的实践基地。

(3)以校外实践基地建设为抓手,开发专业初期就业资源。任何一个高校新专业就业时其情况都或多或少存在不确定性,其原因主要在于社会和行业对于特定高校新专业的认识度不高。因而打开就业工作局面难度大,故无论从短期还是长远来看,都需要充分利用所建立的校外实践基地作为就业渠道,使基地发挥更大作用,这需要在基地建设过程中同时做好基地管理制度建设,以协议的形式为本新专业向基地输送人才提供保证。

3 改革效果

近五年来,学校在建设能动专业过程中不断探索,最终形成以上建设意见和改革措施,并取得了显著成效:

(1)制定了科学合理的能动专业人才培养方案,确定以掌握能源转换装备运行及转换机理为基础,在传统的专业基础课程中,将《流体机械原理》、《水轮机及调节器》、《汽轮机》等增设为专业公共基础课,在专业拓展模块课程中按水电、热电、流体机械、新能源发电等设置小学分模块供学生选修,但不限制选择模块数量。目前学生就业反馈情况表明,在弱化专业方向、增厚专业基础课程后,学生在择业过程中即使不在个人专业方向上就业,只要未跨出能动行业,就能很快适应新领域的工作。

(2)整合实验/实践教学计划和条件。如将以往随理论课程开设的《流体机械原理》、《流体力学》、《液压传动与控制》、《泵站工程》、《水轮机及调节器》等的课程实验进行专门设计,整合成32学时的《流体综合实验》课程;将《热力学》、《传热学》、《汽轮机》、《热电厂动力工程》、《锅炉原理》等课程的实验内容整合成32学时的《热工综合实验》;将《测试技术》、《控制工程》、《电厂自动化》等课程实验整合成16学时的《测控综合实验》等,并根据相关理论课开设时间将综合实验课内容分为两个学期开设。这样学生能够得到更为系统的、连贯的实践训练,相比随理论课程开设的零散实验,综合实验教学效果更好随

(3)目前已在学校所在地区及周边能动企业建立本专业的实践/实习基地,且已经有效运行,如安能(宜昌)热电(生物质能发电)、长江电力(葛洲坝)、安能(襄阳)火电、三峡电厂、清江的隔河岩电站、高坝洲电站、向家坝电站、黄龙滩(十堰)电站、湖北宜化集团、宜昌安琪酵母、黑旋风工程机械等20多家能源企业和流体机械设计制造企业,可完全满足学生毕业实习、生产实习及其他培训的接待需求,极大地缓解了专业实践条件建设需要大投入的困难。

(4)专业就业情况良好,第一届毕业生(2010级,共53人)就业率达100%,其中除4人继续攻读硕士研究生外,15人进入水力发电厂,17人进入火电、生物质能电厂,6人进入电力部门事业单位,11人进入与流体机械及能源装备设计、制造相关企业。其中17人(32.1%)在本专业校外实践基地相关企业就职。截止2015年3月中旬,第二届毕业生(2011级,共81人)已签就业协议的达72人,已确定攻读硕士研究生5人。学校以专业调研、毕业生就业企业回访等多种形式,进一步拓宽和加深了与行业内相关企事业单位的联系,并就用人单位对我校毕业生在生产实践过程中的综合素质和表现进行跟踪回访,结果表明学生的综合能力水平总体较高。

4 结语

能源动力类专业是实践性、技术性很强的专业,且专业覆盖的技术领域非常广泛,针对具体的应用领域其技术专业性又较强,而高校在该专业人才培养的过程中一方面不可能面面俱到,设置过多的专业方向,另一方面又不能过于集中,而使得学生的专业知识领域过窄,导致就业方向没有选择余地。因而,在人才培养过程中要更多地考虑专业领域的共性,增厚专业基础,拓宽专业口径,使学生获得尽量宽广的专业综合知识,才能具备一定的竞争力,以适应现代能源动力领域对专业人才的需求。

【参考文献】

[1]徐翔,余万,陈从平,方子帆,李响,赵美云.三峡大学“能源与动力工程”专业培养方案的制订与完善[J].科教文汇:上旬刊,2014(6):60-61.

第9篇

关键词:能源动力工程;发展;探讨

中图分类号: P754.1文献标识码:A 文章编号:

能源动力工程主要是以物理热学为理论基础的一门重要学科,其重点研究对象是内燃机与一些新型动能设备,广泛使用在环境学、计算机、机械工程、微电子领域、工程力学等知识领域,研究怎样将燃料中的能量转换成低污染或是无污染、清洁、高效的动能。石油与煤炭是能源的主要组成部分,但由于石油和能源属于不可再生资源,因此,现阶段的主要任务是找寻新型可再生的节能能源。文章对动力能源工程的重要性进行了简单的分析,并详细探讨了动力能源工程今后的发展方向,希望能为可再生能源的研究提供一些借鉴。

一、动力能源工程的重要性

动力能源工程是每个国家经济与发展的主要物质保障,是保证人们生活水平的重要保障,更是实现我国四个现代化的前提。随着社会经济的不断发展,自动化、电气化、机械化水平的逐渐加强,对能源有着越来越多的需求。通常来讲,能源的消耗量一般和国家的生产总值成正比。能源通常是指动能,生产的产品越多,所需的能源就越多,社会经济发展的就越快,国家就越富裕,民众生活水平就越高。

动力能源工程与人们的实际生活有直接关系。我国是人口大国,其总人口约占世界人口的五分之一,为了解决我国民众的生活问题,因此要努力发展农业,农业的发展离不开生产,在农业生产过程中要使用很多水利化、电气化、化学化、机械化的设备,这都需要大量的能源来支撑。为了确保农产品有较高的产量,就要在农业生产中投入大量能源,所以,在也可以说棉花与粮食的大量增产是能源换来的。其实生活中的很多用品都是用能源换来的:包括,生活中人们穿的各种纤维衣服;居住中使用的各种建材;调节室内温度的各种设备;为了工作和生活的照明设备;以及家用电气设备;出行时使用的各种交通工具;生活中的各种娱乐活动等,这些都要依靠能源。由此可见,在生活中倘若没有能源,将什么事都做不了。

能源动力工程还和国家安全有直接关系,例如国防中使用的各种武器设备,这些武器在使用时都需要使用能源,例如战舰、飞机、潜艇、远程导弹、坦克等。倘若没有最够的能源,国家的安全就不能得到有效保障,也不能使经济建设平稳发展。所以,动力能源工程与国民经济以及人们的日常生活有直接关联。社会需要发展,人们生活水平需要提高,民众的生活需要物质文明与精神文明的双丰收。所以,为了实现我国四个现代化,能源所占据的地位就显得极其重要,一定要将解决能源问题作为保证国家安全、提高民众生活质量、提升国民经济等方面的重要事情。

