前言:我们精心挑选了数篇优质动力工程影响因子文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
关键词:回转式空气预热器 折算压差 清洁因子
中图分类号:TM621.2 文献标识码:A 文章编号:1007-3973(2013)005-046-02
1 前言
回转式空气预热器是位于锅炉尾部烟道的低温受热面,相比于管式空气预热器,回转式空预器具有结构紧凑,节省钢材与场地,安装布置方便等优点,因而在大型电站锅炉中被广泛采用。但是由于其结构的特殊性,造成容易发生积灰,过量的积灰将造成传热恶化,增大阻力,严重时会造成受热面堵塞,使锅炉出力下降甚至造成停炉事故。
实践发现,相比于锅炉的其他受热面,回转式空气预热器的运行状况受积灰影响更为明显,而且需要进行更多的吹灰,因此及时的对回转式空气预热器受热面进行吹灰清扫操作,对维持其正常运行是非常重要的。传统的吹灰操作是按照运行规程规定,定时定量进行吹灰,同时,在必要的时候可根据运行人员凭借经验对吹灰频率进行微调。这种吹灰方式主观因素影响大,缺乏可操作性。不适当的吹灰除了会消耗大量的蒸汽,造成热量浪费外,还会损伤受热面,缩短其寿命。因此空预器受热面积灰状态监测对优化吹灰操作是非常有必要的。
监测积灰状态的核心是受热面清洁因子的计算,本文结合空预器的结构特点,建立了清洁因子计算模型,使用某燃煤电站330MW锅炉运行数据进行验证,结果显示该模型能反映空气预热器积灰状态,同时指出了现有吹灰策略存在过吹和吹灰不及时现象。
2 折算压差模型
运行经验表明,空预器吹灰前后烟气温度变化不大,利用传热特性来计算清洁因子难以反映积灰状态。回转式空预器的结构决定了,积灰后,其流通截面变小,烟气流速加快,受热面壁面粗糙度变大,流动阻力增加。因此,通过流动特性计算清洁因子是可行的。
3 模型验证和分析
某330MW燃煤电厂使用两台型号为LAP10320/2300的回转式空气预热器,每台空预器均配有两台吹灰器,一台位于烟气入口(蒸汽),一台位于烟气出口(双介质)。每台吹灰器上均配有半伸缩式吹枪,使用过热蒸汽或过热蒸汽和高压水作为吹灰介质。运行规程规定,每个运行班(6个小时)吹灰两次。
从机组历史数据库中随机抽取一天的数据对模型进行验证,选取该日期前后各5天中计算得到的最小折算压差作为空预器在清洁状态下的折算压差进行清洁因子计算。一天中清洁因子的计算结果见图1,可以发现,在清洁因子较小,即积灰比较严重的时候进行吹灰,清洁因子有较为明显的上升,之后慢慢回落。在清洁因子较大的情况下,回落速度较快,之后随着积灰增加,空预器受热面上的灰被烟气带走的速率增加,飞灰落到受热面上的速率和被带走的速率趋于一致,积灰速率变慢,清洁因子下降趋势减缓,模型计算结果基本符合预期。
研究发现,现有的吹灰策略并不经济,出现了吹灰过多和积灰严重时不及时吹灰现象。从图1可以看出,在1:25和2:54进行的两次吹灰时间间隔过短,此时受热面积灰较少,吹灰效果并不明显;8:22和13:20的两次吹灰则由于吹灰时间间隔较长,受热面上积灰较多,吹灰前后清洁因子有较大的提高,吹灰效果明显,但是空预器长时间工作在积灰严重的工况下,可能从某些方面影响了机组运行的安全性和经济性。
锅炉在运行过程中,受到各种不稳定因素的作用以及热工参数测量设备存在较大测量误差,尽管加入了取平均等滤波处理,计算清洁因子存在小范围的波动和部分异常的变化趋势仍不可避免,需要对模型进一步完善。同时在积灰监测的基础上,如何建立安全经济的吹灰规程也是需要进一步研究的问题。
4 结论
折算压差模型可以帮助运行人员直观地监测回转式空气预热器受热面的积灰状态,指导其进行安全经济的吹灰,避免过吹,造成蒸汽浪费和设备磨损或吹灰不及时,影响设备运行。
参考文献:
1热点因子计算方法
