前言:我们精心挑选了数篇优质数学研究论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。
1数学建模融入数学课程能够培养和提高学生的学习兴趣
学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。
2数学建模思想融入数学课程能够加快高职学校素质教育的步伐
高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。
3数学建模思想融入数学课程能够提升学生各方面的能力
学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。
二、数学建模教学实践及学生创新能力的提高
近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。
1融入数学建模思想精心设计教学内容
按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析基本知识讲解触类旁通举一反三,归纳总结掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。
2灵活多样的教学方法与现代教学手段相结合
在数学建模教学中主要采用案例驱动教学法,以基础案例引入相关知识,解决问题过程中介绍相应建模方法及软件使用技能,有效的提高学生的学习兴趣。同时,在案例分析时教师与学生互换角色交流分析思路,角色互换法使学生在角色体验中既能加深对建模方法的理解,又能提高相应的逻辑思维与表达能力。另外,采用项目研究过程法,学生自行组队,通过项目申报、研究、解题汇报并提交论文等环节,全面培养学生的创新与动手能力。在教学手段方面,充分运用多媒体教学设备,如电子课件、数学软件演示、计算机辅助教学、案例视频材料等,充分展示丰富的教学内容,化抽象为直观,化复杂计算为简单程序求解。有效利用网络资源,建立师生之间密切联系,为学生自主学习提供便利条件,提高学习效率。
3形成“课内、课外”互动的良好氛围,“教学、实践、竞赛”一体化的有效机制
根据高职院校数学课时较少学生基础较差的特点,设计课内课外互动的教学模式,课内教学环节系统培养学生建模思想方法,课外环节为学生创建进行建模实践的平台,两种教学模式结合实现综合能力的提高。融“教、学、做”为一体,理论与实践教学相互渗透。以建模课程推动建模竞赛,以建模竞赛带动校园数学文化,实现学生综合素养的提高。2010年以来,《数学建模与数学试验》作为公共选修课程,面向全院所有专业学生开设,每学期的选修人数均在200人以上,大大拓宽了学生的知识面,提高了学生数学建模的能力。由数学建模爱好者组成的院数学建模协会,以“基于学术、用于生活”为主要目标,以“导师指点、同学互促”为活动形式,着力培养学生创新精神和创新能力。活跃校园文化气息,促进学生全面发展。
4数学实验室初具规模,数学问题软件解决
为培养学生的创新能力,加强实践性教学,学院创建了数学建模实验室。数学建模实验室有32台计算机,实验室面积100余平方米,投入经费约20余万元。每台机器都安装了与数学建模有关的Matlab、Lingo、SPSS等软件,供学生上机实践。另外,学院创新实验室和大型多媒体教室可供数学建模培训和选修课上课使用。高等数学课程中每学期专门拿出18个实验学时,学习利用Matlab等数学软件解决数学问题,学生学习数学积极性大大提高。
5数学建模成绩与学生创新能力稳步提高
一、经济学的分析框架
经济学的理论分析框架由三个主要部分组成:视角(perspective)、参照系(reference)和分析工具(analyticaltools)。第一,现代经济学提供了从实际出发看问题的视角。这些视角指导我们避开细枝末节,把注意力引向关键的、核心的问题。经济学家看问题的出发点通常基于三项基本假设:经济人的偏好、生产技术和制度约束下可供使用的资源禀赋。用经济学的视角看问题,消费者想买到物美价廉的商品,企业家想赚取利润,都是很自然的。经济学就是要探讨在个人自利动机的驱动下,人们如何在给定的机制下互相作用,达到某种均衡状态,并且评估在此状态下是否有可能在没有参与者受损的前提下让一部分人有所改善(即是否可以提高效率)。以此为出发点,经济学的分析往往集中在各种间接机制(比如价格、市场供求因素等)对经济人行为的影响,并以“均衡”、“效率”作为分析的着眼点。