自改革开放以来,我国的呢光棍生产量最在世界排名中位列首位,在因为我国的人口基数大,每人实际占有的能源只占发达国家的10%左右,同时我国使用的能源多为煤炭,对环境有着较大污染,使环境污染问题持续加重,但发达国家每人使用的煤炭量只占有能源的25%。经年来,我国对能源的开发与利用虽然取得了一定成果,但是从农村到城市,从生活到生产,石油、煤炭都发生了严重的短缺。能源问题已经迫在眉睫,要想解决这个问题有两种方式可选:第一,减缓经济发展速度;第二,加强对可再生能源的研究,环境保护和节约能源两手都要抓,两手都要硬。

二、动力能源工程的发展方向

(一)加强环保意识,改变经济发展方式,加大环保力度,提高环保制度的法制建设。环境污染严重制约了社会发展、经济建设,并对人类的生活造成了一定的威胁,倘若没有一种能够长期使用的能源以及一个良好的生活环境,那么社会将很难继续发展,人们也将失去可以发展与生存的基础。我国为了使四个现代化得以实现,建设有中国特色的社会主义国家,首先,要考虑环境与能源,绝不能为了发展先污染后治理;其次,要对环境进行严格管理,一切扩建、技术改造、改建、经济开发区的建设、新建等建筑工程的建设,都要严格遵守环境评价,防污染的使用设备一定要坚持和建筑工程主体一起投产、施工、设计的制度;第三,要积极改变经济发展的方式,使用先进的机械设备,淘汰了传统设备,严禁生产污染严重、消耗能源多的产品;第四;要加强投入环保资金;第五,要提高环保制度的法制建设,按照国家规定对排放标准严格执行,将保护环境建设在法制前提下。

(二)加强对能源的使用率,使周围环境得到改善。

1、大型化的工业锅炉。我国约有60万台用作工业生产的锅炉,因为这些锅炉的污染大、效率低、耗煤高、容量小,因此锅炉平均热效率只有60%左右,对煤炭的年损耗约有4亿吨。发达国家每台锅炉的容量一般为30到130吨,自动化、机械化水平高,除尘效果好,所以热销高,对周围的环境污染较少。所以,我国要使用一些热点联合供应,分片供热或是集中供热系统来代替分散的小锅炉,这样即有助于减少煤炭的损耗,还有助于优化周围环境。

2、现代化的火电机组。我国火电发电量占我国总发电量的75%,自进入21实际,我国的火电机械容量已经超过3亿千瓦,然而供电时所损耗的煤炭比发达国家高处1/3,主要因素是火电机组的机械设备落后,工作效率低。所以,要将这批机组改造成中压中容量,淘汰小型低压机组,同时发展与完善300到800MW超临界与亚临界机组,逐渐将电场的供热效率提高到40%,同时加强对超超临界大型机组的发展,将电厂的供热效率提高到45%。

(三)使用煤炭清洁技术。

1、在燃烧煤炭前对其进行净化处理。包括:先对煤炭进行洗选处理,然后除去或是减少煤炭中含有的矸石、灰分等杂质,洗选处理效率要达到95%以上;加工民用煤炭时,用机械设备将低品位煤炭与粉煤制成具有一定形状的煤炭制品。

2、煤炭燃烧后对其进行净化。使用干式或是湿式脱硫法,其使用效率高达90%;在大型电厂中使用静电除尘的方式,除尘率高达99%。

总结:

综上所述,研究动力能源工程对可再生资源的研发有十分积极的作用。新世纪开始,伴随大气污染、全球变暖、资源短缺等问题的出现,人们越来越意识到保护环境的重要性,为了顺应时代需求,人们开始找寻新型可再生资源。新型能源的出现有效解决了环境污染以及能源短缺问题。因此,今后要重点研究动力能源,将其应用在我国各个领域中,为国家的长远发展做贡献。

参考文献:

[1] 蔡睿贤,金红光,林汝谋,宋小亮,等.能源动力系统应与环境相协调[J].创新科技,2011,15(03):174-176.

[2] 叶寒栋,李宇红,叶大均.能源动力工程的总资源评价方法[J].重庆环境科学. 2013,09(10):180-182.

[3] 林汝谋,金红光,蔡睿贤.新一代能源动力系统的研究方向与进展[J].动力工程,2010,11(03):142-145.

第10篇

【关键词】热能动力机械;现状;发展走向

中图分类号:F407.42 文献标识码:A 文章编号:

一、前言

当热能转换成动力,并且应用在人们的生产生活中时,不仅改变了人们的生产与生活的方式,而且为资源能源的可持续利用、高效利用提供了空间。热能动力机械以其科学性和先进性亟待在人们的生产实践中有着更大范围内的应用。

二、热能动力机械专业的适应方向

无论日常生活,还是工农业生产;无论交通运输,还是航天领域,都离不开动力。热能是这些动力的主要来源之一,如冬天燃煤取暖是利用煤燃烧所产生的热能;火箭发射人造地球卫星利用的动力来自燃料燃烧所产生的热能;蒸汽机车牵引火车的动力来自于蒸汽的热能;热电厂所产生的低品位蒸汽供给工厂热能,在寒冷地区提供暖气;动力设备产生的废热用作制冷动力等。热能除了能被直接利用外,还可以通过转换装置变成电能,得以更广泛地利用,如火力发电、核能发电等。该专业的主要适应方向有:

(一)适应火力发电、核能发电行业。任何一家火力发电厂都是利用锅炉将化石燃料的化学能转化为蒸汽的热能,利用汽轮机将蒸汽的热能转化为机械能带动发电机发出电能;锅炉、汽轮机及其热力系统的运行,由热工测量设备进行测量和监视,由自动化装置实行自动控制。核能发电除利用受控核裂变反应所释放的热能将水加热成蒸汽不同于火力发电外,其它生产过程基本上同于火力发电。湖南橡胶厂、冷水江铁厂等大企业的自备电厂的生产过程亦同于火力发电厂。