热点因子计算方法主要有3种:乘积法、统计法和混合法。乘积法是指把反应堆内可能出现的各种最不利因素连乘起来;该方法过于保守,不利于提高反应堆的经济性。统计法是指把反应堆内可能出现的各种不利因素的变化看出按统计规律分布,然后再按统计规律去综合各参数对计算参数的影响;这样的计算结果有一定的超过设计限值的概率,在一定程度上不利于反应堆的安全。混合法是介于上述两种方法之间的一种方法,它把与元件加工、装配等有关的参数当做统计分布,这些参数先按统计法处理得出一个热点因子,然后再与其他热点因子连乘,最后得到一个总的热点因子。为了保证反应堆的安全,同时提高反应堆的经济性,混合法是最好的分析方法。本文采用混合法对多层套管元件的工程热点因子敏感性分析。
2HFETR热点因子计算
2.1燃料元件热工分析
燃料元件盒表面的名义壁温可表示成。
2.2工程因子
为了对贮存水池的散热能力进行计算,必须对贮存水池内的现有热源进行统计,给出不同储存历史的乏燃料元件剩余释热。选用“魏格纳-韦”经验公式对水池内的乏燃料元件剩余释热计算。王家丰等于1979年根据元件加工标准、有关的热工水力试验结果及运行定值等确定了HFETR的热点因子[1](简称为“1979版”)。根据现目前反应堆运行测量技术、HFETR燃料组件技术条件[2-6]、HFETR热工计算方法[7-8]等方面,提出一套新的工程因子(简称为“2013版”)。“2013版”对不确定的参数沿用以往的值,与1979年的工程因子的比较见表1。
2.3计算结果比较及分析
2.3.1各层燃料元件最高壁温计算结果比较以HFETR85-II炉各燃耗步中最大盒功率的燃料元件为分析对象,反应堆运行功率为75MW。设定一次水入口水温45℃,燃料元件入口平均流速6.74m/s。首先利用HFETR带肋多层套管元件流场及温度场数值模拟程序CASH计算得出燃料元件名义参数,再以此为输入,利用GCYZ程序对燃料元件壁温的工程因子温升进行计算。两套不同的工程因子附加温升及各层燃料元件最高壁温见表2。由计算结果可以看出,修正后的工程因子加温升较以前降低,平均小6.02℃,而最大壁温处的工程因子附加温升可降低6.83℃。可以看出,以往所考虑的工程因子是偏保守的。
2.3.2HFETR85-II炉燃料元件热工计算比较根据物理计算结果,计算出不同燃耗棒位下的热盒元件运行功率下壁面最高温度,以及根据HFETR元件稳态工况下的热工设计准则,计算出不同燃耗棒位下当燃料元件包壳最高温度达到190℃时,热盒元件及相应的HFETR堆芯允许运行功率(表3)。表3中PB为元件盒功率。为反应堆最大允许功率。由计算结果可以看出,修正工程因子后不同燃耗棒位下的热盒元件运行功率下壁面最高温度的工程因子附加温升较以前降低约5.8℃,各不同燃耗棒位下HFETR堆芯允许运行功率提高约5MW。
3结束语
关键词:气动力;工程估算;自动处理;Matlab应用
1 前言
在飞机研制设计方案初期,由机初步设计方案的参数需要经常调整,而通过风洞试验和数值计算获取飞机气动力参数比较耗时,难以在较短时间内跟上参数调整的步伐,工程估算方法能够快速得出飞机不同气动布局的主要气动特性,以便通过反复迭代来对方案进行优化设计,因此工程估算在这期间占有比较重要的地位。然而,当前使用的工程估算的计算方法已经严重落后,没有最大限度展现出它在飞机方案设计阶段所具有的优势,其中主要问题在于:
1.1 目前采用的工程估算方法耗费的时间太长:工程估算的计算公式主要来源于大量风洞试验结果和前人经验总结,大部分属于半经验公式,计算过程中很多的气动参数要查阅图表,根据目前型号飞机的工程估算来看,提供一套完整的飞机气动导数,至少要查300个左右的图表,一个熟练的设计人员将近75%的时间耗费在查图取数上面,极大浪费了人力。
1.2 计算的结果累积误差较大:查表取数的过程中,图表网格稀疏,数据取值存在误差,并且不同设计人员从图上读到的数据也存在差异,而飞机的气动导数是相互联系相互影响的,前面导数的计算误差对后续导数的计算有很大的影响,这种误差的积累造成计算结果精度较差。