以这种视角分析问题不仅具有方法的一致性,且常常会得出出人意料,却合乎情理逻辑的结论。第二,经济学提供了多个参照系。参照系对任何学科的建立和发展都极为重要,经济学也不例外。这些参照系的重要性并不在于它们是否准确无误地描述了现实,而在于建立了一些让人们更好地理解现实的标尺。经济学家的头脑中总有几个参照系,这样,分析经济问题时就有可比性。比如讨论资源配置和价格问题时,充分竞争下的一般均衡理论就是一个参照系;讨论产权和法的作用时,科斯定理就是一个参照系。参照系的建立对经济学的发展起到了有效的推动作用。第三,经济学采用了一系列强有力的“分析工具”,它们多是各种图象模型和数学模型。比如:供需曲线图象模型,它以数量和价格分别为横、纵轴,提供了一个非常方便和多样化的分析工具。经济学家用这一工具来分析局部均衡下的市场资源配置、市场扭曲、市场失灵等问题和政府干预市场的政策效果。这种工具的力量在于,用较为简明的图象和数学结构帮助我们深入分析纷繁复杂的经济行为和现象。
二、数学工具对经济学发展的影响
现代经济学的一个明显特点是越来越多地使用数学(包括统计学)作为分析工具,绝大多数的经济学前沿论文都包含数学或计量模型。从经济学的分析框架来看,这并不难理解,因为参照系的建立和分析工具的发展通常都要借助数学。但是,在部分经济学家的理论研究中,逐渐形成了一个基于唯数主义的数学化倾向,这种倾向偏离了经济学研究的基本视角,不仅不能为非西方世界的经济学家所接受,而且在西方经济学家内部也颇存异议。因此,我们必须一分为二地看待数学工具对经济学发展的影响。
(一)数学在经济学中的应用从理论研究角度,借助数学模型有三个优势:第一,数学语言可以清楚地描述前提假定,这使得经济学的推理与分析过程呈现出数理逻辑的严谨性。例如,边际效应价值实际上是在对效用函数进行测定的基础上,运用一系列联立方程组推导的结果。社会资源最优配置的帕累托最优理论,也是运用联立方程组对生产和交换均达到最优配置下社会福利最大化的阐述。第二,数学方法使经济学拥有了一个统一的语话体系,并进而使经济学的发展具有了一个共同的基础,让后人较容易在已有的研究工作上继续开拓,也使得在深层次上发现似乎不相关的结构之间的关联变成可能。西方经济学就是在这一共同的话语体系下获得长足的发展。第三,数学表述具有文字性表述所不具备的确定性与精确性。数学推导具有数理上的逻辑性,运用数学模型讨论经济问题,学术争议便可以建立在这样的基础上:或不同意对方前提假设;或找出对方论证错误;或是发现修改原模型假设会得出不同的结论。这样就可以有效地避免经济学理解上的歧义,避免基于不同理解而发生的毫无意义的争论,因此,从整体上有利与提高经济学家工作的效率。从实证研究角度看,使用数学和统计方法的优势也比较明显:其一是以经济理论的数学模型为基础可以发展出用于定性和定量分析的计量经济模型;其二是证据的数量化使得实证研究具有系统性;其三是使用精致复杂的统计方法可以让研究者从已有的数据中最大程度地汲取有用的信息。因此,运用数学和统计方法进行经济学研究可以把实证分析建立在理论基础上,并从系统的数据中定量地检验理论假说和估计参数的数值。这就可以减少经验性分析中的表面化和偶然性,并分别确定它在经济意义下的显著程度。
(二)经济学数学化的误区在肯定数学在经济学中的重要作用的同时,更需要指出的是:经济学不是数学。首先,经济学并不是一些数学模型和概念的简单汇集,经济学家的工作也不是开拓数学理论前沿,而是运用这些理论所代表的分析框架来解释和理解经济行为和现象。经济学发展的关键绝不在于其对数学的运用是否精通,而是取决于经济理论分析和实证分析的深度。比如经济学家应用统计回归方法,不仅关心变量的估计值和变量间的相关性,更关心变量间的因果关系、模型假定对预测的影响以及计量结果背后的经济含义,这是计量经济学不同于数学或统计学的最重要方面。其次,经济学理论的发展必须从经济学独有的研究视角出发,数学和计量方法只是体现和执行经济想法的一种工具,而不是唯一的工具。目前,英美许多经济学杂志取舍稿件的重要标准之一就是是否建立了数学模型,是否采用计量分析,如果论文不是有意的使用一组代数符号的话,那么,该论文便会自动被视为毫无价值而遭拒绝。这种作法排除了其他解决问题的思路,使运用其他研究方法解决经济问题的个人没有得到应有的尊重。这种过分数学化的趋势,标志着经济学在逐渐失去其作为社会科学应有的特征(如对现存的社会经济结构的批判性,对人和人之间生产关系的揭示,对社会经济制度的揭示,对社会经济生活的直觉性感悟等),标志着经济学在唯科学主义道路上走过了头,以至于逐渐丧失了对活生生的人的关注与分析,同时在一定程度上也标志着经济学分析工具的贫乏与单一。