(二)适应于石化行业。炼油厂、化肥厂、制碱厂、维尼纶厂等企业,都必须有热动力设备产生热动力来满足生产的要求,如工业锅炉、换热器、泵与风机等动力设备。

(三)适应于冶金行业。冶金行业需要大型的热动力设备,如高炉所需要的热空气由锅炉产生再由风机送到高炉中去。

(四)热力设备的设计和生产制造行业。修完本专业的全部课程后,具备一定的设计和生产制造能力。

(五)制冷行业。大型制冷设备的动力来源于锅炉所产生的热能,制冷工质的循环理论同于热动力工质循环理论,制冷专业与热工专业实际上是相关专业。

(六)船舶工业。舰艇、轮船多以锅炉产生蒸汽,以汽轮机为原动机带动船桨推动舰船航行。

(七)航天领域。运载火箭的推力是通过燃料燃烧,产生巨大的热能推进火箭升空。

(八)建材生产行业。如水泥、玻璃、陶瓷等的生产。

(九)服务行业。现代宾馆、酒楼的采暖通风、供水供汽的动力设备的生产与管理。

(十)适用于热能动力设备的生产、技术管理工作。

(十一)适应于其它需要热动力的行业。以上说明,凡是涉及到热动力的行业,都需要热能动力工程专业人才,意即该专业具有广泛的适应性。

三、热能动力机械专业的高技术性

大型的热能动力设备,系统非常复杂,集机械、电力、电气、电子、液压、计算机等多学科于一体,自动化程度很高。从生产上来看,热力设备的运行基本上实现了自动、远动控制和计算机监视。全计算机控制已基本实现,并是今后的发展方向。火电厂的锅炉、汽轮机及其辅机的运行,早已是自动控制或远动操作,新建的大型火力发电机组应用了计算机控制,如30MW汽轮发电机组,正常运行时锅炉产蒸汽量在100t/h以上,锅炉本体的高度超过som,燃煤达10t/11以上,若用人力来烧这样的锅炉是根本无法实现的,但是采用集散控制系统,实现全计算机控制,一台锅炉有两名操作人员就够了。对于工业锅炉,亦采用机械进煤的方式,运用自动或远动控制其运行。冶金、化工等行业的热力设备,也具有相当高的自动化水平。可见,热力设备的运行,采用了大量的高尖技术。热力设备一般在高温高压的条件下工作,要搞好热力设备的安全运行,必须经常地进行维护和定期的大小修,为了提高热能利用效率,必须利用新技术对设备进行技术改造,利用先进管理手段进行管理,因此,需要既有理论知识又有丰富实践经验的工程技术人员。

四、我国的热能动力工程发展现状

我国能源动力类热能与动力工程专业形成于20世纪50年代。当时受苏联教育体制的影响,专业分割很细。在热能与动力工程专业中就先后包括锅炉、电厂热能、内燃机、涡轮机、风机、压缩机、制冷、低温、供热通风与空调工程、冷冻与冷藏、水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程以及工程热物理等几十个小专业,形成了以工业产品生产引导高等学校人才培养目标的基本格局,一定程度上与我国当时的发展相互适应。随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求,1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代力工程的基础。

五、热能动力工程的发展方向

(一)热能动力及控制工程方向(含能源环境工程方向

主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

(二)热力发动机及汽车工程方向

掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

(三)制冷低温工程与流体机械方向

掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

(四)水利水电动力工程方向

掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

(五)热能动力机械中工业炉的发展

工业炉是工业加热的关键设备,广泛应用于国民经济的各行各业,量大面广,品种多,影响极大。据不完全统计,全国12个行业县以上企业,工业炉装备11万台以上,机械行业占7.5万台(占炉窑总数66%)。工业炉中燃料炉约6万台,占炉窑总数55%以上,电炉绝5万台。工业炉是耗能大户,能耗占全国总能耗的1/4,占工业总能耗的60%。工业炉中燃料炉能耗占工业炉总能耗的92%,其中固体燃料约占70%,液体燃料绝占20%,气体燃料仅占工业炉总能耗的8%左右。可见燃料炉在我国工业炉中起着举足轻重的作用。

(六)热能动力机械在能源方面的发展

热能动力工程在能源方面的发展热能与动力工程专业将重点围绕国家能源战略,以“新能源、核能、智能电网、常规能源、节能减排”为主线,培养能适应国家能源领域(尤其是电力行业)快速发展要求的高级研究应用型人才。能源是人类社会赖以生存和经济可持续发展的重要物质基础。纵观人类社会发展的历史,人类文明的每一次重大进步都伴随着能源的改进和更替。能源的合理开发和有效利用极大地推进了世界经济和人类社会的发展。我国经济的高速可持续发展同样离不开能源,目前我国是世界上第二位能源生产国和消费国。能源供应持续增长,为经济社会发展提供了重要的支撑。

八、结束语

综上所述,随着自身的发展以及在控制工程、汽车工程、水利水电工程、工业炉以及能源方面的应用,热能动力机械将会释放出更大的生产力,极大的带动经济的发展和社会节能理念的转型。

参考文献

第11篇

【关键词】:热电厂;热能;动力工程

其与一般的发电厂热电分产形式相比, 热电厂很多是通过相关动力设备的使用,将热能产生的热量改变成动能样式的程序,最后将改变得到的动能通过发电设备将一些能量改变为电能的样式,以此不断满足用户生产与生活中所需要的热量需求。发电厂在发电过程中,降低能源的损耗十分有利,可以通过降低发电体系的能源消耗来提升能源的使用成效,实现节省资源的宗旨。但是,我国现阶段的热能与动力工程在热电厂中的运用依然存在诸多不足。其严重制约了热电厂能量的充分利用。按照相关原理能够清楚,火力发电的整体程序的节省资源耗用以及热能和动力项目关系很大,对于热电厂中动力以及热能项目中存在情况的探索有着非常重要的实际影响,具有较高的应用成效,而且这项技术具有时代前沿性与创新性,能够对建筑能源节省型以及环境和谐型社会创造有意义的价值。

1、热电厂的发电运行情况概述

热电厂在我国工业生产中发挥了重要的作用,能量转换是火力发电的运行中尤为关键的一环,其实际运行工作的原理为:首先是热能与动能的转化即让锅炉产生蒸汽,然后把蒸汽送到汽轮机当中,其次是动能与电能的转化:即由汽轮机的转动来带动发电机使其发电,这两个转化构成了主要的发电过程。从我国发电厂利用蒸汽不断进行循环发电过程中,煤炭则是最重要的能源,煤炭经过处理后变为煤灰,借助皮带传输技术后,煤灰即被传送入锅炉内,历经充分燃烧的煤灰则会放出超大的热量,这些热量进而会形成水蒸气,这种经过物理转化的水资源会通过凝结水泵进入到输水泵中,然后返回到锅炉内部,锅炉经过一次加热之后,形成的水蒸气会进入高压缸内部。因此,为了不断提高锅炉的加热效率,可以对其进行循环加热处理。在此原理的循环运行的过程中,会产生巨大的电能,这一运行过程同事也充分实现了环保节能的预期效果。