1.3 计算结果重复性不高:一方面,由于计算公式没有固化,因而同一总体参数下不同期的计算结果可能存在差异,另一方面,同一设计人员在不同时间的查图所得数据也存在差异。
出现这些问题的根源就是没有形成一套完整的自动化处理软件或者计算程序,结合目前的实际情况,文章基于Matlab等一些工程应用软件,提出一种方便、有效、快速实现对飞机气动力工程估算自动处理的方法。
2 实现工程估算程序化处理的方案流程
计划方案如图1。
图1 工程估算程序化处理方案的流程示意图
方案流程说明:第一步,建立整体方案的标准化库,由于整个方案实现的子程序和涉及的飞机气动力参数很多,为了便于设计人员相互协作并且使程序调用参数方便,在方案实施开始阶段要统一规定数据存储方式、各全局变量符号的定义、功能函数的命名方式等。第二步,开始对所有的曲线图表数字化,每条曲线存储为二维数组,同一图表的曲线统一存储在一个结构变量名下,最后根据命名规则存储为数据文件。第三步,编写查图所需参数的子函数,调用图表数据文件并根据曲线形态编写插值函数,然后存储为标准的M文件;然后根据飞机气动特性分类,根据参考公式和适用范围,编写每部分的子函数。第四步,对主程序的主要部分分别定义,做到计算状态、参数输入、计算方式的定义都通俗易懂,然后对程序各部分调试,验证程序运行无误并且没有冲突。第五步,对结果输出格式进行描述,调用曲线绘图等功能。第六步,后期处理工作,主要是编写可视化界面,方便结果的输入和输出,对飞机的气动特性有更直观的描述。
3 实现过程
3.1 图表曲线的数据化处理
由于工程估算需要查阅大量图表,因此首先解决的是联合getdata、Excel、Matlab软件的功能实现图表曲线的数据化过程:利用getdata软件主要利用它的自动取点功能,Excel可以将取到的数据点进行单调排序,利用Matlab读取数据并存储统一格式。以飞机机翼零升阻力估算时的升力面修正因子的经验曲线为例,它是马赫数和机翼最大厚度线后掠角的函数,数据化建模的过程如下:
3.1.1 把图像保存为.BMP位图文件,然后导入getdata软件,利用getdata软件定义好纵横坐标,利用它的自动取点功能把每条曲线转化成二维数组。得到的二维数组一定保证X坐标为单调函数(可以借助EXCEL的升序排列功能)。
3.1.2 在Matlab中建立图表数据的结构变量,例如:curve(M1,M2,M3,M4),假设M1, M2, M3, M4分别表示M1=0.25,M2=0.6,M3=0.8,M4=0.9的四条曲线,通过把取点得到的四个二维数组分别赋值给curve.M1,curve.M2,curve.M3,curve.M4。
3.1.3 利用Matlab的SAVE功能将结构变量存储为数据文件,例如:save curveXXX.mat curve(具体运用时可根据图表编号来命名,方便查找)以便以后的程序直接调用取值。
3.2 建立曲线取值的子函数
建立图表数据库后,还要从数据库中准确查找所对应的参数,才能达到精确取值的目的,根据2.1节建立的数据文件,如果给出最大厚度线后掠角?撰t/c,max和马赫数M,这就需要从curveXXX.mat文件中检索出所对应的RLS值。由于原始图表里面只有四条曲线,相对应只有四个二维数组,如果要查找任意马赫数下的RLS,那么唯一的办法就是插值,插值的具体方法可以用两点线性插值,三点线性插值或者非线性插值,选用什么方法根据曲线形态来决定。如果这些都写到主程序,那么会造成不易修改而且容易出错,为避免程序臃肿,可以使用Matlab的特色功能,建立一个曲线取值的功能函数。这个功能函数(M文件)可以供任何子函数调用。
3.3 创建分块函数