因此,我们不能以数学水平的高低来衡量一名经济学家的水平,我们也不能以运用数学的多少和它的难易程度来作为评判经济学论文质量的标准。同时,经济学中的过度数学化倾向还表现在,一些经济学家把数学当作经济分析的唯一手段,不顾条件地加以运用。这种运用很大程度上是一种形式主义的运用,导致了经济研究的资源误置。经济学研究人类的生产、消费和分配的社会经济活动,而人类活动受道德、历史和社会的诸多因素影响,许多环节之间都有或明或暗的联系,这使得经济活动变得相当复杂,如果用数学变量来表示,那么必将形成一个极端庞大而又难以处理的数理模型,这就给使用带来了困难。而心理学的研究结果表明,在一些情况下人的决策与模型中的严峻假定有系统性偏差,修改某些有关数理模型条件下市场中人的经济行为,将得出很多与已有的理论不同的结论。要想使严峻假定下建立的模型具有可行性,就必须要不断的放松假定,加进新的变量,这样做会使问题变得越来越复杂,直到超出数学能力所限,使得数学方法的运用陷入死循环。必须承认,经济运行中存在着许多无法量化的因素,如果一味地追求对经济现象的数量分析而忽视数学分析方法本身的局限性,将必然会陷入“数字游戏”的怪圈。事实证明,单纯使用数学工具解决经济问题具有明显的局限性。超级秘书网
三、运用经济学分析工具的几点建议
应该说,在经济学中系统地运用数学方法是不应受到过多指责的,但是,任何方法的运用都需要遵循适度的原则,过度化只能造成相反的效果。第一,经济学是一门以现实中的经济行为和现象作为研究对象的社会科学,对理论的现实性非常关注。一方面,所有的经济学理论最终都要接受现实的检验;另一方面,新理论的创立和旧理论的发展也要受现实的启发。包括数学在内的任何分析工具都不能脱离这一范畴而孤立存在。经济学过度数学化使经济学家在研究问题时不自觉地接受了数学家的价值取向,把经济学变为基于一系列超现实抽象假定的科学,实际上忽视了经济学作为一门社会科学的特征。因此,解决经济问题必须考虑到经济学研究不同于自然科学研究的基本困难,是可控实验的不可行性和用经验数据直接检验结论的有限性,必须摒弃以主观局限的数学推导进行客观经济规律探索的方法论。第二,经济理论是描述一个理性的人如何在给定的条件下做出选择,以达到其目标最大化的过程,而选择结果便是理论所要解释的现象。因此,一个经济理论能否解释现实的关键就在于模型中限制当事人选择的给定假设条件是否合适。所谓合适,是指模型中的限制条件要尽可能地具有“普适性”(Robustness),也就是要具有一般性。例如,要素禀赋决定了一个经济中的各种要素的相对价格,是社会中任何经济决策都必须考虑到的条件,因此,要素禀赋是一个非常“一般”的条件,以发展目标和要素禀赋的矛盾来解释计划体制的产生,也就有了较强的“普适性”。运用要素禀赋理论就可以解释为什么不同社会性质的国家采用了类似的计划体制以及为什么我国的社会性质未变,而改革后却从计划体制转型到市场体制的现象。所以,我们要将经济理论的探讨建立在经济运行各个环节之间普遍联系的基础上。第三,从经济学引入数学以后100多年的历史来看,作为一种分析工具,数学的确显示出诸多值得充分肯定的优越性,我们应该不断加强经济学数学分析方法自身的完善,拓展其应用领域,进一步发挥其在经济理论研究和实践中的作用。在继承和发扬传统数学分析方法的基础上,学习和应用最新的数学分析方法,如博奕论方法、对策论方法、模糊数学方法、非线性系统方法等,使数量分析由单变量向多变量发展,由单目标向多目标发展,并且大力拓展计算机等相关技术领域,提高数学解决经济问题的能力。第四,经济现象本质上一种社会现象,其发展受到许多无法量化的因素制约,这要求我们进行经济研究的时候必然要经过一个定性到定量的分析过程。如果舍弃那些不可定量却对经济行为产生重要影响的因素,生硬地把经济现象抽象到数学模型当中,就会歪曲经济事物的本来面目,影响结论的科学性和有效性。因此,在加强数学工具运用的同时,我们绝不能局限于数学的分析方法,更不能局限于形式上的数学化,简单否定和排斥定性分析的作用。行为经济学之所以逐渐被主流经济学接受,正是因为它合理运用定性分析的方法,并且将通常的理性假设的情况包涵在其中,而不是单纯的依靠严峻假设下的数学模型来解决问题。
主要参考文献:
[1]程祖瑞.数学化,中国经济现代化的必由之路[J].经济经纬,2001(6).