2、热电厂的选址问题分析

在进行热电厂热能与动力的相关工程研究时,热电厂的选址问题应当引起关注。热电厂在实际运行中的装机容量受热负荷的性质以及大小等因素的影响,导致了目前热电厂的机组规模比火电厂的主力机组小很多。同时又因热电厂既要发电又要完成供热服务,因此锅就要求炉的容量要与同规模的火电厂锅炉的容量需要得更大一些。再者因为功能以及原料的局限作用,靠近热负荷中心成为热电厂的必然需求,具体而言即为,热电厂必须建立在人口密集比较大的城镇中心,与同容量的火电厂相比,它在环保要求、拆迁、用水量、征地等方面的问题更加高,同时热力管网也是热电厂所必须建立的,这将更有利于供热系统的高效运行。

3 、机组变工在热能与动力工程运行中的情况分析

在运行中的汽轮机设备,电无法进行大量地储存,其功率也跟外部需求而不断变动,而在此过程中,处于汽轮机中的蒸气运行参数在伴随锅炉中燃料的不稳定损耗情况而逐渐产生变化。通过对热能与动力工程运行的研究发现,凝气设界运行工况所产生的变化以及发生变化的电网的实际运行频率,甚至是汽油机内部的通流部产生的污垢等,都将会形成热电厂中热能与动力工程中的变工情况[2]。

(1)首先是对并网运行的发电机组进行第一次调频,电网频率会随着外部运行负荷变化而产生改变,每一个发电机组在热电厂运行中都会结合自身特性,借助系统调速的运行装置而自动增减汽轮机的运行负荷,而进一步带来热电厂的电网系统运行的更加科学。

(2)调节级处理在热电厂的电力系统中的进行,处于正常运行工况中的热电厂的全部设备,实际电流在系统中则会不断攀升。与此同时,瞬时电压再系统中也会同步增大,此时调节级的比焓降会逐渐减小。当系统部分设备正值正常运行工况中,调节级的比焓降就会上升到中间级的最大值。处于此过程中的热电厂的设备运行工况亦同步产生明显的变化。但是,位于中间级的压力比却不会随之变动。故比焓降在调节级中的变化不太明显。相反,在最末级,系统运行流量不断增大的同时压力比却是相应减小,而调节级的比焓降却会不断上升[3]。

4、热电厂中的热能与动力工程运行情况分析

在热电厂中的热能与动力工程运行进程中,节流调节与喷管调节和系统设备的调节调压需及时进行。故只有掌握其各自的调节特点以及调节适用场合,才能进而提高热能与动力工程机组的实际运行效率。经过实际研究可知,在不同的调节阀中机组运行负荷所产生的最大流量并不相等,并且当其实际的运行负荷在1以下且系统有调节级时,随着时间变化机组调节阀开启的实际数目也会变化。在此进程中,调节级汽室温度会有较为明显变化当机组的实际运行工况发生变化时,并且会导致机组设备适应性变差[4]。但当对机组中的喷管进行调节时,就能够保证机组设备在运行过程当中快速达到预定参数值,并科学调配系统中的运行负荷,确保了热电厂热能与动力工程相关设备能良好运行。

结束语

综上所述,能源动力工程是涉及多个领域高新技术的集成产业,作为我国国民经济与国防建设的基础和支柱,它更是发挥着举足轻重的作用。热能与动力工程在热电厂中的充分高效的运用,带来了我国电力行业的总体发展水平的不断提升。文章通过上述分析研究,发现热电厂中的热能与动力工程的开展立足于正确判啻理在工作中遇到的各种异常情况,且并对于掌握变工况时的各种情况有非常重要的作用,在协同配合工作之下,从而实现很大程度上促进了我国热电厂的经济利润和能源运用效率的同步提升。

【参考文献】

[1]孙祚琦,王君 .热能与动力工程在热电厂中的应用[J].科技创新与应用,2016,6:125.

[2]孙斌.热电厂中热能与动力工程的有效运用[J].科技传播,2016,7:133-134.

第12篇

关键词:能源动力;互动式教学;专业英语;教学模式

中图分类号:G642文献标识码:A

一、引言

郑州轻工业学院能源与动力工程专业于1981年在机械和家电研究室的基础上成立,原名称为制冷及低温技术。近几年来,随着国家经济的快速发展和人民生活水平的提高,我国制冷空调产品市场以每年20%~30%的比例增加,世界市场80%的产品都在中国生产。在这种形势下,我国需要大量精通专业技术和具有用英语进行专业技术交流与沟通的高级专业技术人才,因此,在卓越工程师培养计划背景下,加强能源能力类专业英语的教学就具有非常重要的意义。

二、专业英语的教学现状

目前大部分高校将专业英语作为选修课程,这使得专业英语没有得到足够重视。在师资配备、课程设置和考核制度等方面,专业英语教学都处于薄弱环节,目前的教学现状可以总结为以下几点。

1.教学和学习目的不明确

由于授课教师和学生都没有充分重视专业英语,致使大部分教师对专业英语的教学目的不明确,不能正确地去引导学生认识专业英语的学习目的,这会导致学生听课不积极,不能很好地参与到课程的学习中去,在学习的时候只是为了翻译而去翻译,没有学会一种学习方法。

2.授课方式及教学内容单一

目前专业英语的教师基本上由专业课老师来担任,在上课的过程中,大多数老师还是按照选定的教材按部就班进行授课,内容只局限于教材,缺乏和学生的互动,这导致学生上课只是被动接受知识,缺乏主动去获取课本之外的知识的动力。

三、专业英语的教学模式研究

1.明确教学目的

专业英语主要目的是培养学生的阅读能力、听、说、写和翻译能力,使学生能够用英语交流专业知识。

2.教学内容多样化

由于能源动力类专业包括能源与动力工程、建筑环境与能源应用工程、新能源等专业,学院要根据学校学科专业的方向来选定相应的教材。在授课过程中要逐步让学生去了解本专业的一些特定的专有名词。在选定教材的同时,还应引导学生通过学校外文文献数据库去了解本专业方向的英文文献期刊,从期刊中了解目前专业的最新研究方向和研究内容,以开阔学生的专业视野。