根据飞机气动力工程估算主要内容,可以根据飞机的气动特性分类建立分块函数,如升力特性、阻力特性、俯仰力矩特性等;也可以根据飞机部件来定义,例如机翼气动特性、机身气动特性、尾身组合体气动特性等。分块函数是互不干扰,可以互相调用彼此结果。以升力特性计算为例,其创建过程为:
3.3.1 定义函数function[Cy0,Cymax,C■■,?琢0,…]=ShengLiTeXing(bA,l,S,…),其中括号里面Cy0,Cymax,C■■,?琢0表示函数返回值,也就是要计算的气动导数方面输出,可根据需要进行添加;小括号里面bA,l,S表示变量名,也就是需要输入的飞机总体参数。
3.3.2 编写各气动导数的计算过程,例如需要查图1的曲线数值,那么可以直接调用子函数RLS=curve(M,?撰t/c,max)读取数据。
3.3.3 将计算的各参数结果统一存在规定格式的文件中,方便其它函数调用数据。
3.4 主程序运行示意图
前面建立很多各部分子函数和分块函数,其主要目的是简化主程序行数,方便输入,方便读写,复杂部分均写成了函数,让没有使用过Matlab的设计人员也能够娴熟调用函数并进行计算,以图2为例,主程序仅包含四个部分内容:
3.4.1 标号1部分的主要功能是进行计算空间的内存清理和所有计算方法的来源(参考资料),这部分不需要改动,仅供分析计算结果时参考;
3.4.2 标号2部分是计算状态输入和说明,包含飞行马赫数、飞行高度、大气运动粘性系数等,和所要计算的飞机飞行状态密切相关;
3.4.3 标号3部分主要是飞机主要几何参数输入,例如机翼形状参数,机身外形参数以及尾翼外形参数等,此处要求参数尽可能简化,中间参数不需要输入,具体输入参数需求根据计算内容而定。
3.4.4 标号4部分为主要的计算内容,根据需要计算的气动导数来调用相关函数,也可以在此对所需要的气动导数进行输出。例如,需要查看全机的C■■,那么仅需要输入C■■即可在Matlab主程序的运行状态栏即可看到C■■的输出结果。
4 界面可视化
根据前三节实现了气动力工程估算的自动处理的整个过程,并且程序也能够被不熟悉Matlab的人员操作使用,但存在参数输入不方便,容易对总体参数的输入产生错误,并且输出结果不便查找(需要对照符号表查找计算的导数符号)数值,输出不直观等问题。因而,需要对整个方案进行后期的可视化封装,这不仅使界面明了清晰,并且还可以对计算结果进行特定处理,更加直观体现飞机的气动特性。
4.1 参数输入功能:建立参数输入对话界面,通过中文文字说明,参数输入过程将不再需要和符号一一对应,这不仅减小了人为的输入错误,也提高了效率。
4.2 计算与数据输出: 参数输入完成以后,即可点击开始计算,默认状态下时将把可能计算的所有气动导数完全计算,实际编写程序时可加入对特定的导数进行计算。计算完成后可以将计算结果按已设定好的数据格式进行输出。
5 结束语
飞机气动力工程估算是飞机气动布局设计的一项重要工作,它的发展关系飞机气动布局设计的时间和成本。文章通过Matlab软件,提供了一种飞机气动力工程估算程序化自动处理方法,对存在的主要技术问题提供了解决的办法。这种工程估算程序化自动处理方法在XXX飞机气动力工程估算的过程中实现部分应用,体现出了高效、快捷的特点,并且计算结果的重复性精度很高。不足之处是功能还不是很强大。参考国内外同行在这方面的经验,基于文章基础,可以在后续工作将逐步加入结果分析、参数优化设计等功能,为设计人员提供一个较为完善的计算处理软件。
参考文献
[1]飞机设计手册总编委会.飞机设计手册(第六册)[M].北京:航空工业出版社,2002.
[2]董辰辉.MATlAB2008 全程指南[M].北京:电子工业出版社,2009.
[3]谭浩强.C++面向对象程序设计[M].北京:清华大学出版社,2009.
[4]达恩・亨赛尔曼.精通Matlab[M].西安:李人厚,等译.西安交通大学,1997.
作者简介:陈春鹏,男,工程师,研究方向:飞机气动力设计。