[2]赵凌云.经济学数学化的是与非[J].经济学家,1999(1).
[3]曾康霖.略论经济学研究的几次革命[J].经济学家,2001(5).
大学少年班是优秀生集中的地方,少年班教师探索的研究性教学法,很有借鉴作用。“在教学方式的改进中,我们正在模索所谓研究性教学方法。研究性教学就是讲演课上和其他类型的课上,不断地提出问题,研究分析问题和必要的课堂讨论等方式讲授,以帮助学生掌握知识、提高分析能力”(辛厚文、陈晓剑:《大学少年班教育概论》中国科技大学出版社出版)
既是教学中心又是科研中心的大学,必然在着重加强基础训练同时,又要使教学过程带有研究性质,在教学过程中,提出学生觉得需要解决的问题,加以适当引导,学习研究。在解决问题的同时,提高学生思维能力,使教学与科研相结合。那么研究式教学就有着必然性,成为调动大学生学习的积极性、主动性、创造性和辩证思维能力的重要手段。
在中学教学中,为了有目的性,针对性调动学生学习积极性、主动性,引导他们在教学大纲范围内巩固基础知识,提高能力,发展智力,将来适应大学的研究性教学形式,我认为,中学教学教育中,也可以根据中学生特点,采取“提问质疑--自学求索--讨论研究--总结提高”的中学教学研究式教学方法。
提问质疑。在课堂上,课外活动中或数学讲座上,根据学生水平,教材内容,提出需要解决的问题,激发学生兴趣,引起对学习某种知识的需要,产生学习研究的动机,对求知欲旺盛的学生来说,也起到引导他们正确学习方向的把关作用,防止无目的不切实际的“乱学”,即一是“引趣”二是“定向”。
自学求索。教师引导学生对课本或有关课外阅读材料,书籍,学习与研究问题有关的知识,要求学生精读教材或课外书。掌握有关知识或提出不懂问题。
讨论研究。在课堂上(提出的问题在教材范围内且与大多数学生必须掌握的基础有关)或在课外(提出的问题有一定难度)由集体(小组或教师与个别有关学生)进行探索研究,介绍自己的学习体会或解决问题的方法。
总结提高。由老师或学生总结解决问题的方法或结论,进行归纳小结,可采用老师在课堂上或数学讲座中总结规律,解答疑难,也可由学生写读书笔记或小论文。用自己的语言进行归纳,谈出自己学习心得或独立见解。
在《不等式》一章教学中,课本对基本不等式“A=≥=G”的证明,只要求对n=2.3的情况进行证明,当学生运用公式达到一定熟悉程度时,便对数学成绩好的学生(对成绩中等以下则要求不要去研究,以免加重负担),提出怎样证明公式一般情形,介绍有关学生阅读华罗庚的《数学归纳法》或其他教学参考书,数学成绩好的学生兴趣很浓,翻阅有关书籍学习,并对常见两种证法提出不懂问题进行热烈讨论。最后,教师在数学讲座中给以讲解,并对教学归纳法证明中的一些技巧或“变着”进行介绍,加深了数学爱好者对数学归纳法的深入理解。其中有一个学生在一本课外书上看到关于这个公式证明的简单介绍:可用“如果a1a2…=a=1(a1a2…an∈R+)则a1+a2+an≥n”(实际上是公式A≥G的特例)证明公式“A≥G”而前者则可用数学归纳法证明。当他学习研究有困难,教师加以指导。这个学生终于解决这一问题,则让他归纳总结,写成小论文,后发表在《中学生数学报》1985年第5期。这种证法介绍给其他学生,学生感到较前面两种证明方法易懂。通过这样做,使学生带着问题,围绕当前学的基础知识去自学研究,使知识面扩宽,有利于培养学生的创造性思维。
“什么是创造性思维?”它是主动地,独创性地发现新事物,提出新的见解,解决新的问题的一种思维形式,就是我们平常说的能做到举一反三闻一知十。这里的创造,不是指科学家的发明创造,科学家的发明创造是说他们所发现和解决的问题往往是人类不曾发现和解决的新事物,而学生的发现、创造和解决问题仅仅是对于他本人来说是一种新鲜事物。学生创造性思维的培养和发展,有助于他们将来进行更大的创造。“(章永生:《教育心理与教学法》)诚然培养中学生的创造性思维,首先会有利于中学生将来到大学深造时主动地有创见性的学习。