3.考核方式

通过教学内容多样化和互动式教学,专业英语的考核方式也相应有变化。考核应贯穿整个教学过程,不能单独考核个人,而是以分组来进行。根据前面所述的三阶段教学,当教学进行到第三阶段时,由各组对自己检索到的专业英文文献来进行翻译,并对其翻译结果进行讲述,由授课教师和各小组讨论,形成一定的评分标准后共同对翻译结果进行量化打分,最终确定各组的成绩。各组成绩确定以后,再由组长和授课教师根据每一小组内成员对团队的贡献来确定各个组员的成绩。

四、结语

笔者采取以上专业英语教学模式,在实际的教学过程中取得了一定的成绩。第一,通过教学内容的多样化,可以扩大学生学习的知识面,扩大学习视野。第二,通过互动式教学,可提高学生主动学习的积极性,促进授课教师去学习学生所检索到的英文文献,为教师的备课带来一定的挑战。第三,新的考核方式,可以使学生全程参与,不仅提高了学生学习的积极性,而且锻炼了其团队协作能力。

参考文献:

[1]顾小松,傅俊萍.能源动力类专业英语教学改革与实践[J].中国电力教育,2009,(7):115-16.

第13篇

关键词:能源与动力工程;应用型技术人才;多维协同

中图分类号:TM61 文献标志码:A 文章编号:1674-9324(2017)10-0106-02

当前,能源动力类毕业生的最主要的题之一是缺少工程实践经验和工程应用能力不足,本科毕业后入职上岗前通常都要进行较长时间的岗位培训。此外,学生对于一些新的发电技术,如燃气蒸汽联合循环发电技术、烟气的脱硫脱硝、超超临界发电技术等了解甚少,由此给企业造成很多经济和生产上的困扰。随着电力行业的发展以及新技术的不断应用,迫切需要学校培养适应社会发展和企业需要的能源动力类的应用型人才。

针对企业的需求,结合本专业人才的培养规范,我们拟构建能源动力类应用型人才的多维协同培养体系,主要包括以下几个方面:(1)制定应用型人才培养的标准。(2)构建以应用能力为本的理论教学体系。(3)构建以实践能力为核心的校内实践教学体系。(4)构建校企紧密联合的企业实践教学体系。(5)构建工程实践经验丰富的师资队伍体系。

一、应用型人才培养标准的制订

培养应用型人才,首先要确定应用型人才培养标准。这需要将学校专业人才培养的要求与企业的需求相结合,以工程能力培养为核心,借鉴世界先进国家高等工程教育的成功经验,制订出立足发电行业生产一线的应用型人才的培养标准。

二、构建以应用能力为核心的理论教学体系

根据能源与动力工程专业的特点,面向企业需求,以发电企业及其相关产业的岗位人才要求为主线,以教育部教学指导委员会颁布的能源与动力类专业规范为基础,以行业发展为导向,对教学内容和教学方法进行综合改革,构建以工程应用能力培养为核心的理论课程体系。

1.紧密联系生产,安排课程教学内容。对于基础课程,注重基础知识的学习,强化基础课及专业基础课的教学,同时强调课程与能源行业知识相结合,在教学中引入能源行业相关知识的介绍与计算分析案例。

对于专业课程,从提高学生的专业应用能力出发,采用模块式的课程结构设置教学内容。例如:划分成“电厂热能动力”、“洁净发电技术”及“节能与能源管理”等模块,各类模块课程具有相对独立性,紧紧围绕用人企业对培养对象所要求必备的知识、能力及职业素质进行教学。

2.根据国家能源战略及节能减排发展需求设置课程。课程设置上,不仅有传统的课程,也设置一些符合国家能源战略、节能减排要求的课程,如“可再生能源发电技术”、“分布式供能系统”、“能源管理与审计”等课程。随着新兴电力生产技术和污染物控制技术不断应用于电力生产过程中,“超超临界发电技术”、“燃气蒸汽联合循环发电技术”、“烟气的脱硫脱硝”等先进的电力技术也将被引入课堂教学内容中。

3.教学方法改革。(1)课堂教学方面,不仅讲解理论知识,还采用实例化教学、现场教学等教学形式,根据电力行业对能源与动力工程专业课程的新要求拓展教学内容。在专业主干课程中安排一定学时的企业专家专题讲座,聘请企业高级专家为学生进行行业新动态和工程案例等内容的讲座。另外,在课程中引入工程案例研讨内容,每门主干课程,每个主要知识点都有工程案例。由此,提高学生分析问题和解决问题等多方面的能力。(2)课程内容方面,以能源行业工种职业能力标准为中心来整合相应的知识及技能,实现理论与实践的统一,引导学生积极参加职业资格认证考试。(3)课程设置方面,以工作项目为引领,从岗位需求出发,紧紧围绕完成企业中设备运行及维护所需的职业能力培养,将所要学习的新知识蕴含在一个或几个具体的项目中,让学生通过对任务进行分析讨论,由易到难、循序渐进地完成一系列任务,并通过项目的完成实现对所学知识的掌握和应用。

三、以构建实践能力为核心的校内实践教学体系

我校“能源与动力工程实验教学中心”是上海市市级实验教学示范中心,也是校内重要的实践教学基地,涵盖专业基础实验、专业实验、综合实践、创新实验平台。依托我校的“能源与动力工程实验教学中心”,我们提出了构建“专业基础―专业―综合―创新”分层次、多平台的实验教学体系。通过工程技能、设计能力、专业应用能力以及创新能力等方面的系统训练,全面提升学生的实践应用能力和创新思维能力。

1.开放校内实验课程教学平台,培养学生动手能力。以基础课程实验为主建立开放式热工实验平台,整合工程流体力学、工程热力学以及传热传质等实验室,培养学生的独立操作能力。通过综合性和设计性实验的形式,由学生自行拟定实验方案,充分自主选择实验设备,培养学生的实践能力与分析能力。

2.建立新能源技术及节能新技术实验平台。整合分布式能源系统实验室、太阳能利用系统实验室以及生物质利用实验室,建立新能源技术及节能新技术实验平台。分布式能源系统实验室为《热能与动力工课程设计》、《能源审计》、《节能管理》等课程开展实验,使学生熟悉分布式能源系统的实际生产过程。

3.火力发电仿真系统训练,培养学生工程实践能力。本专业的火电仿真机组系统仿真机与实际机组为1∶1仿真,模拟实际机组的热力系统、热工控制,能够实现整个机组的启、停、正常运行和事故处理。通过火力发电仿真系统训练,可以提高学生对电厂设备与运行的全面了解和认识,培养和训练学生的工程实践能力。

四、构建校企紧密联合的企业实践教学体系

通过与各大发电集团公司联合共同构建应用型人才培养基地,共同参与本科生教学计划的制订与实施,构建校企紧密联合的企业实践教学体系。校企合作领域覆盖电力生产、运行、试验、检修等各个环节,具体包括以下几方面。

1.企I为主参加生产实践教学。学生培养计划实施过程中,理论知识教学主要由校内教师进行,同时聘请企业一线工程师到校内进行相关知识的讲解;实践教学活动主要在企业完成,场地由企业提供,授课主要由企业人员进行。学生在企业学习阶段,进行电力生产技能现场实践。

2.实行双导师制,联合指导毕业设计。毕业设计是本科生学习中的必要环节,对提高学生分析、解决实际问题十分重要。校企双方共同拟定毕业设计题目,学生在企业进行毕业设计;企业与学院共同指导学生,共同进行答辩考核。

五、构建具备工程实践经验教师队伍的培养体系

通过各种方式提高教师的实践动手能力,如制定教师到企业挂职锻炼、教师下电厂实习等相关政策,提高专业教师的实践能力。具体途径有以下几种。

1.提高现有教师的工程实践能力。利用企业产学研基地,轮换派出教师到企业去实践1―3年。教师在企业工作期间,可以通过直接参与企业项目,不断提高自身的职业技能,达到“双师型”教师的要求。

2.直接引进企业经验丰富的工程师。直接引进具有较高学历和丰富实践经验的企业工程师作为学院专职教师,安排其讲授所熟悉的课程,如:聘请具有现场经验丰富的工程师讲师。

3.聘请实践经验丰富的兼职教师。聘请具有丰富实践经验的企业工作人员为学生授课、指导实践教学环节、做专题讲座、指导本科生毕业设计等。将实践中的问题直接带入课堂,培养学生用理论解决实践问题的能力。鼓励学生到企业中去,解决企业中所存在的具体问题,与企业合作完成毕业设计,以提高学生对实际工程问题的分析和处理能力。

参考文献:

[1]战洪仁,张建伟.热能与动力工程专业人才培养模式及课程体系探讨[J].化工高等教育,2008,(1):19-21.

[2]张光学,王进卿.时代背景下热能与动力工程专业教学改革与创新[J].中国电力教育,2014,(6):75-76.

[3]常胜运.“汽轮机设备及运行”课程教学改革[J].中国电力教育,2007,(5):103-105.

Based on the Electric Power Production Process,to Construct a Multidimensional Training System of the Energy and Power Engineering Application-oriented Undergraduate

HU Dan-mei,HE Ping

(College of Energy and Mechanical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)

第14篇

关键词:能源与动力工程;生产实习;教学改革

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2014)33-0118-02

生产实习是高等院校工科类专业重要的实践性教学环节,生产实习的质量直接关系到学生的实践能力、创新能力及综合素质的培养过程。[1,2]在能源与动力工程专业的教学计划中,生产实习尤为重要,旨在将专业理论知识与工业现场相结合,使得学生对发电厂设备的启停、运行以及日常的监控维护方法及程序有一个较为深入的了解。学生通过生产实习,能够提升学生综合运用各学科知识的能力,分析和解决实际发电厂运营问题的能力。[3]为了培养独立从事能源与动力工程行业的应用型工程技术人员,适应21世纪创新型人才、复合型人才的社会需求,结合近年来指导的能源与动力工程专业生产实习的实践经验,对该专业生产实习教学模式做了一些新的探索。

一、能源与动力工程专业生产实习教学改革的必要性

目前三峡大学能源与动力工程专业分为热动和水动两个专业方向,热动方向的学生主要在热力发电厂完成生产实习任务,水动方向的学生则在大型水电站完成生产实习任务,实习时间均为2周。基于能源与动力工程专业的人才培养方案,目前的这种实习模式基本能够完成培养方案规定的生产实习内容,但也存在一些不足亟待改进。

1.实习基地建设需要加强

三峡大学能源与动力工程专业与大型水力发电厂、热力发电厂进行合作,建立了稳定的校外实习基地。目前,开设能源与动力工程专业的大部分高校生产实习都集中安排在大三下半学年或大三结束时进行。在这期间,各个电厂除了接待能源与动力工程专业的学生之外,还需接待电力系统及自动化专业、自动化专业、化学专业、管理专业等与电厂运营相关的其他专业的学生进行生产实习任务,这直接导致了短时间内大部分学生集中涌入各个发电厂。而现代的大型发电厂 一般都是大容量、多参数集中控制,接待能力十分有限。同时,各个发电厂受生产任务、安全指标、经济效益等多种因素的制约,一般也不愿意接待大批学生进行生产实习。这样,最终使得学生的实习内容受到限制,实习计划难以实施,实习过程比较草率,实习效果一般,难以达到锻炼学生,提高学生综合能力和创新能力的目的。

2.实习形式单一

三峡大学能源与动力工程专业的校外生产实习沿用了其他工科专业普遍采用的实习形式,即由专任教师组织学生去各个发电厂进行参观式学习,各个发电厂抽调技术骨干对锅炉、汽轮机、化学与水系统、除硫除尘装置以及电气设备等各个系统进行讲解。通过这种方式,以期学生对发电厂的整个运营流程有初步的了解,对电厂的日常维护、运营监控以及问题处理方式有一定接触。然而,在实习过程中,各个发电厂抽调的技术骨干有的善于表达,有的不善表达,并且他们对学生专业知识的掌握情况也不十分了解。实习内容的设置比较有限,实习内容的讲解也受限于讲解老师的经验水平,学生在实习过程中很难有机会深入细致地学习,学生的创新能力、综合能力难以得到有效提高。

3.实习内容不尽合理

由于电力行业管理严格,对员工的综合素质要求极高,而对学生而言,鲜有机会上岗操作,学生的生产实习过程与校园内的课堂学习无异,依旧沿于听老师讲解,看老师操作,很难掌握电厂设备和系统的启停、运行及事故处理的方法。整个实习的内容也与课堂上的教学内容也有较大的重复性,而这些常规性实习内容很难激发学生的学习兴趣和创新意识,不能有效地培养学生的创新精神和工程实践能力。同时由于实习学生在一家单位的停留时间十分有限,一般为1周时间,实习单位客观上也难以安排完整、全面的实习内容。此外,电厂在运行过程中,电力事故的发生偶然性太强,学生在短时间内接触到的几率很小,对电厂的事故处理及分析方法还是只能听老师讲解。