中学的研究式的教学法与大学少年班的研究式有不少差别:如对象不同---少数数学优等生与群体优等生(且优的程度差别很大)。性质不同--解决尚未学懂的问题与解决尚未解决的问题。方式不同---以发挥老师主导作用解疑为主与发挥学生主体作用为主。但都是为了培养学生主动的积极的创造性的学习动机、方法和能力。前面介绍研究“A≥G”公式证明有创见(即通过学习探讨获得新知识)的学生,尔后学数学的兴趣愈浓,参加1986年全国数学竞赛获自治区三等奖,他所在班级(即笔者任教并试行此法的八七理二班)学数学,研究数学的空气很浓,参加1986年全国高中学生数学竞赛时,有12人获地区一、二、三等奖,有一人获自治区一等奖,二人获自治区二等奖,有一人获自治区三等奖,体现了学生的分析问题和解决问题的能力,创造性思维能力都有很大提高。
提问质疑,其目和是唤起学生的兴趣,求知欲,好奇心,必须难度适当,不能脱离教学大纲和学生实际,而应该是能体现教学大纲,让学生通过自己的积极努力能理解并感到克服学习困难产生一种乐趣的这种适当难度。可以这样说,让学生跳一跳才能摘到树上的果子。若伸手可得或高不可攀都是不可取的,适当的质疑,让学生经常“跳一跳”摘到果子,这样多跳几次,“弹跳力”---自学能力,分析能力等就随之提高了。
在“自学求索”这一阶段,必须培养学生的自学习惯。读书的方法和钻研的精神,即自学能力。例如在立体几何关于《直线与平面平行的判定定理》一节中,在课前预习提出下列问题:1、直线与平面有几种位置关系?判定方法怎样?2、直线与平面判定定理怎样证明?还有其他方法吗?课堂上,学生都可以回答上述两个问题,特别是对第二问题讨论热烈,列举各种证法,经过总结,提高了学生对反证法的运用能力。然而,向学生提出“直线与平面平行的判定方法是怎样思考到的?”这一问题时,学生都无从回答,其原因是学生在“自学求索”这一过程中,学生仅在预习课本时,直接记出定理,没有求索探因,对第一个问题(这是本节最基本问题)觉得似乎易懂而放弃思索研究,笔者带领学生再进一步研究直线与平面的直线在平面内,直线与平面相交平行三种位置的特点:用一支细直棍(代表直线)在一平面进行“在平面内”“平行”的变化过程的演示。
将直线先从在平面内,再平行移动到平面外,来找到线向平行的判定方法。这样做使学生对教材深入钻研,自学求索。过去,笔者是先从上述演示而引起线与平面平行判定定理,再证明,这样做可称“启发式”,而现在采取先提出问题,让学生经过自学研究等阶段来总结提高,可称“研究式”。
研究式的教学方法可应用于课堂教学(如立几的线面平行判定定理一节)中,可与其他教学形式有机结合在一起进行课堂教学,也可应用于课外研究,数学讲座,数学课外活动小组,指导个别数学优等生学习。(如公式“A≥G”的证明)
对某个数学问题的研究,不应毕其功于一役,而应该结合学生掌握知识的程度的不断提高而引导学生在“自学求索”“讨论研究”两个阶段中逐渐深入研究问题。
在解析几何《椭圆》一节中有这样一个例题:我国发射的第一颗人造地球卫星的运行轨道,是以地球的中心为一个焦点的椭圆,近地点A距地面439公里,远地点B距地面2384公里,地球半径为6371公里,求卫星轨道方程。
此题计算不难,学生很容易掌握,但下课前,提出问题,为什么地球的近地点和远地点分别在椭圆长轴两端点(实际上,在预习此课时,已有少数养成研究习惯的学生提出此问题),并结合题目分析归纳成一个极值问题:为什么椭圆上的点到焦点的距离的最远点和最近点分别这椭圆长轴的两端点?
课后,有的学生利用代数方法解决这一问题,但不少学生在遇到函数自变量为二个变量x.y时忘记了,“曲线上的点的坐标必满足这曲线方程”这一基本概念,或者运算化简过程中配方法不熟练。
当学习到圆锥曲线统一定义时,第二次提出此问题让学生研究,掌握用“求圆锥曲线点到焦点的距离可化这点到准线距离”来解决,减少变量个数。
当学习参数方程时,第三次提出此问题,让学生学会利用以角为参数方程,使代数极值问题化为三角函数极值问题来解决。
当学习极坐标时,第四次提出此问题,让学生找到更简便解法。