4.实习考核标准软化

在现行的生产实习模式中,实习指导教师及发电厂的技术骨干处于主导地位,学生处于被动接受的地位,实习指导教师及发电厂的技术骨干商讨确定好相应的实习内容,学生跟随教师的节奏完成实习任务,该方式很难激发出学生的主观性和创造性。在实习过程中,发电厂的技术骨干讲解分配的实习内容,其他一切问题包括实习纪律和实习安全等,全靠实习指导教师协调解决。在大班实习过程中,实习指导教师一般为1名或2名,精力十分有限,难以兼顾全部学生,对学生实习缺乏有效指导和监督。实习结束之后的成绩评定主要取决于平时成绩和实习报告成绩,由于很难监控学生的整个实习过程,因此平时成绩很难把控,而仅仅依靠实习报告给出实习成绩,有失公允,没有真正考核到学生的整个实习过程。

综上可知,能源与动力工程专业现行的生产实习教学体系在实习基地、实习形式、实习内容以及实习考核标准等方面都还存在一些不足,难以满足现代企业所需的厚基础、宽口径、强能力、高素质的创新型人才、复合型人才的培养需求。

二、创新型生产实习教学模式的改革与探索

1.构建虚实结合的生产实习新模式

所谓虚实结合的生产实习模式,即将原来要求在电力生产现场完成的生产实习任务,分成在校内的虚拟平台和实际电力生产现场两方面进行。虚拟平台主要以仿真支持系统为主,内容全面但感性体验不够,实际电力生产现场针对性较强,但内容有限,深度不一。通过虚实结合,既能全面了解电力生产过程,又能有较强的感性体验。

面对能源与动力工程专业生产实习存在的实际问题,采取计算机及其他信息技术进行虚拟实习是一种新的尝试,目前也已经有了一些成功案例。[4]在学校的大力支持下,三峡大学(以下简称“我校”)针对热动方向专门建立了300MW发电机组仿真支持系统,针对水动方向建立了水轮发电机组仿真演示模型,通过调整生产实习的教学模式,加大仿真教学力度,既能保证实习内容的完整性,又能在一定程度激发学生的实习兴趣。

指导教师通过引导学生关注一些仿真实习中存在的问题及处理方案,学生带着这些问题,在现场实习时通过与技术人员讨论,加深理解。电力企业员工也非常乐意与学生进行技术交流,不仅调节了单调的工作气氛,也提高电力企业职工的基本素质。

2.优化实习内容

根据能源与动力工程专业人才培养方案来制订具体的实习内容,使得学生实习之后,能系统地了解大型水力发电厂、热力发电厂等从事运行、管理等方面的工作流程。

我校能源与动力工程专业热动方向的生产实习内容重点是了解锅炉设备系统、汽轮机设备系统、脱硫除尘设备系统、化学设备系统及其他与之有关的主要辅助设备和系统的运行特性和维护管理。此外,在仿真实习平台上主要是掌握机组的启动、停运步骤,设备与系统的故障模拟、故障分析、故障排除等,了解或熟悉故障发生的前因后果。

我校能源与动力工程专业水动方向的生产实习内容重点是了解水电厂的水工建筑物、水电厂的电能生产过程、水轮发电机组及其辅助设备和电气设备的作业布置及相互关系,220kV开关站的接线方式及主要配置,厂用6kV系统与发电机组的配接方式、接线方式及厂用电相关配置等。在水电站仿真平台上,要求学生掌握水轮机的工作原理,水轮机运行、管理、检修、维护、水轮机选型设计以及水轮机调节系统、水轮机控制系统等。

3.增强实习指导

在生产实习过程中,学生能否有所收获在一定程度上取决教师的指导水平。为了使实习指导教师更好地发挥主导作用,需要聘请专业基础扎实,实践经验丰富,有较强实践能力的专业教师对实习学生进行跟班指导。

我校能源与动力工程系以青年教师为主,长期深入电力生产一线的机会比较欠缺,工程实践能力整体情况还不高。为了使青年教师更好地发挥主导作用,一方面要充分发挥老教师的传、帮、带作用,另一方面还需定期组织青年教师深入电力企业生产一线,充分准备实习内容以及实习的重难点,增强青年教师的科研能力和工程实践能力,提高实习指导水平。

此外,采用虚实结合的实习教学模式后,对实习指导教师的任务加重了,要求提高了,责任变大了,为此实习指导教师尽量做到相对稳定、搭配合理,这样不仅能保证生产实习的长远发展,还能够维持生产实习的课程建设质量。

4.规范实习考核标准

在实习过程中,除了需要通过有效的监管机制保证实习顺利实施之外,还需采用有效的激励机制对学生的实习表现进行评判,包括实习纪律以及实习项目的表现情况,随机抽查学生笔记、对学生进行提问、要求学生讲解实习过程等。

实习结束之后,需要提交实习报告,而通常仅依据实习报告给定实习成绩是不合理的。为了充分调动学生的实习积极性,并且使学生能够充分重视实习过程,生产实习的考核评价至少需要反映“平时表现(占40%),实习报告(占40%),答辩成绩(占20%)”等几个方面。

为了生产实习的持续发展,还应广泛收集学生、教师、实习单位的评价意见,重点反映实习内容是否全面,实习安排是否合理,实习效果如何以及学生的综合素质和专业技能是否达到实习单位需求,通过总结经验,发现不足,不断提高生产实习的教学质量。

三、结语

生产实习是实践教学的重要环节,能源与动力工程因为专业的特殊性,生产实习范围相对其他工科专业而言比较有限,在经济效益驱动下,生产实习面临着很大挑战。生产实习基地的建设,实习内容的优化,实习师资队伍的建设,实习教学质量的提高等均是一个长期积累的过程,需要长期探索,不断调整。未来还需从更深层次探索生产实习的改革与发展,不断完善生产实习的教学模式,以期取得更好的实习效果,培养出具有实践能力强、创新能力高、综合素质全面的应用型本科人才。

参考文献:

[1]孟广波,王树群,高祥永.能源动力类专业校外实习改革措施的探讨[J].沈阳工程学院学报(社会科学版),2012,8(2):259-261.

[2]孟建,刘永启,刘瑞祥.能源与动力工程专业实践教学改革与实践[J].中国电力教育,2013,(31):155-156.

第15篇

关键词:能源与动力工程;实验教材;节能环保

一、引言

《能源与动力工程实验》作为能源与动力工程专业学生的实验参考用书,其既与本专业的基础理论紧密相关,又是一本独立的实验教材,其是本专业学生实验和工程实践能力培养的基础,在本专业的教学过程中占有重要的地位。

目前,能源与动力工程实验教材使用非常广泛。全国有上百所学校开设了能源与动力工程实验课程,每年有几万名大学生及相关工程技术人员都使用能源与动力工程实验教材,大部分学校只有临时内部讲义,并未有正式出版发行的教材,能源与动力工程实验教材的出版发行将受到很多高校及企业的青睐。武汉科技大学能源与动力工程专业自成立以来,三个班级共一百余名学生一直在使用本校教师编写的内部讲义,他们亦急需正式出版的教材。同时,此教材将涵盖冶金工程、材料学、矿物加工专业开设的冶金传输原理、热工基础、冶金炉原理等课程相对应的实验课。此教材的编写出版既能解决本校师生的燃眉之急,又能在其他高校及企业发挥重要作用。

目前,国内能源与动力工程专业的实验教材比较单一分散,如流体力学实验、传热学实验等,没有全面综合的实验教材。本教材涵盖了传热学、流体力学、工程热力学、燃料及燃烧、制冷原理与装置等专业基础课程,以及锅炉原理、火焰炉等专业课的实验内容,同时增加了编者科研团队的科研成果。其主要目的是通过完成对一些理论的验证,增强学生的动手能力,让学生学会对实验数据的处理方法,巩固理论课程知识,培养学生辩证思维能力和逻辑推理能力,为今后其他专业课程的学习打好基础,也为毕业生今后从事与能源动力有关的工作提供一定的基础知识。

二、教材编写

1.工作基础

本教材的依托单位是武汉科技大学材料与冶金学院能源与动力工程系。该专业从2008年起开始招收本科生,目前该校的能源与动力工程专业毕业生就业前景良好,得到用人单位的一致好评。其下属的能源与动力工程实验室自成立以来,经过校、院、系教师的努力,已经成为集科研、教学于一体的实验室。目前实验室专职管理教师四名,实验室面积超过500平方米,拥有一百余台科研与教学设备,可进行热工检测、流体、热工、燃烧、炉窑等相关专业的实验。目前编者团队已经为本校能源与动力工程本科生、冶金工程本科生、矿物加工本科生的热工基础实验、热工综合实验、冶金基础实验、冶金炉原理实验、CAD技术等课程,共计56学时编写了教材,此教材也是在这些实验课的基础上编写的。

编写团队就实验教学问题先后承担了“热能与动力工程专业实验教学体系改革研究与实践”“跨学科宽口径节能环保型人才培养的改革与实践”等教学研究项目,对实验室及实验教学进行了系统的研究与建设。其已与国内知名大学取得紧密合作,此教材即是与东北大学共同编写完成的。

2.教材特色

目前国内能源与动力工程实验教材多偏重于汽轮机、锅炉、流体机械、空调制冷实验,适用于火力发电、发动机及汽车工程、流体机械及低温制冷专业方向。而我校设置的能源与动力工程专业是以冶金为背景的学科,偏重于冶金热能方向,其对专业实验有自己特殊的要求。本教材结合本校专业特色,同时注重与其他高校本专业的相同与相近,增加了编者科研团队的科研成果,使整合后的教材既能满足本校师生的需求,又可适用于其他高校及企业人员。

(1)结合专业特色,优化知识结构

在教学实践中,整合教学内容,拓宽专业口径,不仅可以作为能源与动力工程专业学生的重要专业基础课程应用教材,也可以作为其他冶金、流体、C械和暖通工程类专业本科生必修的专业基础课教材。本教材是在武汉科技大学《能源与动力工程实验》讲义的基础上重新编写出版的,其已在能源与动力工程专业以讲义形式试用了七年,从该校毕业的本专业及相关专业毕业生,都具备了热工、能源相关实验技能,在社会就业岗位上发挥了重要作用。

(2)简明、易读和突出实用性

本教材按照简明、易读和突出实用性的原则,归纳总结了能源动力类专业实验课程的内容,编写过程中注重对基本概念、基本理论的描述,始终贯彻理论联系实际、学以致用的原则;注重实践创新,结合开放实验的特点,力求教材内容符合学生的认识规律,便于学生独立操作。教材内容精练,符合教学特点,文字简明,深入浅出。为适应教学改革需要,教材针对部分教学内容进行整合,尤其适用于不同专业和不同教学内容的选择,便于教师的取舍。

(3)理论联系实际,体现学术价值

教材要有自主知识产权的内容,努力做到把本领域的最新科研成果引入实验教学中,不仅包括国内外知名学者的研究成果,也要体现编著者的科研成果。

3.编写方案

本书主要设置工程热力学实验、流体力学实验、传热学实验、燃料与燃烧实验、制冷原理实验、热工综合实验、流体综合实验等七章。每个章节包括2~8个不等的实验,涵盖了传热学、流体力学、工程热力学、燃料及燃烧、制冷原理与装置等专业基础课程,以及锅炉原理、火焰炉等专业课的实验内容,还增加了编者科研团队的科研成果。每个实验下设实验目的、实验原理、实验装置、实验方法与步骤、实验数据及处理、实验分析与讨论、注意事项等部分,每个实验会略有调整。

三、结束语

能源与动力工程实验教材的编写是在武汉科技大学内部实验讲义的基础上编写的,已经得到七届师生的验证试用,培养的毕业生均得到用人单位的认可。本教材结合本校专业特色,同时注重与其他高校本专业的相同与相近,增加了编者科研团队的科研成果,使整合后的教材既能满足本校师生的需求又适用于其他高校及企业人员。

参考文献:

[1]吴美萍.“以生为本”的实验室开放体系构建与实践[J].中国电力教育,2014(32):146-148.

[2]孙会兰,王波,国栋等.冶金工程专业实践教学改革的探索[J].中国电力教育,2014(24):87-97.

[3]许国良,王晓墨.工程传热学[M].北京:中国电力出版社,2005.

[4]杨世铭,陶文铨.传热学(第4版)[M].北京:高等教育出版社,2006.

[5]沈巧珍,杜建明.冶金传输原理[M].北京:冶金工业出版社,2006.

[6]韩昭沧.燃料及燃烧(第2版)[M].北京:冶金工业出版社,2004.

[7]周国凡,薛正良.钢铁冶金实验[M].长沙:中南大学出版社,2008.

[8]黄希祜.钢铁冶金原理(第3版)[M].北京:冶金工业出版社,2008.

[9]毛根海.应用流体力学实验[M].北京:高等教育出版社,2009.

[10]丁祖荣等.流体力学(上册)[M].北京:高等教育出版社,2013.